Please wait a minute...

Frontiers of Optoelectronics

Front Optoelec Chin    2011, Vol. 4 Issue (1) : 72-79     DOI: 10.1007/s12200-011-0202-5
RESEARCH ARTICLE |
Electron transportation and optical properties of micro-structure TiO2 films: applied in dye-sensitized solar cells
Shuangying XU, Linhua HU, Jiang SHENG, Dongxing KOU, Huajun TIAN, Songyuan DAI()
Key Laboratory of Novel Thin Film Solar Cells, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China
Download: PDF(346 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Micro-structure of TiO2 films in dye-sensitized solar cells (DSSCs) can affect light absorption and electron transportation that impact on the characteristics of current-voltage (J-V). In this paper, films with different surface area, pore size and porosity were obtained by adding different ratio of ethyl cellulose (Ec-S) to pastes, and a photo-electric conversion efficiency (η) of 7.55% with a short-circuit current density (Jsc) of 16.81 mA·cm-2 was obtained when the ratio of Ec-S was 10∶5. BET results showed that film with this optimum ratio had the most suitable pore size and surface area for good properties of photovoltaic, which had a low reflectivity and high transmission rate, and the efficiency of light utilization was improved. Moreover, measurements by intensity-modulated photocurrent spectroscopy (IMPS) and intensity-modulated photovoltage spectroscopy (IMVS) implied that the electron transport time (τd) increased as the content of Ec-S increased, which was related to the larger surface area. Results of steady-state cyclic voltammetry indicated that diffusion-limited current density (Jlim) of I3- in TiO2 film increased with its porosity, which revealed that the transportation of redox mediators in the electrolyte was speeded up.

Keywords micro-structure      porosity      optical property      electron transport      dye-sensitized solar cell (DSSC)     
Corresponding Authors: DAI Songyuan,Email:sydai@ipp.ac.cn   
Issue Date: 05 March 2011
 Cite this article:   
Shuangying XU,Songyuan DAI,Jiang SHENG, et al. Electron transportation and optical properties of micro-structure TiO2 films: applied in dye-sensitized solar cells[J]. Front Optoelec Chin, 2011, 4(1): 72-79.
 URL:  
http://journal.hep.com.cn/foe/EN/10.1007/s12200-011-0202-5
http://journal.hep.com.cn/foe/EN/Y2011/V4/I1/72
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Shuangying XU
Songyuan DAI
Jiang SHENG
Dongxing KOU
Huajun TIAN
Linhua HU
Fig.1  XRD spectra of nanocrystalline TiO powders
Fig.1  XRD spectra of nanocrystalline TiO powders
type of pastesTiO2/Ec-S ratio (w/w)paste viscosity/(Pa·s)porosity/%average pore diameter/nmsurface area /(m2·g-1)
A110∶166.036526.2172.38
A210∶2237.036424.2377.77
A310∶3835.576424.4777.23
A410∶5940.806423.4279.29
A510∶10>20006929.3378.37
Tab.1  Physical properties of TiO films
Fig.2  - curves of DSSC with different TiO films under one sun illumination
Fig.2  - curves of DSSC with different TiO films under one sun illumination
Fig.3  Steady-state cyclic voltammograms of TiO films with different porosities
Fig.3  Steady-state cyclic voltammograms of TiO films with different porosities
Fig.4  Steady-state cyclic voltammograms of TiO films with same porosity
Fig.4  Steady-state cyclic voltammograms of TiO films with same porosity
Fig.5  Diffuse reflectance curves of TiO films with different micro-structures without scattering layers
Fig.5  Diffuse reflectance curves of TiO films with different micro-structures without scattering layers
Fig.6  Transmittance curves of TiO films with different micro-structures without scattering layers
Fig.6  Transmittance curves of TiO films with different micro-structures without scattering layers
Fig.7  Diffuse reflectance curves of TiO films with different micro-structures with scattering layers
Fig.7  Diffuse reflectance curves of TiO films with different micro-structures with scattering layers
Fig.8  Transmittance curves of TiO films with different micro-structures with scattering layers
Fig.8  Transmittance curves of TiO films with different micro-structures with scattering layers
type of pastesTiO2/Ec-S ratio (w/w)without scattering layerwith scattering layer
Voc/VJsc/(mA·cm-2)η/%Voc/VJsc/(mA·cm-2)η/%
A110∶10.786.323.270.7615.186.52
A210∶20.785.682.970.7516.066.96
A310∶30.795.482.920.7516.397.20
A410∶50.794.922.670.7516.817.55
A510∶100.804.002.200.7614.636.76
