Please wait a minute...

Frontiers of Optoelectronics

Front Optoelec    2012, Vol. 5 Issue (3) : 239-247     DOI: 10.1007/s12200-012-0277-7
REVIEW ARTICLE |
Optically pumped semiconductor nanowire lasers
Yaoguang MA, Limin TONG()
State Key Laboratory of Modern Optical Instrumentation, Department of Optical Engineering, Zhejiang University, Hangzhou 310027, China
Download: PDF(763 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper reviews our recent work on fabrication, optical characterization and lasing application of semiconductor nanowires, with brief introduction of related work from many other groups.

Keywords semiconductor nanowire      nanowire laser      optical pump      microfiber     
Corresponding Authors: TONG Limin,Email:phytong@zju.edu.cn   
Issue Date: 05 September 2012
 Cite this article:   
Yaoguang MA,Limin TONG. Optically pumped semiconductor nanowire lasers[J]. Front Optoelec, 2012, 5(3): 239-247.
 URL:  
http://journal.hep.com.cn/foe/EN/10.1007/s12200-012-0277-7
http://journal.hep.com.cn/foe/EN/Y2012/V5/I3/239
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yaoguang MA
Limin TONG
Fig.1  Semiconductor nanowire growth: schematic illustrations of (a) VLS nanowire growth mechanism; (b) typical setup for VLS growth; (c) optical microscope image of bandgap-modulated ZnCdSSe nanowires under 355 nm light illuminations []; (d) sideview SEM image of as-grown ZnCdSSe nanowires []
Fig.2  Endface reflectivity of waveguiding nanowires. (a) Reflection coefficient for the first three guided modes of a nanowire with dielectric constant of 6 (energy for = 60 nm) []; (b) refractive-index-dependent endface reflectivity of nanowires with some typical diameters and wavelengths []
Fig.3  Coupling between closely contacted parallel nanowires. (a) 3D FEM simulation of light coupling between two 160 nm diameter nanowires with refractive index of 2.0; (b) couping efficiency between two nanowires with different wavelengths, couping lengths and separation distances []
Fig.4  Substrate induced effects in semiconductor nanowires. (a) Optical short pass filter based on substrate induced leakage []; (b) 3D FDTD simulation of substrate induced leakage
Fig.5  Optical characterization of a 12.2 μm long 250 nm diameter ZnO semiconductor nanowire laser []. (a) Output spectra versus pump intensity of a ZnO nanowire laser; (b) SEM image and CCD images for the same nanowire as in (a) under different pump intensities; (c) pump intensity dependence of the total output power (circles) for the same nanowire; (d) same data and fit on log-log scale
Fig.6  Microfiber-knot-resonator coupled semiconductor nanowire laser []. (a) SEM image of attached area of 25 μm long 350 nm diameter ZnO nanowire and 780 μm diameter microfiber knot assembled with 1.8 μm diameter silica microfiber; (b) SEM image of attached area of three ZnO nanowires and 728 μm diameter silica microfiber knot assembled with 3.5 μm diameter silica microfiber, the diameters of ZnO nanowires are 500, 480, and 600 nm, respectively; (c) schematic diagram of the structure of hybrid laser. Inset: CCD image of the hybrid structure pumped by 355 nm wavelength laser pulses; (d) output spectra versus pump energy of hybrid structure (same structure shown in Fig. 1(a)); (e) and (f) close-up views of two laser spectra in (d)
Fig.7  Microfiber coupled multicolor semiconductor nanowire laser []. (a) Schematic configuration of the red-green-ultraviolet three-color laser; (b) CCD image of the hybrid structure pumped by 355 nm wavelength laser pulses; (c) emission spectra of the three-color laser shown in (b) under different pump energy
Fig.8  Pigtailed CdS nanoribbon ring laser []. (a) Schematic of structure of nanoribbon ring laser system; (b) optical micrographs of 20 μm diameter CdS nanoribbon ring under pumping; scale bar, 10 μm: (the nanoribbon is 600 nm wide and 330 nm thick); (c) collected lasing spectra of the nanoribbon ring. (Inset: integrated emission power versus pump energy of nanoribbon ring laser); (d) and (e) polar plots of the emission intensity from nanoribbon endfacet as a function of polarization angle, (d) front view and (e) side view. Black lines under the square represent the substrate
Fig.9  Single mode single nanowire laser []. (a) PL microscope images and schematic diagrams of lasing cavities of single nanowire structures; (b) output lasing spectra of single-nanowire structures without LM; (c) with one LM, and (d) with double LMs. Inset, SEM images of the nanowire cavity corresponding to (b), (c) and (d); (e) emission power vs pump fluence of the excited NW without LM (triangle), with one LM (square), and with double LMs (circle); (f) spectral shift of the lasing peak from 733.7 to 726.9 nm by changing the geometry of the loop in a 240 nm diameter 84 μm length CdSe nanowire laser. Inset, SEM images of the original cavity (bottom right) and the changed cavity (up left)
Fig.10  Single mode laser achieved in coupled nanowires []. (a) Single-mode lasing spectra of the X-coupled CdSe nanowires with pumping levels of 151.7 μJ/cm (blue line) and 120.8 μJ/ cm (gray line), respectively. Inset: CCD image of the lasing X-structure; (b) multimode lasing spectra of the individual 89 μm length CdSe nanowires. Inset: CCD image of the lasing nanowire
1 Feynman R P. There’s plenty of room at the bottom. IEEE Journal of Microelectromechanical Systems , 1992, 1(1): 60–66
doi: 10.1109/84.128057
2 Ning C Z. Semiconductor nanolasers. Physica Status Solidi B-Basic Solid State Physics , 2010, 247(4): 774–788
3 Duan X F, Lieber C M. General synthesis of compound semiconductor nanowires. Advanced Materials , 2000, 12(4): 298–302
doi: 10.1002/(SICI)1521-4095(200002)12:4<298::AID-ADMA298>3.0.CO;2-Y
4 Yan R X, Gargas D, Yang P D. Nanowire photonics. Nature Photonics , 2009, 3(10): 569–576
doi: 10.1038/nphoton.2009.184
5 Tong L M, Gattass R R, Ashcom J B, He S L, Lou J Y, Shen M Y, Maxwell I, Mazur E. Subwavelength-diameter silica wires for low-loss optical wave guiding. Nature , 2003, 426(6968): 816–819
doi: 10.1038/nature02193 pmid:14685232
6 Guo X, Qiu M, Bao J M, Wiley B J, Yang Q, Zhang X N, Ma Y G, Yu H K, Tong L M. Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits. Nano Letters , 2009, 9(12): 4515–4519
doi: 10.1021/nl902860d pmid:19995088
7 Wagner R S, Ellis W C. Vapor-liquid-solid mechanism of single crystal growth. Applied Physics Letters , 1964, 4(5): 89–90
doi: 10.1063/1.1753975
8 Yang P D, Yan H Q, Mao S, Russo R, Johnson J, Saykally R, Morris N, Pham J, He R R, Choi H J. Controlled growth of ZnO nanowires and their optical properties. Advanced Functional Materials , 2002, 12(5): 323–331
doi: 10.1002/1616-3028(20020517)12:5<323::AID-ADFM323>3.0.CO;2-G
9 Xia Y N, Yang P D, Sun Y G, Wu Y Y, Mayers B, Gates B, Yin Y D, Kim F, Yan Y Q. One-dimensional nanostructures: synthesis, characterization, and applications. Advanced Materials , 2003, 15(5): 353–389
doi: 10.1002/adma.200390087
10 Dai Z R, Pan Z W, Wang Z L. Novel nanostructures of functional oxides synthesized by thermal evaporation. Advanced Functional Materials , 2003, 13(1): 9–24
doi: 10.1002/adfm.200390013
11 Gu F X, Yang Z Y, Yu H K, Xu J Y, Wang P, Tong L M, Pan A L. Spatial bandgap engineering along single alloy nanowires. Journal of the American Chemical Society , 2011, 133(7): 2037–2039
doi: 10.1021/ja110092a pmid:21271702
12 Yang Z Y, Xu J Y, Wang P, Zhuang X J, Pan A L, Tong L M. On-nanowire spatial band gap design for white light emission. Nano Letters , 2011, 11(11): 5085–5089
doi: 10.1021/nl203529h pmid:22011228
13 Maslov A V, Ning C Z. Reflection of guided modes in a semiconductor nanowire laser. Applied Physics Letters , 2003, 83(6): 1237–1239
doi: 10.1063/1.1599037
14 Wang S S, Hu Z F, Yu H K, Fang W, Qiu M, Tong L M. Endface reflectivities of optical nanowires. Optics Express , 2009, 17(13): 10881–10886
