Please wait a minute...

Frontiers of Optoelectronics

Front Optoelec    2013, Vol. 6 Issue (2) : 180-184     DOI: 10.1007/s12200-013-0312-3
Transient Bragg fiber gratings formed by unpumped thulium doped fiber
Shui ZHAO1, Ping LU1,2(), Li CHEN1, Deming LIU1,2, Jiangshan ZHANG3
1. National Engineering Laboratory for Next Generation Internet Access System, Huazhong University of Science and Technology, Wuhan 430074, China; 2. School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China; 3. Department of Electronics and Information Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Download: PDF(318 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

A theoretical introduction of saturable absorber based on standing-wave saturation effects as a transient fiber Bragg grating (FBG) was presented. The central wavelength of the transient FBG was located in 2 μm. The factors affecting the bandwidth and the reflectivity of the transient FBG were analyzed. The linewidth and reflectivity as the function of doped fiber length and doping concentration were correspondingly simulated by Matlab software. It was found that the larger the doping concentration and the fiber length were, the smaller the bandwidth was. These results suggest that the performance of the transient FBG can be optimized by choosing the appropriate length of doped fiber and the larger doping concentration, which can be used as a reference for the narrow-linewidth fiber laser around 2 μm.

Keywords narrow-linewidth fiber laser      saturable absorber      thulium doped fiber (TDF)     
Corresponding Authors: LU Ping,   
Issue Date: 05 June 2013
 Cite this article:   
Shui ZHAO,Ping LU,Li CHEN, et al. Transient Bragg fiber gratings formed by unpumped thulium doped fiber[J]. Front Optoelec, 2013, 6(2): 180-184.
E-mail this article
E-mail Alert
Articles by authors
Ping LU
Deming LIU
Jiangshan ZHANG
Fig.1  Reflection spectrum of FBG with different fiber length
Fig.2  Linewidth as a function of fiber length
Fig.3  Linewidth as a function of fiber length ()
Fig.4  Reflection spectrum of FBG with different
Fig.5  Reflectivity of FBG as a function of fiber length with different
Fig.6  Linewidth as a function of doping concentration
Fig.7  Length of saturable absorber (SA) as a function of power of pump light
1 Li D J, Du G G. The recent research progress of Tm3+-doped fiber lasers. Laser Technology , 2007, 31(5): 540–543 (in Chinese)
2 McAleavey F J, MacCraith B D, O’Gorman J, Hegarty J. Tunable and efficient diode-pumped Tm3+-doped fluoride fiber laser for hydrocarbon gas sensing. Fiber and Integrated Optics , 1997, 16(4): 355–368
doi: 10.1080/01468039708202292
3 Tang Y L, Xu L, Yang Y, Xu J Q. High-power gain-switched Tm3+-doped fiber laser. Optics Express , 2010, 18(22): 22964–22972
doi: 10.1364/OE.18.022964 pmid:21164635
4 Wienke A, Haxsen F, Wandt D, Morgner U, Neumann J, Kracht D. Fiber based dispersion management in an ultrafast thulium-doped fiber laser and external compression with a normal dispersive fiber. In: Proceedings of Advanced Solid-State Photonics . San Diego: OSA Technical Digest, 2012, AT4A.26
5 Geng J H, Wang Q, Smith J, Luo T, Amzajerdian F, Jiang S. All-fiber Q-switched single-frequency Tm-doped laser near 2 μm. Optics Letters , 2009, 34(23): 3713–3715
doi: 10.1364/OL.34.003713 pmid:19953171
6 Wang Q, Geng J, Luo T, Jiang S. Mode-locked 2 μm laser with highly thulium-doped silicate fiber. Optics Letters , 2009, 34(23): 3616–3618
doi: 10.1364/OL.34.003616 pmid:19953138
7 Geng J H, Wang Q, Luo T, Jiang S B, Amzajerdian F. Single-frequency narrow-linewidth Tm-doped fiber laser using silicate glass fiber. Optics Letters , 2009, 34(22): 3493–3495
doi: 10.1364/OL.34.003493 pmid:19927188
8 Shen Y H, Zhao W Z, He J L, Sun T, Grattan K T V. Fluorescence decay characteristic of Tm-doped YAG crystal fiber for sensor applications, investigated from room temperature to 1400 °C. IEEE Sensors Journal , 2003, 3(4): 507–512
doi: 10.1109/JSEN.2003.815772
9 Moulton P F, Rines G A, Slobodtchikov E V, Wall K F, Frith G, Samson B, Carter A L G. Tm-doped fiber lasers: fundamentals and power scaling. IEEE Journal on Selected Topics in Quantum Electronics , 2009, 15(1): 85–92
doi: 10.1109/JSTQE.2008.2010719
10 He X, Fang X, Liao C, Wang D N, Sun J. A tunable and switchable single-longitudinal-mode dual-wavelength fiber laser with a simple linear cavity. Optics Express , 2009, 17(24): 21773–21781
doi: 10.1364/OE.17.021773 pmid:19997420
11 Sun J Q, Yuan X H, Zhang X L, Huang D X. Single-longitudinal-mode fiber ring laser using fiber grating-based Fabry--Perot filters and variable saturable absorbers. Optics Communications , 2006, 267(1): 177–181
doi: 10.1016/j.optcom.2006.06.024
12 Chang D I, Guy M J, Chernikov S V, Taylor J R, Kong H J. Single-frequency erbium fibre laser using the twisted-mode technology. Electronics Letters , 1996, 32(19): 1786–1787
doi: 10.1049/el:19961194
13 Kaneda Y, Spiegelberg C, Geng J H, Hu Y D, Luo T, Wang J F, Jiang S B. 200-mw, narrow-linewidth 1064.2-nm Yb-doped fiber laser. In: Proceedings of Lasers and Electro-Optics, CLEO . 2004, 2: Cth03:l-2
14 Yang J, Qu R G, Sun G Y, Geng J X, Cai H W, Fang Z J. Suppression of mode competition in fiber lasers by using a saturable absorber and a fiber ring. Chinese Optics Letters , 2006, 4(7): 410–412
15 Frisken S J. Transient Bragg reflection gratings in erbium-doped fiber amplifiers. Optics Letters , 1992, 17(24): 1776–1778
doi: 10.1364/OL.17.001776 pmid:19798313
16 Horowitz M, Daisy R, Fischer B, Zyskind J L. Linewidth-narrowing mechanism in lasers by nonlinear wave mixing. Optics Letters , 1994, 19(18): 1406–1408
doi: 10.1364/OL.19.001406 pmid:19855534
17 Yin F F, Yang S G, Chen H W, Chen M H, Xie S Z. Tunable single-longitudinal-mode Ytterbium all fiber laser with saturable-absorber-based auto-tracking filter. Optics Communications , 2012, 285(10-11): 2702–2706
doi: 10.1016/j.optcom.2012.02.007
18 He X Y, Wang D N. Tunable and switchable dual-wavelength single-longitudinal-mode Erbium-doped fiber lasers. Journal of Lightwave Technology , 2011, 29(6): 842–849
19 Kishi N, Yazaki T. Frequency control of a single-frequency fiber laser by cooperatively induced spatial-hole burning. IEEE Photonics Technology Letters , 1999, 11(2): 182–184
doi: 10.1109/68.740697
21 Fleming S, Whitley T. Measurement and analysis of pump dependent refractive index and dispersion effects in erbium-doped fiber amplifiers. IEEE Journal of Quantum Electronics , 1996, 32(7): 1113–1121
doi: 10.1109/3.517009
22 Desurvire E. Study of the complex atomic susceptibility of Erbium-doped fiber amplifiers. Journal of Lightwave Technology , 1990, 8(10): 1517–1527
doi: 10.1109/50.59191
23 Kashyap R.Fiber Bragg Gratings. SanDiego: Academic press, l999
24 Othonos A, Kalli K. Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing. Norwood, MA: Artech House, 1999
Related articles from Frontiers Journals
[1] Zhuang ZHAO, Sophie BOUCHOULE, Jean-Christophe HARMAND, Gilles PATRIARCHE, Guy AUBIN, Jean-Louis OUDAR. Recent advances in development of vertical-cavity based short pulse source at 1.55 μm[J]. Front Optoelec, 2014, 7(1): 1-19.
Full text