Tab.2  Photovoltaic performances of DSSC with and without scattering layers
Fig.9  Typical intensity modulated photocurrent spectrum
Fig.9  Typical intensity modulated photocurrent spectrum
Fig.10  Influence of TiO films with different micro-structures on electron transport time
Fig.10  Influence of TiO films with different micro-structures on electron transport time
Fig.11  Influence of TiO films with different micro-structures on electron lifetime
Fig.11  Influence of TiO films with different micro-structures on electron lifetime
Fig.12  IPCE spectra of DSSC with TiO films having different micro-structure
Fig.12  IPCE spectra of DSSC with TiO films having different micro-structure
1 O’Regan B, Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature , 1991, 353(6346): 737–740
doi: 10.1038/353737a0
2 Chen D H, Cao L, Huang F Z, Imperia P, Cheng Y B, Caruso R A. Synthesis of monodisperse mesoporous titania beads with controllable diameter, high surface areas, and variable pore diameters (14-23 nm). Journal of the American Chemical Society , 2010, 132(12): 4438–4444
doi: 10.1021/ja100040p pmid:20201515
3 Hart J N, Menzies D, Cheng Y B, Simon G P, Spiccia L. A comparison of microwave and conventional heat treatments of nanocrystalline TiO2. Solar Energy Materials and Solar Cells , 2007, 91(1): 6–16
doi: 10.1016/j.solmat.2006.06.059
4 Jorge M V, Claudio F R, Calixto S, Bosch P, Lara V H. The influence of surfactants on the roughness of titania Sol-Gel films. Materials Characterization , 2007, 58(3): 233–242
doi: 10.1016/j.matchar.2006.04.021
5 Menzies D, Dai Q, Cheng Y B, Simon G P, Spiccia L.Improvement of the Zirconia shell in nanostructured titania core-shell working electrodes for dye-sensitized solar cells. Materials Letters , 2005, 59(14-15): 1893–1896
6 Nakade S, Saito Y, Kubo W, Kitamura T, Wada Y, Yanagida S. Influence of TiO2 nanoparticle size on electron diffusion and recombination in dye-sensitized TiO2 solar cells. Journal of Physical Chemistry B , 2003, 107(33): 8607–8611
doi: 10.1021/jp034773w
7 Vargas-Florencia D, Edvinsson T, Hagfeldt A, Furo I. Furó i. Pores in nanostructured TiO2 films size distribution and pore permeability. Journal of Physical Chemistry C , 2007, 111(21): 7605–7611
doi: 10.1021/jp070321y
8 Boschloo G, Hagfeldt A. Activation energy of electron transport in dye-sensitized TiO2 solar cells. Journal of Physical Chemistry B , 2005, 109(24): 12093–12098
doi: 10.1021/jp0513770 pmid:16852492
9 Nelson J, Haque S A, Klug D R, Durrant J R. Trap-limited recombination in dye-sensitized nanocrystalline metal oxide electrodes. Physical Review B: Condensed Matter , 2001, 63(20): 205321–205330
doi: 10.1103/PhysRevB.63.205321
10 Benkstein K D, Kopidakis N, van de Lagemaat J, Frank A J. Influence of the percolation network geometry on electron transport in dye-sensitized titanium dioxide solar cells. Journal of Physical Chemistry B , 2003, 107(31): 7759–7767
doi: 10.1021/jp022681l
11 Liang L Y, Dai S Y, Hu L H, Kong F T, Xu W W, Wang K J. Porosity effects on electron transport in TiO2 films and its application to dye-sensitized solar cells. Journal of Physical Chemistry B , 2006, 110(25): 12404–12409
doi: 10.1021/jp061284y pmid:16800566
12 Wang R B, Dai S Y. Wang k J. The influence of the nanoparticles TiO2 films in solar cells. Journal of the Graduate School of the Chinese Academy of Sciences. , 2001, 18(1): 28–29
13 Hu L H, Dai S Y, Wang K J. Structural transformation of nanocrystalline titania grown by Sol-Gel technique and the growth kinetics of crystallites.Acta Physica Sinica , 2003, 52(9): 2135–2139 (in Chinese)
14 Pan X, Dai S Y, Wang K J, Hu L H, Shi C W, Guo L, Kong F T. Effects of TiO2 film on the performance of dye-sensitized solar cells based on lonic liquid electrolyte. Chinese Journal of Chemistry , 2005, 23(12): 1579–1583 (in Chinese)
doi: 10.1002/cjoc.200591579
15 Hu L H, Dai S Y, Wang K J. Influence of microstructure of nanoporous TiO2 films on the performance of dye-sensitized solar cells. Acta Physica Sinica. , 2005, 54(4): 1914–1918 (in Chinese)
16 Saito Y, Kambe S, Kitamura T, Wada Y, Yanagida S. Morphology control of mesoporous TiO2 nanocrystalline films for performance of dye-sensitized solar cells. Solar Energy Materials and Solar Cells , 2004, 83(1): 1–13
doi: 10.1016/j.solmat.2004.02.010
17 Yuan C D, Cai N, Zhao Y, Sun J, Wei C C, Su Y, Li Y, Ji W W, Zhang C S, Xiong S Z. Optimization of fabrication process in dye-sensitized solar cells. Synthetic Crystals , 2009, 38(1): 53–59 (in Chinese)
18 Dürr M, Kron G, Rau U, Werner J H, Yasuda A, Nelles G. Diffusion-limited transport of I3- through nanoporous TiO2-polymer gel networks. Journal of Chemical Physics , 2004, 121(22): 11374–11378
doi: 10.1063/1.1812741 pmid:15634095
19 Papageorgin N, Gr?tzel M, Infelta P P. On the relevance of mass transport in thin layer nanocrystalline photoelectrochemical solar cells. Solar Energy Materials and Solar Cells , 1996, 44(4): 405–438
doi: 10.1016/S0927-0248(96)00050-5
20 van de Lagemaat J, Benkstein K D, Frank A J. Relation between particle coordination number and porosity in nanoparticle films: implications to dye-sensitized solar cells. Journal of Physical Chemistry B , 2001, 105(50): 12433–12436
doi: 10.1021/jp013369z
21 Li S J, Lin Y, Yang S W, Feng S J, Yang L, Xiao X R. Preparation and application of TiO2 film with large pores in dye-sensitized solar cell. Chinese Journal of Inorganic Chemistry. , 2007, 23(11): 1965–1969 (in Chinese)
22 Hu L H, Dai S Y, Weng J, Xiao S F, Sui Y F, Huang Y, Chen S H, Kong F T, Pan X, Liang L Y, Wang K J. Microstructure design of nanoporous TiO2 photoelectrodes for dye-sensitized solar cell modules. Journal of Physical Chemistry B , 2007, 111(2): 358–362
doi: 10.1021/jp065541a pmid:17214486
23 Hore S, Vetter C, Kern R, Smit H, Hinsch A. Influence of scattering layers on efficiency of dye-sensitized solar cells. Solar Energy Materials and Solar Cells , 2006, 90(9): 1176–1188
doi: 10.1016/j.solmat.2005.07.002
24 Peter L M, Wijayantha K G U. Electron transport and back reaction in dye-sensitized nanocrystalline photovoltaic cells. Electrochimica Acta , 2000, 45(28): 4543–4551
doi: 10.1016/S0013-4686(00)00605-8
25 Liang L Y, Dai S Y, Fang X Q, Hu L H. Research on the electron transport and back-reaction kinetics in TiO2 films applied in dye-sensitized solar cells. Acta Physica Sinica. , 2008, 57(3): 1956–1962 (in Chinese)
26 Krüger J, Plass R, Gratzel M, Cameron P J, Peter L M. Charge transport and back reaction in solid-state dye-sensitized solar cells: a study using intensity-modulated photovoltage and photocurrent spectroscopy. Journal of Physical Chemistry B , 2003, 107(31): 7536–7539
doi: 10.1021/jp0348777
27 Cameron P J, Peter L M. How does back-reaction at the conducting glass substrate influence the dynamic photovoltage response of nanocrystalline dye-sensitized solar cells. Journal of Physical Chemistry B , 2005, 109(15): 7392–7398
doi: 10.1021/jp0407270 pmid:16851846
Related articles from Frontiers Journals
[1] Baoming LI,Enkai PENG,Leilei YE,Zhiyin WU. Synthesis and optical properties of soluble low bandgap poly (pyrrole methine) with alkoxyl substituent[J]. Front. Optoelectron., 2016, 9(1): 99-105.
[2] Cunxi CHENG, Jihuai WU, Yaoming XIAO, Yuan CHEN, Haijun YU, Ziying TANG, Jianming LIN, Miaoliang HUANG. Preparation of titanium dioxide-double-walled carbon nanotubes and its application in flexible dye-sensitized solar cells[J]. Front Optoelec, 2012, 5(2): 224-230.
[3] Gentian YUE, Jihuai WU, Jianming LIN, Miaoliang HUANG, Ying YAO, Leqing FAN, Yaoming XIAO. Application of Poly (3, 4-ethylenedioxythiophene): polystyrenesulfonate counter electrode in polymer heterojunction dye-sensitized solar cells[J]. Front Optoelec Chin, 2011, 4(4): 369-377.
[4] Quanyou FENG, Hong WANG, Gang ZHOU, Zhong-Sheng WANG. Effect of deoxycholic acid on performance of dye-sensitized solar cell based on black dye[J]. Front Optoelec Chin, 2011, 4(1): 80-86.
[5] Minghui DENG, Shuqing HUANG, Zhexun YU, Dongmei LI, Yanhong LUO, Yubai BAI, Qingbo MENG. Enhanced electron injection/transportation by surface states increment in mesoporous TiO2 dye-sensitized solar cells[J]. Front Optoelec Chin, 2011, 4(1): 65-71.
[6] Chang-Ryul LEE, Hui-Seon KIM, Nam-Gyu PARK. Dependence of porosity, charge recombination kinetics and photovoltaic performance on annealing condition of TiO2 films[J]. Front Optoelec Chin, 2011, 4(1): 59-64.
[7] Hong LIN, Feng HAO, Jianbao LI. Electrolyte-dependent photovoltaic responses in dye-sensitized solar cells[J]. Front Optoelec Chin, 2011, 4(1): 45-52.
[8] Wei CHEN, Shihe YANG. Dye-sensitized solar cells based on ZnO nanotetrapods[J]. Front Optoelec Chin, 2011, 4(1): 24-44.
[9] Qingqing MIAO, Mingxing WU, Wei GUO, Tingli MA. Studies of high-efficient and low-cost dye-sensitized solar cells[J]. Front Optoelec Chin, 2011, 4(1): 103-107.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed