Please wait a minute...

Frontiers of Optoelectronics

Front Optoelec    2014, Vol. 7 Issue (1) : 53-58     DOI: 10.1007/s12200-013-0380-4
Misalignments among stacked layers of metamaterial terahertz absorbers
Yinghui GUO1(), Lianshan YAN1(), Wei PAN1, Bin LUO1, Xiantao ZHANG1, Xiangang LUO2
1. Center for Information Photonics & Communications, School of Information Science & Technology, Southwest Jiaotong University, Chengdu 610031, China; 2. State Key Lab of Optical Technology for Microfabrication, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610029, China
Download: PDF(584 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

Misalignment among stacked layers of absorbers is inevitable in practice. Adverse effects induced by this undesired factor was investigated and analyzed in this paper. The absorption responses of thin terahertz metamaterial (MM) absorber with different degree of misalignment were simulated by finite-difference time-domain (FDTD) method under both transverse magnetic (TM) andβtransverse electric (TE) polarization. Results show that slight misalignment deteriorates absorption response due to the decreased spatial resolution. The analyses are given in terms of the magnetic field distribution in the cross section. In addition, the depravation is changed with polarization, which depends on the direction of excursion.

Keywords metamaterials (MMs)      terahertz absorber      misalignment      subwavelength structure     
Corresponding Authors: GUO Yinghui,; YAN Lianshan,   
Issue Date: 05 March 2014
 Cite this article:   
Yinghui GUO,Lianshan YAN,Wei PAN, et al. Misalignments among stacked layers of metamaterial terahertz absorbers[J]. Front Optoelec, 2014, 7(1): 53-58.
E-mail this article
E-mail Alert
Articles by authors
Yinghui GUO
Lianshan YAN
Xiantao ZHANG
Xiangang LUO
Fig.1  Schematic unit cell of terahertz absorbers. (a) Three-dimensional oblique view; and (b) two-dimensional side view
Fig.2  (a) Reflection spectra for different polymer thickness ; (b) resonance wavelengths evolution with the radius of ring
Fig.3  Schematic unit cell of broadband terahertz absorbers. (a) Three-dimensional oblique view; (b) top view with defined parameters; and (c) corresponding absorption spectra
Tab.1  Geometric parameters of the broadband terahertz absorber
Fig.4  Magnetic field profile at = 0 planes for three absorption peaks of absorber. (a) III; (b) II; and (c) I. Dotted line: main area of field distributions
Fig.5  Top view of the structure with a lateral shift in the direction (a); absorption responses with from 0 to 1 μm under transverse magnetic (TM) (b) andβtransverse electric (TE) polarization (c)
Fig.6  Magnetic field profile || at = 0 plane with TM polarization incidence for peaks (a) III; (b) II and (c) I when = 1.0 μm. Dotted line: main area of field distributions
Fig.7  Charge density distribution at three metallic rings for TM polarization. (a)-(c) Three metallic rings without misalignment; (d)-(f) three metallic rings with = 1.0 μm. (a) and (d) III; (b) and (e) II; (c) and (f) I
Fig.8  Electric field profile of three rings at peak III at plane for TE polarization with = 1.0 μm. (a) Ring III; (b) ring II; and (c) ring I
Fig.9  Absorption spectra for TE polarization with different period when = 1.0 μm
1 Pendry J B. Negative refraction makes a perfect lens. Physical Review Letters , 2000, 85(18): 3966-3969
doi: 10.1103/PhysRevLett.85.3966 pmid:11041972
2 Valentine J, Li J S, Zentgraf T, Bartal G, Zhang X. An optical cloak made of dielectrics. Nature Materials , 2009, 8(7): 568-571
doi: 10.1038/nmat2461 pmid:19404237
3 Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction. Science Magazine , 2001, 292(5514): 77-79
doi: 10.1126/science.1058847 pmid:11292865
4 Guo Y H, Yan L S, Pan W, Luo B, Wen K H, Guo Z, Luo X G. Electromagnetically induced transparency (EIT)-like transmission in side-coupled complementary split-ring resonators. Optics Express , 2012, 20(22): 24348-24355
doi: 10.1364/OE.20.024348 pmid:23187197
5 Landy N I, Bingham C M, Tyler T, Jokerst N, Smith D R, Padilla W J. Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging. Physical Review B: Condensed Matter and Materials Physics , 2009, 79(12): 125104-125109
doi: 10.1103/PhysRevB.79.125104
6 Cui Y X, Fung K H, Xu J, Ma H J, Jin Y, He S L, Fang N X. Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab. Nano Letters , 2012, 12(3): 1443-1447
doi: 10.1021/nl204118h pmid:22309161
7 Ye Y Q, Jin Y, He S L. Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime. JOSA B , 2010, 27(3): 498-504
doi: 10.1364/JOSAB.27.000498
8 Ma Y, Chen Q, Grant J, Saha S C, Khalid A, Cumming D R S. A terahertz polarization insensitive dual band metamaterial absorber. Optics Letters , 2011, 36(6): 945-947
doi: 10.1364/OL.36.000945 pmid:21403737
9 Grant J, Ma Y, Saha S, Khalid A, Cumming D R S. Polarization insensitive, broadband terahertz metamaterial absorber. Optics Letters , 2011, 36(17): 3476-3478
doi: 10.1364/OL.36.003476 pmid:21886249
10 Aydin K, Ferry V E, Briggs R M, Atwater H A. Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nature Communication , 2011, 2: 517
doi: 10.1038/ncomms1528 pmid:22044996
11 Feng Q, Pu M B, Hu C G, Luo X G. Engineering the dispersion of metamaterial surface for broadband infrared absorption. Optics Letters , 2012, 37(11): 2133-2135
doi: 10.1364/OL.37.002133 pmid:22660145
12 Chen Q, Sun F H, Song S C. Subcell misalignment in vertically cascaded metamaterial absorbers. Optics Express , 2013, 21(13): 15896-15903
doi: 10.1364/OE.21.015896 pmid:23842376
Full text