Please wait a minute...

Frontiers of Optoelectronics

Front. Optoelectron.    2010, Vol. 3 Issue (2) : 109-124     DOI: 10.1007/s12200-010-0003-2
Research articles |
Asymmetric resonant cavities and their applications in optics and photonics: a review
Yun-Feng XIAO1,Yan LI1,Qihuang GONG1,Chang-Ling ZOU2,Chun-Hua DONG2,Zheng-Fu HAN2,
1.State Key Lab for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China; 2.Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China;
Download: PDF(844 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Asymmetric resonant cavities (ARCs) with smoothly deformed boundaries are currently under intensive study because they possess distinct properties that conventional symmetric cavities cannot provide. On one hand, it has been demonstrated that ARCs allow for highly directional emission instead of the in-plane isotropic light output in symmetric whispering-gallery cavities, such as microdisks, microspheres, and microtoroids. On the other hand, ARCs behave like open billiard system and thus offer an excellent platform to test classical and quantum chaos. This article reviews the recent progresses and prospects for the experimental realization of ARCs, with applications toward highly directional microlasing, strong-coupling light-matter interaction, and highly sensitive biosensing.
Issue Date: 05 June 2010
 Cite this article:   
Yun-Feng XIAO,Yan LI,Qihuang GONG, et al. Asymmetric resonant cavities and their applications in optics and photonics: a review[J]. Front. Optoelectron., 2010, 3(2): 109-124.
 URL:  
http://journal.hep.com.cn/foe/EN/10.1007/s12200-010-0003-2
http://journal.hep.com.cn/foe/EN/Y2010/V3/I2/109
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yun-Feng XIAO
Yan LI
Qihuang GONG
Chang-Ling ZOU
Chun-Hua DONG
Zheng-Fu HAN
Vahala K J. Optical Microcavities. Singapore: World Scientific, 2004

doi: 10.1142/9789812565730
Vahala K J. Optical microcavities. Nature, 2003, 424(6950): 839–846
Hood C J, Lynn T W, Doherty A C, Parkins A S, Kimble H J. The atom-cavity microscope:single atoms bound in orbit by single photons. Science, 2000, 287(5457): 1447–1453
Gérard J M, Sermage B, Gayral B, Legrand B, Costard E, Thierry-Mieg V. Enhanced spontaneous emissionby quantum boxes in a monolithic optical microcavity. Physical Review Letters, 1998, 81(5): 1110–1113
Foresi J S, Villeneuve P R, Ferrera J, Thoen E R, Steinmeyer G, Fan S, Joannopoulos J D, Kimerling L C, Smith H I, Ippen E P. Photonic-bandgap microcavities in optical waveguides. Nature, 1997, 390(6656): 143–145
Vučković J, Lončar M, Mabuchi H, Scherer A. Design of photonic crystalmicrocavities for cavity QED. Physical Review E, 2001, 65(1): 016608
Srinivasan K, Barclay P E, Painter O, Chen J X, Cho A Y, Gmachl C. Experimental demonstration of a highquality factor photonic crystal microcavity. Applied Physics Letters, 2003, 83(10): 1915–1917
Ching S C, Lai H M, Young K. Dielectric microspheres as optical cavities:einstein A and B coefficients and level shift. Journal of the Optical Society of America B, 1987, 4(12): 2004–2009
Collot L, Lefevre-Seguin V, Brune M, Raimond J M, Haroche S. Very high-Q whispering-gallery mode resonances observed on fused silica microspheres. Europhysics Letters, 1993, 23(5): 327–334
Gayral B, Gerard J M, Lemaitre A, Dupuis C, Manin L, Pelouard J L. High-Q wet-etched GaAs microdisks containing InAs quantum boxes. Applied Physics Letters, 1999, 75(13): 1908–1910
Moon H J, Chough Y T, An K. Cylindrical microcavity laserbased on the evanescent-wave-coupled gain. Physical Review Letters, 2000, 85(15): 3161–3164
Armani D K, Kippenberg T J, Spillane S M, Vahala K J. Ultra-high-Q toroid microcavity on a chip. Nature, 2003, 421(6926): 925–928
Maunz P, Puppe T, Schuster I, Syassen N, Pinkse P W H, Rempe G. Cavity cooling of a single atom. Nature, 2004, 428(6978): 50–52
McKeever J, Boca A, Boozer A D, Buck J R, Kimble H J. Experimental realizationof a one-atom laser in the regime of strong coupling. Nature, 2003, 425(6955): 268–271
Noda S, Fujita M, Asano T. Spontaneous-emission controlby photonic crystals and nanocavities. Nature Photonics, 2007, 1(8): 449–458
Tanabe T, Notomi M, Kuramochi E, Shinya A, Taniyama H. Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystalnanocavity. Nature Photonics, 2007, 1(1): 49–52
Braginsky V B, Gorodetsky M L, Ilchenko V S. Quality-factor and nonlinearproperties of optical whispering-gallery modes. Physics Letters A, 1989, 137(7―8): 393–397
Savchenkov A A, Ilchenko V S, Matsko A B, Maleki L. Kilohertz optical resonances in dielectric crystal cavities. Physical Review A, 2004, 70(5): 051804

doi: 10.1103/PhysRevA.70.051804
McCall S L, Levi A F J, Slusher R E, Pearton S J, Logan R A. Whispering-gallery mode microdisklasers. Applied Physics Letters, 1992, 60(3): 289–291
Sandoghdar V, Treussart F, Hare J, Lefèvre-Seguin V, Raimond J M, Haroche S. Very low threshold whispering-gallery-mode microsphere laser. Physical Review A, 1996, 54(3): R1777–R1780
Aoki T, Dayan B, Wilcut E, Bowen W P, Parkins A S, Kippenberg T J, Vahala K J, Kimble H J. Observation of strong couplingbetween one atom and a monolithic microresonator. Nature, 2006, 443(7112): 671–674
Armani A M, Kulkarni R P, Fraser S E, Flagan R C, Vahala K J. Label-free, single-molecule detection with optical microcavities. Science, 2007, 317(5839): 783–787
Gorodetsky M L, Ilchenko V S. High-Q optical whispering-gallery microresonators: precession approachfor spherical mode analysis and emission patterns with prism couplers. Optics Communications, 1994, 113(1―3): 133–143
Dubreuil N, Knight J C, Leventhal D, Sandoghdar V, Hare J, Lefére-Seguin V, Raimond J M, Haroche S. Mapping whispering-gallery modes in microspheres with a near-field probe. Optics Letters, 1995, 20(14): 1515–1517
Cai M, Painter O, Vahala K J. Observation of critical couplingin a fiber taper to silica-microsphere whispering gallery mode system. Physical Review Letters, 2000, 85(1): 74–77
Nöckel J U, Stone A D. Ray and wavechaos in asymmetric resonant optical cavities. Nature, 1997, 385(6611): 45–47
Narimanov E E, Podolskiy V A. Chaos-assisted tunneling and dynamical localization in dielectricmicrodisk resonators. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12(1): 40–51
Chin M K, Chu D Y, Ho S T. Estimation of the spontaneous emissionfactor for microdisk lasers via the approximation of whispering gallerymodes. Journal of Applied Physics, 1994, 75(7): 3302–3307
Wiersig J. Boundary element method for resonances in dielectricmicrocavities. Journal of Optics A: Pureand Applied Optics, 2003, 5(1): 53–60
Zou C L, Yang Y, Xiao Y F, Dong C H, Han Z F, Guo G C. Accurately calculating high quality factor of whispering-gallerymodes with boundary element method. Journal of the Optical Society of America B, 2009, 26(11): 2050–2053
Boriskina S V, Sewell P, Benson T M, Nosich A I. Accurate simulation of two-dimensional optical microcavitieswith uniquely solvable boundary integral equations and trigonometric Galerkin discretization. Journal of the Optical Society of America A, 2004, 21(3): 393–402
Fujita M, Baba T. Proposal and finite-difference time-domain simulation of whispering gallery modemicrogear cavity. IEEE Journal of QuantumElectronics, 2001, 37(10): 1253–1258
Guo W H, Li W J, Huang Y Z. Computation of resonant frequencies andquality factors of cavities by FDTD technique and Pade approximation. IEEE Microwave and Wireless Components Letters, 2001, 11(5): 223–225
Stöckmann H J. Quantum Chaos: An Introduction. UK: Cambridge University Press, 1999

doi: 10.1017/CBO9780511524622
Backer A. Quantum chaos in billiards. Computing in Science and Engineering, 2007, 9(3): 60–64
Hentschel M, Schomerus H, Schubert R. Husimi functions at dielectricinterfaces: inside-outside duality for optical systems and beyond. Europhysics Letters, 2003, 62(5): 636–642
Nöckel J U, Chang R K. 2-D microcavities:theory and experiments. In: van Zee R D, Looney J P, eds. Cavity-Enhanced Spectroscopies. San Diego: Academic Press, 2002
Heller E J. Bound-state eigenfunctions of classically chaotic hamiltoniansystems: scars of periodic orbits. Physical Review Letters, 1984, 53(16): 1515–1518
Schwefel H G L, Rex N B, Tureci H E, Chang R K, Stone A D, Ben-Messaoud T, Zyss J. Dramatic shape sensitivity of directional emission patterns from similarly deformedcylindrical polymer lasers. Journal of the Optical Society of America B, 2004, 21(5): 923–934
Schäfer R, Kuhl U, Stöckmann H J. Directed emission from a dielectric microwave billiard with quadrupolar shape. New Journal of Physics, 2006, 8(3): 46

doi: 10.1088/1367-2630/8/3/046
Lee S B, Yang J, Moon S, Lee J H, An K, Shim J B, Lee H W, Kim S W. Universal output directionality of singlemodes in a deformed microcavity. Physical Review A, 2007, 75(1): 011802

doi: 10.1103/PhysRevA.75.011802
Levi A F J, Slusher R E, McCall S L, Glass J L, Pearton S J, Logan R A. Directional light couplingfrom microdisk lasers. Applied PhysicsLetters, 1993, 62(6): 561–563
Mekis A, Nöckel J U, Chen G, Stone A D, Chang R K. Ray chaos and Q spoiling in lasing droplets. Physical Review Letters, 1995, 75(14): 2682–2685
Moon H J, Ko K H, Noh Y C, Kim G H, Lee J H, Chang J S. Observation of Q-spoiling effects on the resonance modes from a noncircularly deformed liquidjet. Optics Letters, 1997, 22(23): 1739–1741
Nöckel J U, Stone A D, Chen G, Grossman H L, Chang R K. Directional emission fromasymmetric resonant cavities. Optics Letters, 1996, 21(19): 1609–1611
Gmachl C, Capasso F, Narimanov E E, Nöckel J U, Stone A D, Faist J, Sivco D L, Cho A Y. High-power directional emissionfrom microlasers with chaotic resonators. Science, 1998, 280(5369): 1556–1564
Gianordoli S, Hvozdara L, Strasser G, Schrenk W, Faist J, Gornik E. Long-wavelength (λ=10?μm) quadrupolar-shaped GaAs-AlGaAsmicrolasers. IEEE Journal of Quantum Electronics, 2000, 36(4): 458–464
Gmachl C, Narimanov E E, Capasso F, Baillargeon J N, Cho A Y. Kolmogorov-Arnold-Mosertransition and laser action on scar modes in semiconductor diode laserswith deformed resonators. Optics Letters, 2002, 27(10): 824–826
Lee S B, Lee J H, Chang J S, Moon H J, Kim S W, An K. Observation of scarred modes in asymmetrically deformedmicrocylinder lasers. Physical Review Letters, 2002, 88(3): 033903

doi: 10.1103/PhysRevLett.88.033903
Rex N B, Tureci H E, Schwefel H G L, Chang R K, Stone A D. Fresnel filteringin lasing emission from scarred modes of wave-chaotic optical resonators. Physical Review Letters, 2002, 88(9): 094102

doi: 10.1103/PhysRevLett.88.094102
Polson R C, Vardeny Z V. Directional emission from asymmetric microlaser resonators of p-conjugatedpolymers. Applied Physics Letters, 2004, 85(11): 1892–1894
McDonald S W, Kaufman A N. Wave chaos in the stadium: statistical properties of short-wave solutionsof the Helmholts equation. Physical Review A, 1988, 37(8): 3067–3086
Tomsovic S, Heller E J. Semiclassical dynamics of chaotic motion: unexpected long-time accuracy. Physical Review Letters, 1991, 67(6): 664–667
Biham O, Kvale M. Unstable periodic orbits in the stadium billiard. Physical Review A, 1992, 46(10): 6334–6339
Heller E J, Tomsovic S. Postmodern quantum mechanics. Physics Today, 1993, 46(7): 38–46
Fukushima T, Biellak S A, Sun Y, Siegman A E. Beam propagation behavior in a quasi-stadium laser diode. Optics Express, 1998, 2(2): 21–28
Fukushima T. Analysis of resonator eigenmodes in symmetric quasi-stadiumlaser diodes. Journal of Lightwave Technology, 2000, 18(12): 2208–2216
Fukushima T, Harayama T, Davis P, Vaccaro P O, Nishimura T, Aida T. Ring and axis mode lasingin quasi-stadium laser diodes with concentric end mirrors. Optics Letters, 2002, 27(16): 1430–1432
Shinohara S, Fukushima T, Harayama T. Light emission patterns fromstadium-shaped semiconductor microcavity lasers. Physical Review A, 2008, 77(3): 033807

doi: 10.1103/PhysRevA.77.033807
Harayama T, Davis P, Ikeda K S. Stable oscillations of a spatially chaoticwave function in a microstadium laser. Physical Review Letters, 2003, 90(6): 063901

doi: 10.1103/PhysRevLett.90.063901
Fukushima T, Harayama T. Stadium and quasi-stadium laser diodes. IEEE Journal of Selected Topics in Quantum Electronics, 2004, 10(5): 1039–1050
Harayama T, Fukushima T, Sunada S, Ikeda K S. Asymmetric stationary lasing patterns in 2D symmetricmicrocavities. Physical Review Letters, 2003, 91(7): 073903

doi: 10.1103/PhysRevLett.91.073903
Fang W, Cao H, Solomon G S. Control of lasing in fully chaotic openmicrocavities by tailoring the shape factor. Applied Physics Letters, 2007, 90(8): 081108

doi: 10.1063/1.2535692
Fang W, Yamilov A, Cao H. Analysis of high-qualitymodes in open chaotic microcavities. Physical Review A, 2005, 72(2): 023815

doi: 10.1103/PhysRevA.72.023815
Choi M, Tanaka T, Fukushima T, Harayama T. Control of directional emission in quasistadium microcavitylaser diodes with two electrodes. Applied Physics Letters, 2006, 88(21): 211110

doi: 10.1063/1.2206155
Lebental M, Lauret J S, Hierle R, Zyss J. Highly directional stadium-shaped polymer microlasers. Applied Physics Letters, 2006, 88(3): 031108

doi: 10.1063/1.2159099
Lebental M, Lauret J S, Zyss J, Schmit C, Bogomolny E. Directional emission of stadium-shaped microlasers. Physical Review A, 2007, 75(3): 033806

doi: 10.1103/PhysRevA.75.033806
Fang W, Cao H. Wave interference effect on polymer microstadium laser. Applied Physics Letters, 2007, 91(4): 041108

doi: 10.1063/1.2762285
Lee S Y, Ryu J W, Shim J B, Lee S B, Kim S W, An K. Divergent Petermann factor of interacting resonancesin a stadium-shaped microcavity. Physical Review A, 2008, 78(1): 015805

doi: 10.1103/PhysRevA.78.015805
Chern G D, Tureci H E, Stone A D, Chang R K, Kneissl M, Johnson N M. Unidirectional lasing fromInGaN multiple-quantum-well spiral-shaped micropillars. Applied Physics Letters, 2003, 83(9): 1710–1712
Kneissl M, Teepe M, Miyashita N, Johnson N M, Chern G D, Chang R K. Current-injection spiral-shaped microcavity disk laserdiodes with unidirectional emission. Applied Physics Letters, 2004, 84(14): 2485–2487

doi: 10.1063/1.1691494
Ben-Messaoud T, Zyss J. Unidirectional laser emission from polymer-based spiral microdisks. Applied Physics Letters, 2005, 86(24): 241110

doi: 10.1063/1.1949708
Tulek A, Vardeny Z V. Unidirectional laser emission from p-conjugated polymer microcavitieswith broken symmetry. Applied Physics Letters, 2007, 90(16): 161106

doi: 10.1063/1.2723078
Lee S Y, Rim S, Ryu J W, Kwon T Y, Choi M, Kim C M. Quasiscarred resonances in a spiral-shaped microcavity. Physical Review Letters, 2004, 93(16): 164102

doi: 10.1103/PhysRevLett.93.164102
Kim C M, Lee S H, Oh K R, Kim J H. Experimental verification of quasiscarred resonance mode. Applied Physics Letters, 2009, 94(23): 231120

doi: 10.1063/1.3148801
Lee J, Rim S, Cho J, Kim C M. Resonances near the classical separatrix of a weakly deformed circularmicrocavity. Physical Review Letters, 2008, 101(6): 064101

doi: 10.1103/PhysRevLett.101.064101
Kwon T Y, Lee S Y, Kurdoglyan M S, Rim S, Kim C M, Park Y J. Lasing modes in a spiral-shaped dielectricmicrocavity. Optics Letters, 2006, 31(9): 1250–1252

doi: 10.1364/OL.31.001250
Hentschel M, Kwon T Y. Designing and understanding directional emission from spiral microlasers. Optics Letters, 2009, 34(2): 163–165

doi: 10.1364/OL.34.000163
Audet R, Belkin M A, Fan J A, Lee B G, Lin K, Capasso F. Single-mode laser action in quantum cascadelasers with spiral-shaped chaotic resonators. Applied Physics Letters, 2007, 91(13): 131106

doi: 10.1063/1.2784290
Kim C M, Cho J, Lee J, Rim S, Lee S H, Oh K R, Kim J H. Continuous wave operation of a spiral-shaped microcavity laser. Applied Physics Letters, 2008, 92(13): 131110

doi: 10.1063/1.2902174
Wu X, Li H, Liu L, Xu L. Unidirectional single-frequency lasing from a ring-spiral coupled microcavity laser. Applied Physics Letters, 2008, 93(8): 081105

doi: 10.1063/1.2961025
Lee J Y, Luo X, Poon A W. Reciprocal transmissions and asymmetricmodal distributions in waveguide-coupled spiral-shaped microdisk resonators. Optics Express, 2007, 15(22): 14650–14666

doi: 10.1364/OE.15.014650
Wiersig J, Hentschel M. Combining directional light output and ultralow loss in deformed microdisks. Physical Review Letters, 2008, 100(3): 033901

doi: 10.1103/PhysRevLett.100.033901
Yan C, Wang Q J, Diehl L, Hentschel M, Wiersig J, Yu N, Pflugl C, Capasso F, Belkin M A, Edamura T, Yamanishi M, Kan H. Directional emission and universal far-field behaviorfrom semiconductor lasers with limacon-shaped microcavity. Applied Physics Letters, 2009, 94(25): 251101

doi: 10.1063/1.3153276
Yi C H, Kim M W, Kim C M. Lasing characteristics of a limacon-shapedmicrocavity laser. Applied Physics Letters, 2009, 95(14): 141107

doi: 10.1063/1.3242014
Song Q, Fang W, Liu B, Ho S T, Solomon G S, Cao H. Chaotic microcavity laser with high quality factor andunidirectional output. Physical ReviewA, 2009, 80(4): R041807

doi: 10.1103/PhysRevA.80.041807
Shinohara S, Hentchel M, Wiersig J, Sasaki T, Harayama T. Ray-wave correspondence in limacon-shaped semiconductor microcavities. Physical Review A, 2009, 80(3): R031801

doi: 10.1103/PhysRevA.80.031801
Chang S, Chang R K, Stone A D, Nöckel J U. Observation of emission from chaotic lasing modes in deformed microspheres:displacement by the stable-orbit modes. Journal of the Optical Society of America B, 2000, 17(11): 1828–1834
Lacey S, Wang H. Directional emission from whispering-gallery modes in deformed fused-silica microspheres. Optics Letters, 2001, 26(24): 1943–1945
Lacey S, Wang H, Foster D H, Nöckel J U. Directional tunneling escape from nearly spherical optical resonators. Physical Review Letters, 2003, 91(3): 033902

doi: 10.1103/PhysRevLett.91.033902
Xiao Y F, Dong C H, Han Z F, Guo G C, Park Y S. Directional escape from ahigh-Q deformed microsphere inducedby short CO2 laser pulses. Optics Letters, 2007, 32(6): 644–646

doi: 10.1364/OL.32.000644
Xiao Y F, Dong C H, Zou C L, Han Z F, Yang L, Guo G C. Low-threshold microlaser in a high-Q asymmetrical microcavity. Optics Letters, 2009, 34(4): 509–511

doi: 10.1364/OL.34.000509
Dong C, Xiao Y, Yang Y, Han Z, Guo G, Yang L. Directly mapping whispering gallery modes in a microspherethrough modal coupling and directional emission. Chinese Optics Letters, 2008, 6(4): 300–302

doi: 10.3788/COL20080604.0300
Park Y S, Wang H. Radiation pressure driven mechanical oscillation in deformed silica microspheres viafree space evanescent excitation. Optics Express, 2007, 15(25): 16471–16477

doi: 10.1364/OE.15.016471
Park Y S, Wang H. Resolved-sideband and cryogenic cooling of an optomechanical resonator. Nature Physics, 2009, 5(7): 489–493

doi: 10.1038/nphys1303
Park Y S, Cook A K, Wang H. Cavity QED with defect centers and silicaresonators. Nano Letters, 2006, 6(9): 2075–2079

doi: 10.1021/nl061342r
Zhang L M, Wang Y X, Zhang F J, Claus R O. Observation of whispering-gallery and directional resonant laseremission in ellipsoidal microcavities. Journal of the Optical Society of America B, 2006, 23(9): 1793–1800
Whittaker D M, Guimaraes P S S, Sanvitto D, Vinck H, Lam S, Daraei A, Timpson J A, Fox A M, Skolnick M S, Ho Y L D, Rarity J G, Hopkinson M, Tahraoui A. High Q modes in elliptical microcavity pillars. Applied Physics Letters, 2007, 90(16): 161105

doi: 10.1063/1.2722683
Yang Y, Xiao Y F, Dong C H, Cui J M, Han Z F, Li G D, Guo G C. Fiber-taper-coupledzeolite cylindrical microcavity with hexagonal cross section. Applied Optics, 2007, 46(31): 7590–7593

doi: 10.1364/AO.46.007590
Braun I, Ihlein G, Laeri F, Nöckel J U, Schulz-Ekloff G, Schuth F, Vietze U, Weiss O, Wohrle D. Hexagonal microlasers based on organicdyes in nanoporous crystals. Applied Physics B, 2000, 70(3): 335–343

doi: 10.1007/s003400050054
Monat C, Seassal C, Letartre X, Regreny P, Gendry M, Romeo P R, Viktorovitch P, Vassord’Yerville M L, Cassagne D, Albert J P, Jalaguier E, Pocas S, Aspar B. Two-dimensional hexagonal-shaped microcavities formedin a two-dimensional photonic crystal on an InP membrane. Journal of Applied Physics, 2003, 93(1): 23–31

doi: 10.1063/1.1528273
Wiersig J. Hexagonal dielectric resonators and microcrystal lasers. Physical Review A, 2003, 67(2): 023807

doi: 10.1103/PhysRevA.67.023807
Shang L, Liu L, Xu L. Highly collimated laser emission from a peanut-shapedmicrocavity. Applied Physics Letters, 2008, 92(7): 071111

doi: 10.1063/1.2839383
Poon A W, Courvoisier F, Chang R K. Multimode resonances in square-shapedoptical microcavities. Optics Letters, 2001, 26(9): 632–634

doi: 10.1364/OL.26.000632
Ling T, Liu L, Song Q, Xu L, Wang W. Intense directional lasing from a deformed square-shaped organic-inorganic hybrid glass microringcavity. Optics Letters, 2003, 28(19): 1784–1786

doi: 10.1364/OL.28.001784
Lee H T, Poon A W. Fano resonances in prism-coupled square micropillars. Optics Letters, 2004, 29(1): 5–7

doi: 10.1364/OL.29.000005
Wu J H, Liu A Q. Exact solution of resonant modes in a rectangular resonator. Optics Letters, 2006, 31(11): 1720–1722

doi: 10.1364/OL.31.001720
Huang Y Z, Chen Q, Guo W H, Yu L J. Experimental observation of resonant modes in GaInAsP microsquareresonators. IEEE Photonics Technology Letters, 2005, 17(12): 2589–2591

doi: 10.1109/LPT.2005.859514
Huang Y Z, Guo W H, Wang Q M. Influence of output waveguide on modequality factor in semiconductor microlasers with an equilateral triangleresonator. Applied Physics Letters, 2000, 77(22): 3511–3513

doi: 10.1063/1.1329861
Wysin G M. Electromagnetic modes in dielectric equilateral triangleresonators. Journal of the Optical Societyof America B, 2006, 23(8): 1586–1599

doi: 10.1364/JOSAB.23.001586
Kurdoglyan M S, Lee S Y, Rim S, Kim C M. Unidirectional lasing from a microcavity with a rounded isoscelestriangle shape. Optics Letters, 2004, 29(23): 2758–2760

doi: 10.1364/OL.29.002758
Baryshnikov Y, Heider P, Parz W, Zharnitsky V. Whispering gallery modes inside asymmetric resonant cavities. Physical Review Letters, 2004, 93(13): 133902

doi: 10.1103/PhysRevLett.93.133902
Apalkov V M, Raikh M E. Directional emission from a microdisk resonator with a linear defect. Physical Review B, 2004, 70(19): 195317

doi: 10.1103/PhysRevB.70.195317
Fang W, Cao H, Podolskiy V A, Narimanov E E. Dynamical localization in microdisk lasers. Optics Express, 2005, 13(15): 5641–5652

doi: 10.1364/OPEX.13.005641
Boriskina S V, Benson T M, Sewell P, Nosich A I. Q Factor and emission pattern control of the WG modes in notched microdisk resonators. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12(1): 52–58

doi: 10.1109/JSTQE.2005.863002
Wiersig J, Hentschel M. Unidirectional light emission from high-Q modes in optical microcavities. Physical Review A, 2006, 73(3): R031802

doi: 10.1103/PhysRevA.73.031802
Dettmann C P, Morozov G V, Sieber M, Waalkens H. Directional emission from an optical microdisk resonatorwith a point scatterer. Europhysics Letters, 2008, 82(3): 34002

doi: 10.1209/0295-5075/82/34002
Djellali N, Gozhyk I, Owens D, Lozenko S, Lebental M, Lautru J, Ulysse C, Kippelen B, Zyss J. Controlling the directionalemission of holey organic microlasers. Applied Physics Letters2009, 95(10): 101108

doi: 10.1063/1.3205474
Lee S B, Yang J, Moon S, Lee J H, An K, Shim J B, Lee H W, Kim S W. Chaos-assisted nonresonant optical pumpingof quadrupole-deformed microlasers. Applied Physics Letters, 2007, 90(4): 041106

doi: 10.1063/1.2432298
Yang J, Lee S B, Moon S, Lee S Y, Shim J B, Kim S W, Lee J H, An K. Free-space resonant coupling in a highly deformed microcavity. In: Proceedings of the 11th International Conferenceon Transparent Optical Networks (ICTON). 2009, Tu.P.17
Tureci H E, Stone A D. Deviation from Snell’s law for beams transmitted near the critical angle:application to microcavity lasers. Optics Letters, 2002, 27(1): 7–9

doi: 10.1364/OL.27.000007
Rex N B, Tureci H E, Schwefel H G L, Chang R K, Stone A D. Fresnel filteringin lasing emission from scarred modes of wave-chaotic optical resonators. Physical Review Letters, 2002, 88(9): 094102

doi: 10.1103/PhysRevLett.88.094102
Schomerus H, Hentschel M. Correcting ray optics at curved dielectric microresonator interfaces: phase-space. Physical Review Letters, 2006, 96(24): 243903

doi: 10.1103/PhysRevLett.96.243903
Altmann E G, Magno G D, Hentschel M. Non-Hamiltonian dynamics in optical microcavitiesresulting from wave-inspired corrections to geometric optics. Europhysics Letters, 2008, 84(1): 10008

doi: 10.1209/0295-5075/84/10008
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed