Please wait a minute...

Frontiers of Optoelectronics

Front Optoelec Chin    2011, Vol. 4 Issue (2) : 150-155     DOI: 10.1007/s12200-011-0167-4
RESEARCH ARTICLE |
Room temperature synthesis of flower-like CuS nanostructures under assistance of ionic liquid
Chuyan CHEN, Qing LI(), Yiying WANG, Yuan LI, Xiaolin ZHONG
School of Materials Science and Engineering, Education Ministry Key Laboratory on Luminescence and Real-Time Analysis, Southwest University, Chonqqing 400715, China
Download: PDF(395 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Flower-like CuS nanostructures have been synthesized via a liquid precipitation route by the reaction between CuCl2·2H2O and thioacetamide (CH3CSNH2, TAA) in the ionic liquid 1-butyl-3-methyl imidazole six hexafluorophosphoric acid salts ([BMIM][PF6]) aqueous solution at room temperature. The products were characterized by X-ray powder diffraction (XRD), field emission scanning electronic microscopy (FESEM), Brunauer-Emmett-Teller (BET), Ultraviolet-Visible Spectrophotometer (UV-Vis) and Photoluminescence (PL) techniques. The as-prepared CuS nanostructures have a mean diameter of about 1 μm. A plausible mechanism was proposed to explain the formation of CuS nanostructures. The effects of experimental parameters on the formation of the products were also explored. With BET theory, it is found that the as-prepared CuS nanostructures have a specific area of 39 m2/g. The Barrett-Joyner-Halenda (BJH) pore size distribution of the as-prepared CuS nanostructures presents smaller pores centers about 60 nm. The UV-Vis and PL curves indicate that the as-prepared CuS nanostructures are promising candidates for the development of photoelectric devices.

Keywords nanostructures      liquid precipitation method      ionic liquid     
Corresponding Authors: LI Qing,Email:qli@swu.edu.cn   
Issue Date: 05 June 2011
 Cite this article:   
Chuyan CHEN,Qing LI,Yiying WANG, et al. Room temperature synthesis of flower-like CuS nanostructures under assistance of ionic liquid[J]. Front Optoelec Chin, 2011, 4(2): 150-155.
 URL:  
http://journal.hep.com.cn/foe/EN/10.1007/s12200-011-0167-4
http://journal.hep.com.cn/foe/EN/Y2011/V4/I2/150
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Chuyan CHEN
Qing LI
Yiying WANG
Yuan LI
Xiaolin ZHONG
Fig.1  Chemical structure of [BMIM][PF]
Fig.1  Chemical structure of [BMIM][PF]
Fig.2  XRD patterns of sample prepared in [BMIM][PF]-water solution at room temperature for 48 h
Fig.2  XRD patterns of sample prepared in [BMIM][PF]-water solution at room temperature for 48 h
Fig.3  FESEM images of flower-like CuS nanostructures. (a) Low magnification; (b) high magnification
Fig.3  FESEM images of flower-like CuS nanostructures. (a) Low magnification; (b) high magnification
Fig.4  FESEM images of CuS nanostructures in different conditions. (a) Reaction time for 24 h; (b) reaction time for 60 h; (c) in absence of [BMIM][PF]; (d) 2 mL [BMIM][PF]
Fig.4  FESEM images of CuS nanostructures in different conditions. (a) Reaction time for 24 h; (b) reaction time for 60 h; (c) in absence of [BMIM][PF]; (d) 2 mL [BMIM][PF]
Fig.5  Nitrogen adsorption-desorption isotherm and pore size distributions (inset) of CuS nanostructures
Fig.5  Nitrogen adsorption-desorption isotherm and pore size distributions (inset) of CuS nanostructures
Fig.6  UV-Vis absorption spectrum of CuS nanostructures
Fig.6  UV-Vis absorption spectrum of CuS nanostructures
Fig.7  Photoluminescence spectrum (excited at 350 nm) of CuS nanostructures
Fig.7  Photoluminescence spectrum (excited at 350 nm) of CuS nanostructures
1 Wang K J, Li G D, Wang Q, Chen J S. Formation of single-crystalline CuS nanoplates vertically standing on flat substrate. Crystal Growth & Design , 2007, 7(11): 2265–2267
doi: 10.1021/cg060640z
2 Mane R S, Lokhande C D. Chemical deposition method for metal chalcogenide thin films. Materials Chemistry and Physics , 2000, 1(65): 1–31
doi: 10.1016/S0254-0584(00)00217-0
3 Roy P, Srivastava S K. Low-temperature synthesis of CuS nanorods by simple wet chemical method. Materials Letters , 2007, 61(8–9): 1693–1607
doi: 10.1016/j.matlet.2006.07.101
4 Raevskaya A E, Stroyuk A U, Kuchmii S Y, Kryukov A I. Catalytic activity of CuS nanoparticles in hydrosulfide ions air oxidation. Journal of Molecular Catalysis A: Chemical , 2004, 212(1–2): 259–265
doi: 10.1016/j.molcata.2003.11.010
5 Zhang Y C, Qian T, Hu X Y, Zhou W D. A facile low temperature solvothermal route to copper monosulfide submicrotubes. Materials Research Bulletin , 2005, 40(10): 1696–1704
doi: 10.1016/j.materresbull.2005.05.013
6 Barrelet C J, Wu Y, Bell D C, Lieber C M. Synthesis of CdS and ZnS nanowires using single-source molecular precursors. Journal of the American Chemical Society , 2003, 125(38): 11498–11499
doi: 10.1021/ja036990g
7 Xue P C, Lu R, Huang Y, Jin M, Tan C H, Bao C Y, Wang Z M, Zhao Y Y. Novel pearl-necklace porous CdS nanofiber templated by organogel. Langmuir , 2004, 20(15): 6470–6475
doi: 10.1021/la0493520
8 Xue P C, Lu R, Li D M, Jin M, Tan C, Bao C, Wang Z, Zhao Y, Zhao Y Y. Novel CuS nanofibers using organogel as a template: controlled by binding sites. Langmuir , 2004, 20(25): 11234–11239
doi: 10.1021/la048582b
9 Tan C H, Zhu Y L, Lu R, Xue P C, Bao C Y, Liu X L, Fei Z P, Zhao Y Y. Synthesis of copper sulfide nanotube in the hydrogel system. Materials Chemistry and Physics , 2005, 91(1): 44–47
doi: 10.1016/j.matchemphys.2004.10.045
10 Wu C Y, Yu S H, Chen S F, Liu G N, Liu B H. Large scale synthesis of uniform CuS nanotubes in ethylene glycol by a sacrificial templating method under mile conditions. Journal of Materials Chemistry , 2006, 16(32): 3326–3331
doi: 10.1039/b606226a
11 Ge L, Jing X Y, Wang J, Jamil S, Liu Q, Song D L, Xie Y, Yang P P, Zhang M L. Ionic liquid-assisted synthesis of CuS nestlike hollow spheres assembled by microflakes using an oil water iterface rute. Crystal Growth & Design , 2010, 10(4): 1688–1692
doi: 10.1021/cg901251w
12 Gao J N, Li Q S, Zhao H B, Li L S, Liu C L, Gong Q H, Qi L M. One-pot synthesis of uniform Cu2O and CuS hollow spheres and their optical limiting properties. Chemistry of Materials , 2008, 20(19): 6263–6369
doi: 10.1021/cm801407q
13 Shen X P, Zhao H, Shu H Q, Zhou H, Yuan A H. Self-assembly of CuS nanoflakes into flower-like microspheres: synthesis and characterization. Journal of Physics and Chemistry of Solids , 2009, 70(2): 422–427
doi: 10.1016/j.jpcs.2008.11.009
14 Zhu L Y, Xie Y, Zheng X W, Liu X, Zhou G E. Fabrication of novel urchin-like architecture and snowflake-like pattern CuS. Journal of Crystal Growth , 2004, 260(3–4): 494–499
doi: 10.1016/j.jcrysgro.2003.08.038
15 Zhang Y C, Hu X Y, Qiao T. Shape-controlled synthesis of CuS nanocrystallites via a facile hydrothermal route. Solid State Communications , 2004, 132(11): 779–782
doi: 10.1016/j.ssc.2004.09.034
16 Roy P, Mondal K, Srivastzva S K. Synthesis of twinned CuS nanorods by a simple wet chemical method. Crystal Growth & Design , 2008, 5(8): 1530–1534
doi: 10.1021/cg700780k
17 Gao L, Wang E B, Lian S Y, Kang Z H, Lan Y, Wu D. Microemulsion-directed synthesis of different CuS nanocrystals. Solid State Communications , 2004, 130(5): 309–312
doi: 10.1016/j.ssc.2004.02.014
18 van Rantwijk F, Sheldon R A. Biocatalysis in ionic liquids. Chemical Reviews , 2007, 107(6): 2757–2785
doi: 10.1021/cr050946x
19 Li Z H, Liu Z M, Zhang J L, Han B X, Du J M, Gao Y N, Jiang T. Synthesis of single-crystal gold nanosheets of large size in ionic liquids. Journal of Physical Chemistry B , 2005, 109(30): 14445–14448
doi: 10.1021/jp0520998
20 Qin Y, Song N J, Zhao N N, Li M X, Qi L M. Ionic liquid-assisted growth of single-crystalline dendritic gold nanostructures with a three-fold symmetry. Chemistry of Materials , 2008, 20(12): 3965–3972
doi: 10.1021/cm8002386
21 Wang Y, Yang H. Synthesis of CoPt nanorods in ionic liquids. Journal of the American Chemical Society , 2005, 127(15): 5316–5317
doi: 10.1021/ja043625w
22 Thirumurugan A. Use of ionic liquids in synthesis of nanocrystals, nanorods and nanowires of elemental chalcogens. Bulletin of Materials Science , 2007, 30(2): 179–182
doi: 10.1007/s12034-007-0032-7
23 Movahedi M, Kowsari E, Mahjoub A R, Yavari I. A task specific basic ionic liquid for synthesis of flower-like ZnO by hydrothermal method. Materials Letters , 2008, 62(23): 3856–3858
doi: 10.1016/j.matlet.2008.05.002
24 Jiang Y, Zhu Y J. Microwave-assisted synthesis of sulfide M2S3 (M = Bi, Sb) nanorods using an ionic liquid. Journal of Physical Chemistry B , 2005, 109(10): 4361–4364
doi: 10.1021/jp044350+
25 Zhu Y J, Wang W W, Qi R J, Hu X L. Microwave-assisted synthesis of single-crystalline tellurium nanorods and nanowires in ionic liquids. Angewandte Chemie , 2004, 43(11): 1410–1414
26 Jacob D S, Bitton L, Grinblat J, Felner I, Koltypin Y, Gedanken A. Are ionic liquids really a boon for the synthesis of inorganic materials? A general method for the fabrication of nanosized metal fluorides. Chemistry of Materials , 2006, 18(13): 3162–3168
doi: 10.1021/cm060782g
27 He Y H, Li D Z, Chen Z X, Chen Y B, Fu X Z. New synthesis of single-crystalline InVO4 nanorods using an ionic liquid. Journal of the American Ceramic Society , 2007, 90(11): 3698–3703
doi: 10.1111/j.1551-2916.2007.01969.x
28 Tang G H. Synthesis of nanometer powders by liquid precipitation. Shanxi Chemical Industry , 2005, 25(3): 8–10 (in Chinese)
29 Ding T Y, Wang M S, Guo S P, Guo G C, Huang J S. CuS nanoflowers prepared by a polyol route and their photocatalytic property. Materials Letters , 2008, 62(30): 4529–4531
doi: 10.1016/j.matlet.2008.08.031
30 Zhang J, Zhang Z K. Hydrothermal synthesis and optical properties of CuS nanoplates. Materials Letters , 2008, 62(15): 2279–2281
doi: 10.1016/j.matlet.2007.11.069
31 Thongtem T, Phuruangrant A, Thongtem S. Formation of CuS with flower like, hollow spherical, and tubular structures using the solvothermal-microwave process. Current Applied Physics , 2009, 9(1): 195–200
doi: 10.1016/j.cap.2008.01.011
32 Pereiro A B, Legido J L, Rodríguez A. Physical properties of ionic liquids based on 1-alkyl-3-methylimidazolium cation and hexafluorophosphate as anion and temperature dependence. Journal of Chemical Thermodynamics , 2007, 39(8): 1168–1175
doi: 10.1016/j.jct.2006.12.005
33 Zhang J, Zhang Z K. Shape-controlled synthesis of CuS nanocrystallites via a facial solution route. Journal of Functional Materials , 2007, 38: 2056–2058
34 Xu H L, Wang W Z, Zhu W, Zhou L. Synthesis of octahedral CuS nanocages via a solid-liquid reaction. Nanotechnology , 2006, 17(15): 3649–3654
doi: 10.1088/0957-4484/17/15/005
35 Chen L F, Yu W, Li Y. Synthesis and characterization of tuber CuS with flower-like wall from a low temperature hydrothermal route. Powder Technology , 2009, 191(1–2): 52–54
doi: 10.1016/j.powtec.2008.09.007
36 Li F, Kong T, Bi W T, Li D C, Li Z, Huang X T. Synthesis and optical of CuS nanoplate-based architectures by a solvothermal method. Applied Surface Science , 2009, 255(12): 6285–6289
doi: 10.1016/j.apsusc.2009.02.001
Related articles from Frontiers Journals
[1] Jiarui HUANG, Feng TANG, Cuiping GU, Chengcheng SHI, Muheng ZHAI. Flower-like CuO hierarchical nanostructures: synthesis, characterization, and property[J]. Front Optoelec, 2012, 5(4): 429-434.
[2] Hong LIN, Feng HAO, Jianbao LI. Electrolyte-dependent photovoltaic responses in dye-sensitized solar cells[J]. Front Optoelec Chin, 2011, 4(1): 45-52.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed