Please wait a minute...

Frontiers of Optoelectronics

Front Optoelec    2013, Vol. 6 Issue (3) : 297-302     DOI: 10.1007/s12200-013-0336-8
Highly nonlinear enhanced-core photonic crystal fiber with low dispersion for wavelength conversion based on four-wave mixing
Department of Electrical Engineering, Shahre-rey Branch, Islamic Azad University, Tehran 1815163111, Iran
Download: PDF(203 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

In this paper, a new structure of highly nonlinear low dispersion photonic crystal fiber (HN-PCF) by elliptical concentration of GeO2 in the PCF core has been proposed. Using finite difference time domain (FDTD) method, we have analyzed the dispersion properties and effective mode area in the HN-PCF. Simulative results show that the dispersion variation is within±0.65 ps/(nm?km) in C-band, especially 0.24 ps/(nm?km) in 1.55 μm wavelength. Effective area and nonlinear coefficient are 1.764 μm2 and 72.6 W-1?km-1 respectively at 1.55 μm wavelength. The proposed PCF demonstrates high nonlinear coefficient, ultra small effective mode area and nearly-zero flattened dispersion characteristics over C-band, which can have important application in all-optical wavelength conversion based on four wave mixing (FWM).

Keywords dispersion      effective area      four wave mixing (FWM)      wavelength conversion      photonic crystal fiber (PCF)     
Corresponding Authors: MONFARED Yashar E.,   
Issue Date: 05 September 2013
 Cite this article:   
Yashar E. MONFARED,A. MOJTAHEDINIA,A. R. MALEKI JAVAN, et al. Highly nonlinear enhanced-core photonic crystal fiber with low dispersion for wavelength conversion based on four-wave mixing[J]. Front Optoelec, 2013, 6(3): 297-302.
E-mail this article
E-mail Alert
Articles by authors
Fig.1  Cross section of HN-PCF with holes diameter , holes pitch, width , and height of ellipse of the germano-silicate high index core
Fig.2  Fundamental guided mode of HN-PCF with = 0.9 μm, = 2.3 μm, = 0.6 μm and = 2.2 μm in operation wavelength = 1.55 μm
Fig.3  Dispersion curves of HN-PCF with = 2.3 μm, = 0.6 μm and = 2.2 μm as function of wavelength
Fig.4  Nonlinear coefficient curves of HN-PCF with = 2.3 μm, = 0.6 μm and = 2.2 μm as function of wavelength
Fig.5  Dispersion curves of HN-PCF with = 0.7 μm and = 2.3 μm as function of wavelength
Fig.6  Effective area of HN-PCF with = 0.6 μm, = 2.2 μm and = 2.3 μm as function of wavelength
effective area3.5 μm22 μm21.76 μm2
dispersion3.2 ps/(nm?km)0.7 ps/(nm?km)0.24 ps/(nm?km)
n22.507 × 10-203 × 10-203.16 × 10-20
nonlinear coefficient29 W-1?km-160.5 W-1?km-172.6 W-1?km-1
Tab.1  Optical properties of fibers at = 1.55 μm wavelength
1 Geraghty D F, Lee R B, Verdiell M, Ziari M, Mathur A, Vahala K J. Wavelength conversion for WDM communication systems using four-wave mixing in semiconductor optical amplifiers. IEEE Journal on Selected Topics in Quantum Electronics , 1997, 3(5): 1146-1155
doi: 10.1109/2944.658588
2 Bhuiyan M N, Matsuura M, Nguyen Tan H, Kishi N. Polarization-insensitive and widely tunable wavelength conversion for polarization shift keying signal based on four wave mixing in highly non-linear fiber. Optics Express , 2010, 18(3): 2467-2476
doi: 10.1364/OE.18.002467 pmid:20174074
3 Qasaimeh O. Theory of four-wave mixing wavelength conversion in quantum dot semiconductor optical amplifiers. IEEE Photonics Technology Letters , 2004, 16(4): 993-995
doi: 10.1109/LPT.2004.824943
4 Brès C S, Zlatanovic S, Wiberg A O J, Radic S. Continuous-wave four-wave mixing in cm-long Chalcogenide microstructured fiber. Optics Express , 2011, 19(26): B621-B627
doi: 10.1364/OE.19.00B621 pmid:22274079
5 Ho M C, Marhic M E, Wong K Y K, Kazovsky L G. Narrow-linewidth idler generation in fiber four-wave mixing and parametric amplification by dithering two pumps in opposition of phase. Journal of Lightwave Technology , 2002, 20(3): 469-476
doi: 10.1109/50.988996
6 Kanka J. Design of photonic crystal fibers with highly nonlinear glasses for four-wave-mixing based telecom applications. Optics Express , 2008, 16(25): 20395-20408
doi: 10.1364/OE.16.020395 pmid:19065178
7 Cerqueira S A Jr, Boggio J M, Rieznik A A, Hernandez-Figueroa H E, Fragnito H L, Knight J C. Highly efficient generation of broadband cascaded four-wave mixing products. Optics Express , 2008, 16(4): 2816-2828
doi: 10.1364/OE.16.002816 pmid:18542366
8 Zhang A, Demokan M S. Broadband wavelength converter based on four-wave mixing in a highly nonlinear photonic crystal fiber. Optics Letters , 2005, 30(18): 2375-2377
doi: 10.1364/OL.30.002375 pmid:16196324
9 Russell P. Photonic-crystal fibers. Journal of Lightwave Technology , 2006, 24(12): 4729-4749
doi: 10.1109/JLT.2006.885258
10 Saitoh K, Florous N, Koshiba M. Ultra-flattened chromatic dispersion controllability using a defected-core photonic crystal fiber with low confinement losses. Optics Express , 2005, 13(21): 8365-8371
doi: 10.1364/OPEX.13.008365 pmid:19498866
11 Saitoh K, Koshiba M, Hasegawa T, Sasaoka E. Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion. Optics Express , 2003, 11(8): 843-852
doi: 10.1364/OE.11.000843 pmid:19461798
12 Chow K K, Kikuchi K, Nagashima T, Hasegawa T, Ohara S, Sugimoto N. Four-wave mixing based widely tunable wavelength conversion using 1-m dispersion-shifted bismuth-oxide photonic crystal fiber. Optics Express , 2007, 15(23): 15418-15423
doi: 10.1364/OE.15.015418 pmid:19550827
13 Wang Z, Liu H, Huang N, Sun Q, Wen J. Efficient terahertz-wave generation via four-wave mixing in silicon membrane waveguides. Optics Express , 2012, 20(8): 8920-8928
doi: 10.1364/OE.20.008920 pmid:22513603
14 Dong L, Thomas B K, Fu L. Highly nonlinear silica suspended core fibers. Optics Express , 2008, 16(21): 16423-16430
doi: 10.1364/OE.16.016423 pmid:18852748
15 Saitoh K, Koshiba M. Highly nonlinear dispersion-flattened photonic crystal fibers for supercontinuum generation in a telecommunication window. Optics Express , 2004, 12(10): 2027-2032
doi: 10.1364/OPEX.12.002027 pmid:19475038
16 Xu Q, Miao R, Zhang Y. Highly nonlinear low-dispersion photonic crystal fiber with high birefringence for four-wave mixing. Optical Materials , 2012, 35(2): 217-221
doi: 10.1016/j.optmat.2012.08.011
17 Sheng X Z, Lou S Q. Influence of deformation holes on properties of photonic crystal fibers. Chinese Physics Letters , 2005, 22(10): 2588-2591
doi: 10.1088/0256-307X/22/10/036
18 Saitoh K, Koshiba M. Numerical modeling of photonic crystal fibers. Journal of Lightwave Technology , 2005, 23(11): 3580-3590
doi: 10.1109/JLT.2005.855855
19 Sun T T, Kai G Y, Wang Z, Yuan S Z, Dong X Y. Enhanced nonlinearity in photonic crystal fiber by germanium doping in the core region. Chinese Optics Letters , 2008, 6(2): 93-95
doi: 10.3788/COL20080602.0093
20 Butov O V, Golant K M, Tomashuk A L, van Stralen M J N, Breuls A H E. Refractive index dispersion of doped silica for fiber optics. Optics Communications , 2002, 213(4-6): 301-308
doi: 10.1016/S0030-4018(02)02087-4
21 Nakajima K, Ohashi M. Dopant dependence of effective nonlinear refractive index in GeO2- and F-doped core single-mode fibers. IEEE Photonics Technology Letters , 2002, 14(4): 492-494
doi: 10.1109/68.992588
22 Chen M Y, Subbaraman H, Chen R T. One stage pulse compression at 1554 nm through highly anomalous dispersive photonic crystal fiber. Optics Express , 2011, 19(22): 21809-21817
doi: 10.1364/OE.19.021809 pmid:22109032
23 Wang J, Jiang C, Hu W, Gao M. Modified design of photonic crystal fibers with flattened dispersion. Optics & Laser Technology , 2006, 38(3): 169-172
doi: 10.1016/j.optlastec.2004.11.016
24 Udagedara I, Premaratne M, Rukhlenko I D, Hattori H T, Agrawal G P. Unified perfectly matched layer for finite-difference time-domain modeling of dispersive optical materials. Optics Express , 2009, 17(23): 21179-21190
doi: 10.1364/OE.17.021179 pmid:19997357
25 Taniyama H, Sumikura H, Notomi M. Finite-difference time-domain analysis of photonic crystal slab cavities with two-level systems. Optics Express , 2011, 19(23): 23067-23077
doi: 10.1364/OE.19.023067 pmid:22109186
26 Lamont M R, Kuhlmey B T, de Sterke C M. Multi-order dispersion engineering for optimal four-wave mixing. Optics Express , 2008, 16(10): 7551-7563
doi: 10.1364/OE.16.007551 pmid:18545460
Related articles from Frontiers Journals
[1] Meng XIONG,Yunhong DING,Haiyan OU,Christophe PEUCHERET,Xinliang ZHANG. Comparison of wavelength conversion efficiency between silicon waveguide and microring resonator[J]. Front. Optoelectron., 2016, 9(3): 390-394.
[2] Michael J. CONNELLY,Lukasz KRZCZANOWICZ,Pascal MOREL,Ammar SHARAIHA,Francois LELARGE,Romain BRENOT,Siddharth JOSHI,Sophie BARBET. 40 Gb/s NRZ-DQPSK data wavelength conversion with amplitude regeneration using four-wave mixing in a quantum dash semiconductor optical amplifier[J]. Front. Optoelectron., 2016, 9(3): 341-345.
[3] Daojun XUE,Shaohua YU,Qi YANG,Nan CHI,Lan RAO,Xiangjun XIN,Wei LI,Songnian FU,Sheng CUI,Demin LIU,Zhuo LI,Aijun WEN,Chongxiu YU,Xinmei WANG. Frontier research of ultra-high-speed ultra-large-capacity and ultra-long-haul optical transmission[J]. Front. Optoelectron., 2016, 9(2): 123-137.
[4] M. Venkata SUDHAKAR,Y. Mallikarjuna REDDY,B. Prabhakara RAO. Influence of optical filtering on transmission capacity in single mode fiber communications[J]. Front. Optoelectron., 2015, 8(4): 424-430.
[5] Zhihua DING,Yi SHEN,Wen BAO,Peng LI. Fourier domain optical coherence tomography with ultralong depth range[J]. Front. Optoelectron., 2015, 8(2): 163-169.
[6] Zhao WU,Yu YU,Xinliang ZHANG. Chromatic dispersion monitoring using semiconductor optical amplifier[J]. Front. Optoelectron., 2014, 7(3): 399-405.
[7] Bushra NAWAZ, Rameez ASIF. Impact of polarization mode dispersion and nonlinearities on 2-channel DWDM chaotic communication systems[J]. Front Optoelec, 2013, 6(3): 312-317.
[8] Claudio PORZI, Giovanni SERAFINO, Sergio PINNA, An NGUYEN, Giampiero CONTESTABILE, Antonella BOGONI. Review on SOA-MZI-based photonic add/drop and switching operations[J]. Front Optoelec, 2013, 6(1): 67-77.
[9] Hamidine MAHAMADOU, Xiuhua YUAN, Eljack M. SARAH, Weizheng ZOU. Simulation and comprehensive assessment of single channel RZ-DPSK optical link by dispersion management with channel bit rate beyond 40 Gbits/s[J]. Front Optoelec, 2012, 5(3): 322-329.
[10] Yousaf KHAN, Xiangjun XIN, Aftab HUSSAIN, Liu BO, Shahryar SHAFIQUE. Generation and transmission of dispersion tolerant 10-Gbps RZ-OOK signal for radio over fiber link[J]. Front Optoelec, 2012, 5(3): 306-310.
[11] Saeed OLYAEE, Fahimeh TAGHIPOUR, Mahdieh IZADPANAH. Nearly zero-dispersion, low confinement loss, and small effective mode area index-guiding PCF at 1.55 μm wavelength[J]. Front Optoelec Chin, 2011, 4(4): 420-425.
[12] Xiaomeng SUN, Linjie ZHOU, Xinwan LI, Jingya XIE, Jianping CHEN. Electrically tunable silicon plasmonic phase modulators with nano-scale optical confinement[J]. Front Optoelec Chin, 2011, 4(4): 359-363.
[13] Xiaofan ZHAO, Caiyun LOU, Yanming FENG. Optical signal processing based on semiconductor optical amplifier and tunable delay interferometer[J]. Front Optoelec Chin, 2011, 4(3): 308-314.
[14] Shilie ZHENG, Sixuan GE, Hao CHI, Xiaofeng JIN, Xianmin ZHANG. Frequency response equalization in phase modulated RoF systems using optical carrier Brillouin processing[J]. Front Optoelec Chin, 2011, 4(3): 277-281.
[15] Jian LIU, Hao ZHANG, Bo LIU. Temperature measurement based on photonic crystal modal interferometer[J]. Front Optoelec Chin, 2010, 3(4): 418-422.
Full text