doi: 10.1364/OE.17.010881 pmid:19550488
15 Snyder A W, Love J D. Optical Waveguide Theory. London: Chapman & Hall , 1983
16 Huang K J, Yang S Y, Tong L M. Modeling of evanescent coupling between two parallel optical nanowires. Applied Optics , 2007, 46(9): 1429–1434
doi: 10.1364/AO.46.001429 pmid:17334432
17 Law M, Sirbuly D J, Johnson J C, Goldberger J, Saykally R J, Yang P D. Nanoribbon waveguides for subwavelength photonics integration. Science , 2004, 305(5688): 1269–1273
doi: 10.1126/science.1100999 pmid:15333835
18 Chen Y, Ma Z, Yang Q, Tong L M. Compact optical short-pass filters based on microfibers. Optics Letters , 2008, 33(21): 2565–2567
pmid:18978922
19 Ma Y G, Li X Y, Yang Z Y, Yu H K, Wang P, Tong L M. Pigtailed CdS nanoribbon ring laser. Applied Physics Letters , 2010, 97(15): 153122–153123
doi: 10.1063/1.3501969
20 Huang M H, Mao S, Feick H, Yan H Q, Wu Y Y, Kind H, Weber E, Russo R, Yang P D. Room-temperature ultraviolet nanowire nanolasers. Science , 2001, 292(5523): 1897–1899
doi: 10.1126/science.1060367 pmid:11397941
21 Johnson J C, Yan H Q, Yang P D, Saykally R J. Optical cavity effects in ZnO nanowire lasers and waveguides. Journal of Physical Chemistry B , 2003, 107(34): 8816–8828
doi: 10.1021/jp034482n
22 Yan H Q, He R R, Johnson J, Law M, Saykally R J, Yang P D. Dendritic nanowire ultraviolet laser array. Journal of the American Chemical Society , 2003, 125(16): 4728–4729
doi: 10.1021/ja034327m pmid:12696889
23 Zapien J A, Jiang Y, Meng X M, Chen W, Au F C K, Lifshitz Y, Lee S T. Room-temperature single nanoribbon lasers. Applied Physics Letters , 2004, 84(7): 1189–1191
doi: 10.1063/1.1647270
24 Johnson J C, Choi H J, Knutsen K P, Schaller R D, Yang P D, Saykally R J. Single gallium nitride nanowire lasers. Nature Materials , 2002, 1(2): 106–110
doi: 10.1038/nmat728 pmid:12618824
25 Pauzauskie P J, Sirbuly D J, Yang P D. Semiconductor nanowire ring resonator laser. Physical Review Letters , 2006, 96(14): 143903
doi: 10.1103/PhysRevLett.96.143903 pmid:16712076
26 Agarwal R, Barrelet C J, Lieber C M. Lasing in single cadmium sulfide nanowire optical cavities. Nano Letters , 2005, 5(5): 917–920
doi: 10.1021/nl050440u pmid:15884894
27 Li G, Zhai T, Jiang Y, Bando Y, Golberg D. Enhanced field-emission and red lasing of ordered CdSe nanowire branched arrays. Journal of Physical Chemistry C , 2011, 115(19): 9740–9745
doi: 10.1021/jp200398s
28 Chin A H, Vaddiraju S, Maslov A V, Ning C Z, Sunkara M K, Meyyappan M. Near-infrared semiconductor subwavelength-wire lasers. Applied Physics Letters , 2006, 88(16): 163115–163115-3
doi: 10.1063/1.2198017
29 Zimmler M A, Capasso F, Muller S, Ronning C. Optically pumped nanowire lasers: invited review. Semiconductor Science and Technology , 2010, 25(2): 024001
doi: 10.1088/0268-1242/25/2/024001
30 Yang Q, Jiang X S, Guo X, Chen Y, Tong L M. Hybrid structure laser based on semiconductor nanowires and a silica microfiber knot cavity. Applied Physics Letters , 2009, 94(10): 101108
doi: 10.1063/1.3093821
31 Ding Y, Yang Q, Guo X, Wang S S, Gu F X, Fu J, Wan Q, Cheng J P, Tong L M. Nanowires/microfiber hybrid structure multicolor laser. Optics Express , 2009, 17(24): 21813–21818
doi: 10.1364/OE.17.021813 pmid:19997426
32 Xiao Y, Meng C, Wang P, Ye Y, Yu H K, Wang S S, Gu F X, Dai L, Tong L M. Single-nanowire single-mode laser. Nano Letters , 2011, 11(3): 1122–1126
doi: 10.1021/nl1040308 pmid:21322600
33 Xiao Y, Meng C, Wu X Q, Tong L M. Single mode lasing in coupled nanowires. Applied Physics Letters , 2011, 99(2): 023109
doi: 10.1063/1.3610965
Related articles from Frontiers Journals
[1] Weisong YANG, Yipei WANG, Yaoguang MA, Chao MENG, Xiaoqin WU, Qing YANG. Lasing characteristics of curved semiconductor nanowires[J]. Front Optoelec, 2013, 6(4): 448-451.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed