Please wait a minute...

Frontiers of Optoelectronics

Front Optoelec    2013, Vol. 6 Issue (4) : 458-467     DOI: 10.1007/s12200-013-0330-1
RESEARCH ARTICLE |
Condensed state fluorescence switching of hexaarylbiimidazole-tetraphenylethene conjugate for super-resolution fluorescence nanolocalization
Wen-Liang GONG, Zhe HU?§?, Chong LI, Guo-Feng ZHANG, Tao CHEN, Matthew. P. ALDRED, Zhen-Li HUANG(), Ming-Qiang ZHU()
School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
Download: PDF(1033 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper reported the synthesis of hexaarylbiimidazole-tetraphenylethene (HABI-TPE) conjugated photochromic fluorophore, which simultaneously exhibited photochromic property, condensed state enhanced emission and reversible fluorescence switching. Upon UV irradiation, a green species with a broad absorption band between 550 and 800 nm ( the absorption maximum at 697 nm ) was observed, which readily faded to colorless in the darkness. HABI-TPE launched strong fluorescence with the maximum emission wavelength at 520–580 nm under the excitation with 450–500 nm visible light in condensed state, which is in contrast to nonfluorescence in solution. The maximum emission wavelength in condensed state was dependent of excitation wavelength. More interestingly, HABI-TPE exhibited reversible fluorescence switching upon alternating irradiation with blue or near-UV light (wavelength less than 490 nm) and green light (more than 490 nm) in condensed state. Our evaluation demonstrated that HABI-TPE exhibited great photoswitchable fluorescence, which is a promising photoswitchable fluorophore for localization-based super-resolution microscopy, evidencing by resolving nanostructures with sub-100 nm resolution in polymethylmethacrylate films.

Keywords fluorescence switching      super-resolution imaging      nanolocalization      hexaarylbiimidazole (HABI)      tetraphenylethene     
Corresponding Authors: HUANG Zhen-Li,Email:mqzhu@hust.edu.cn; ZHU Ming-Qiang,Email:leo@mail.hust.edu.cn   
Issue Date: 05 December 2013
 Cite this article:   
Wen-Liang GONG,Zhe HU?§?,Chong LI, et al. Condensed state fluorescence switching of hexaarylbiimidazole-tetraphenylethene conjugate for super-resolution fluorescence nanolocalization[J]. Front Optoelec, 2013, 6(4): 458-467.
 URL:  
http://journal.hep.com.cn/foe/EN/10.1007/s12200-013-0330-1
http://journal.hep.com.cn/foe/EN/Y2013/V6/I4/458
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Wen-Liang GONG
Zhe HU?§?
Chong LI
Guo-Feng ZHANG
Tao CHEN
Matthew. P. ALDRED
Zhen-Li HUANG
Ming-Qiang ZHU
Fig.1  Synthesis of HABI-TPE conjugate.Reaction conditions. i, bis(pinacolato)diboron, Pd(dppf)Cl, KOAc, in DMF at 90°C for 8 h; ii, PTC, KCO, Pd(PPh3)4, toluene/HO at 90°C for 1 day; iii, benzyl, ammonium acetate, acetic acid at 90°C for 12 h; iv, KFe(CN), KOH, benzene/HO at room temperature for 8 h
Fig.2  Absorption properties of HABI-TPE. (a) Absorption spectra of HABI-TPE in benzene, THF and solid state PMMA film before and after UV irradiation; (b) absorbance spectrum change of HABI-TPE in solution (2.5 × 10 M) at different 302 nm light irradiation time; (c) absorption spectrum change of HABI-TPE in solution (2.5 × 10 M) in darkness after 302 nm irradiation at different time (from top to bottom: 0 min, 5 min, 10 min, 15 min, 20 min, 30 min, 45 min, 60 min, 75 min, 90 min, 2 h, 3 h, 6 h; (d) absorbance change of HABI-TPE with 302 nm irradiation and heat fade of HABI-TPE in darkness. Inset: pictures of HABI-TPE before and after 302 nm irradiation
Fig.3  Fluorescence properties of HABI-TPE. (a) Fluorescence spectra of HABI-TPE in THF and solid state PMMA film under excitation with 490 nm before and after UV irradiation; (b) excitation wavelength-dependent emission spectra of HABI-TPE in condensed state films; (c) change of emission wavelength versus excitation wavelength; (d) identification of excitation wavelength for photoswitching by fluorescence spectra. The change of fluorescent intensity at 550 nm of HABI-TPE in condensed state with excitation time upon excitation of different wavelength was determined
Fig.4  Fluorescence switching of HABI-TPE. (a) Fluorescence spectra change of HABI-TPE in solid state at excitation of 450 nm with scanning time; (b) fluorescence spectra changes of HABI-TPE in solid state at excitation of 490 nm with scanning time; (c) fluorescence spectra changes of HABI-TPE in solid state upon 302 nm irradiation for 5, 10, 20, 30, 60, 120 s, excitation wavelength: 490 nm; (d) fluorescence spectra changes of HABI-TPE in solid state at excitation of 490 nm with fading time for 5, 10, 15, 30, 60, and 90 min in darkness after 302 nm irradiation for 120 s
Fig.5  Photoswitching of HABI-TPE with color and fluorescence changes
Fig.6  Super-resolution imaging of spin-coated HABI-TPE-loaded PMMA film. (a) Conventional fluorescent image displaying the distribution of HABI-TPE fluorophores in solid film; (b) super-resolution fluorescent image for (a); (c) and (f) expanded view of the marked regions in (a); (d) and (g) expanded super-resolution fluorescent images of the marked regions in (b), corresponding to (c) and (f); (e) and (h) expanded super-resolution fluorescent images of two pairs of vicinal HABI-TPE emitters in (d) and (g), respectively; (i) and (j) fluorescence cross-sectional profiles of two pairs of vicinal HABI-TPE emitters along the dashed lines in (e) and (h), indicating the spatial resolution of 110 and 90 nm, respectively
1 Duerr H, Bouas-Laurent H. Photochromism: Molecules and Systems. Amsterdam: Elsevier, 2003
2 Hayashi T, Maeda K. Preparation of a new phototropic substance. Bulletin of the Chemical Society of Japan , 1960, 33(4): 565–566
doi: 10.1246/bcsj.33.565
3 White D M, Sonnenberg J. Oxidation of triarylimidazoles. Structures of the photochromic and piezochromic dimers of triarylimidazyl radicals. Journal of the American Chemical Society , 1966, 88(16): 3825–3829
doi: 10.1021/ja00968a027
4 Kawano M, Sano T, Abe J, Ohashi Y. The first in situ direct observation of the light-induced radical pair from a hexaarylbiimidazolyl derivative by X-ray crystallography. Journal of the American Chemical Society , 1999, 121(35): 8106–8107
doi: 10.1021/ja9903173
5 Abe J, Sano T, Kawano M, Ohashi Y, Matsushita M M, Iyoda T. EPR and density functional studies of light-induced radical pairs in a single crystal of a hexaarylbiimidazolyl derivative. Angewandte Chemie International Edition , 2001, 40(3): 580–582
doi: 10.1002/1521-3773(20010202)40:3<580::AID-ANIE580>3.0.CO;2-8
6 Iwahori F, Hatano S, Abe J. Rational design of a new class of diffusion-inhibited HABI with fast back-reaction. Journal of Physical Organic Chemistry , 2007, 20(11): 857–863
doi: 10.1002/poc.1183
7 Fujita K, Hatano S, Kato D, Abe J. Photochromism of a radical diffusion-inhibited hexaarylbiimidazole derivative with intense coloration and fast decoloration performance. Organic Letters , 2008, 10(14): 3105–3108
doi: 10.1021/ol801135g pmid:18563908
8 Kimoto A, Tokita A, Horino T, Oshima T, Abe J. Fast photochromic polymers carrying [2.2] paracyclophane-bridged imidazole dimer. Macromolecules , 2010, 43(8): 3764–3769
doi: 10.1021/ma100197z
9 Kishimoto Y, Abe J. A fast photochromic molecule that colors only under UV light. Journal of the American Chemical Society , 2009, 131(12): 4227–4229
doi: 10.1021/ja810032t pmid:19275233
10 Harada Y, Hatano S, Kimoto A, Abe J. Remarkable acceleration for back-reaction of a fast photochromic molecule. The Journal of Physical Chemistry Letters , 2010, 1(7): 1112–1115
doi: 10.1021/jz100228w
11 Miyasaka H, Satoh Y, Ishibashi Y, Ito S, Nagasawa Y, Taniguchi S, Chosrowjan H, Mataga N, Kato D, Kikuchi A, Abe J. Ultrafast photodissociation dynamics of a hexaarylbiimidazole derivative with pyrenyl groups: dispersive reaction from femtosecond to 10 ns time regions. Journal of the American Chemical Society , 2009, 131(21): 7256–7263
doi: 10.1021/ja809195s pmid:19425553
12 Luo J D, Xie Z L, Lam J W Y, Cheng L, Chen H Y, Qiu C F, Kwok H S, Zhan X W, Liu Y Q, Zhu D B, Tang B Z. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chemical Communications (Cambridge) , 2001, (18): 1740–1741
doi: 10.1039/b105159h
13 Hong Y, Lam J W Y, Tang B Z. Aggregation-induced emission. Chemical Society Reviews , 2011, 40(11): 5361–5388
doi: 10.1039/c1cs15113d pmid:21799992
14 Hong Y N, Lam J W Y, Tang B Z. Aggregation-induced emission: phenomenon, mechanism and applications. Chemical Communications , 2009, (29): 4332–4353
doi: 10.1039/b904665h
15 Aldred M P, Li C, Zhang G F, Gong W L, Li A D Q, Dai Y F, Ma D G, Zhu M Q. Fluorescence quenching and enhancement of vitrifiable oligofluorenes end-capped with tetraphenylethene. Journal of Materials Chemistry , 2012, 22(15): 7515–7528
doi: 10.1039/c2jm30261f
16 Zhang G F, Aldred M P, Gong W L, Li C, Zhu M Q. Utilising tetraphenylethene as a dual activator for intramolecular charge transfer and aggregation induced emission. Chemical Communications (Cambridge) , 2012, 48(62): 7711–7713
doi: 10.1039/c2cc33218c
17 Zhu M Q, Zhang G F, Li C, Aldred M P, Chang E, Drezek R A, Li A D Q. Reversible two-photon photoswitching and two-photon imaging of immunofunctionalized nanoparticles targeted to cancer cells. Journal of the American Chemical Society , 2011, 133(2): 365–372
doi: 10.1021/ja106895k pmid:21158473
18 Zhu M Q, Zhang G F, Li C, Li Y J, Aldred M P, Li A D Q. Photoswitchable nanofluorophores for innovative bioimaging. Journal of Innovative Optical Health Sciences , 2011, 4(4): 395–408
doi: 10.1142/S1793545811001423
19 Zhu M Q, Zhu L, Han J J, Wu W W, Hurst J K, Li A D Q. Spiropyran-based photochromic polymer nanoparticles with optically switchable luminescence. Journal of the American Chemical Society , 2006, 128(13): 4303–4309
doi: 10.1021/ja0567642 pmid:16569006
20 Hu D H, Tian Z Y, Wu W W, Wan W, Li A D Q. Photoswitchable nanoparticles enable high-resolution cell imaging: PULSAR microscopy. Journal of the American Chemical Society , 2008, 130(46): 15279–15281
doi: 10.1021/ja805948u pmid:18939833
21 Rust M J, Bates M, Zhuang X W. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nature Methods , 2006, 3(10): 793–796
doi: 10.1038/nmeth929 pmid:16896339
22 Huang B, Wang W Q, Bates M, Zhuang X W. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science , 2008, 319(5864): 810–813
doi: 10.1126/science.1153529 pmid:18174397
23 Bates M, Huang B, Dempsey G T, Zhuang X W. Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science , 2007, 317(5845): 1749–1753
doi: 10.1126/science.1146598 pmid:17702910
24 Bates M, Huang B, Zhuang X W. Super-resolution microscopy by nanoscale localization of photo-switchable fluorescent probes. Current Opinion in Chemical Biology , 2008, 12(5): 505–514
doi: 10.1016/j.cbpa.2008.08.008 pmid:18809508
25 Lord S J, Conley N R, Lee H L D, Samuel R, Liu N, Twieg R J, Moerner W E. A photoactivatable push-pull fluorophore for single-molecule imaging in live cells. Journal of the American Chemical Society , 2008, 130(29): 9204–9205
doi: 10.1021/ja802883k pmid:18572940
26 Dempsey G T, Bates M, Kowtoniuk W E, Liu D R, Tsien R Y, Zhuang X W. Photoswitching mechanism of cyanine dyes. Journal of the American Chemical Society , 2009, 131(51): 18192–18193
doi: 10.1021/ja904588g pmid:19961226
Related articles from Frontiers Journals
[1] Jiayun XIANG,Han NIE,Yibin JIANG,Jian ZHOU,Hoi Sing KWOK,Zujin ZHAO,Ben Zhong TANG. Blue fluorophores comprised of tetraphenylethene and imidazole: aggregation-induced emission and electroluminescence[J]. Front. Optoelectron., 2015, 8(3): 274-281.
[2] Jia WANG, Qingyan WANG, Mingqian ZHANG. Development and prospect of near-field optical measurements and characterizations[J]. Front Optoelec, 2012, 5(2): 171-181.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed