Please wait a minute...

Frontiers of Optoelectronics

Front Optoelec Chin    2009, Vol. 2 Issue (4) : 379-383
Gain properties and optical-feedback suppression of asymmetrical curved active waveguides
Zigang DUAN1(), Wei SHI2, Yan LI3, Guangyue CHAI1
1. Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China; 2. Electrical and Computer Engineering Department, University of British Columbia, Vancouver V6R 1T3, Canada; 3. School of Science,Xi’an Shiyou University, Xi’an 710065, China
Download: PDF(147 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

Elaborately-designed asymmetrical curved active waveguides are introduced to improve the gain properties of semiconductor optical amplifiers (SOAs) by internal distributed optical-feedback suppression. An analytical model of the double-energy-level system is utilized in the simulation and designed by the finite difference time domain (FDTD) method. Under a 280 mA driving current, the optimized curved SOA with the simple device structure without isolators performs a more than 18 dB fiber-to-fiber gain, 980 mW spontaneous emission power, and 13 dBm saturation power.

Keywords curved active waveguide      feedback restrain      semiconductor optical amplifier (SOA)     
Corresponding Author(s): DUAN Zigang,   
Issue Date: 05 December 2009
 Cite this article:   
Zigang DUAN,Wei SHI,Yan LI, et al. Gain properties and optical-feedback suppression of asymmetrical curved active waveguides[J]. Front Optoelec Chin, 2009, 2(4): 379-383.
E-mail this article
E-mail Alert
Articles by authors
Zigang DUAN
Yan LI
Guangyue CHAI
Fig.1  Schematic of asymmetrical active waveguide
Fig.2  Calculation model
materialdielectric constant
waveguide cladding (InP)10.24
fiber core (SiO2)2.1216
fiber cladding (SiO2)2.1188
AR coating10.5
Tab.1  Dielectric constants () used in calculation
geometrical parametersconstant/μm
length of SOA101.720
thickness of active layer1.000
width of active layer2.000
thickness of AR coating0.388
radius of fiber5.000
Tab.2  Geometrical parameters used in calculation
Fig.3  (real line) and (dashed line) of three representative configurations. (a) = 19.5 μm, = 194.5 μm; (b) = 76.5 μm, = 139.1 μm; (c) = 93.1 μm, = 64.2 μm
Fig.4  Photograph of curved SOA chip being aligned with coupling fibers
Fig.5  Photograph of curved SOA device after package
Fig.6  - and - curve
Fig.7  Amplified spontaneous emission spectrum under a 300 mA driving current
Fig.8  Small-signal gain, as a function of driving current, with 4 μW input signal
Fig.9  Gain, as a function of output power
1 Cruz F C, Stowe M C, Ye J. Tapered semiconductor amplifiers for optical frequency combs in the near infrared. Optics Letters , 2006, 31(9): 1337-1339
doi: 10.1364/OL.31.001337
2 Hessler T P, Dupertuis M-A, Deveaud B, Emery J-Y, Dagens B. Optical speedup at transparency of the gain recovery in semiconductor optical amplifiers. Applied Physics Letters , 2002, 81(17): 3119-3121
doi: 10.1063/1.1516634
3 Wang Y, Zhang X L, Huang D X. All-optical NOT and XOR logic operation at 2.5 Gb/s based on semiconductor optical amplifier loop mirror. Chinese Physics , 2004, 13(6): 882-886
doi: 10.1088/1009-1963/13/6/017
4 Herrera J, Ramos F, Marti J. Compensation for dispersion-induced carrier suppression effect in microwave/millimetre-wave optical links using optical phase conjugation in semiconductor optical amplifiers. Electronics Letters , 2006, 42(4): 238-239
doi: 10.1049/el:20063855
5 Tiemeijer L F, Groeneveld C M. Packaged high gain unidirectional 1300 nm MQW laser amplifiers. In: Proceedings of the 45th Electronic Components and Technology Conference . 1995, 751-758
6 Tiemeijer L F, Thijs P J A, van Dongen T, Binsma J J M, Jansen E J. Polarization resolved, complete characterization of 1310 nm fiber pigtailed multiple-quantum-well optical amplifiers. Journal of Lightwave Technology , 1996, 14(6): 1524-1533
doi: 10.1109/50.511683
7 Marcuse D. Theory of Dielectric Optical Waveguides. Boston: Academic Press, 1974
8 Agrawal G P, Olsson N A. Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers. IEEE Journal of Quantum Electronics , 1989, 25(11): 2297-2306
doi: 10.1109/3.42059
9 Taflove A, Hagness S C. Computational Electrodynamics: the Finite-Difference Time-Domain Method. London: Artech House Publishers, 2000
10 Siegman A E. Lasers. California: University Science Books Press, 1986
11 Waterhouse R B. The use of shorting posts to improve the scanning range of probe-fed microstrip patch phased arrays. IEEE Transactions on Antennas and Propagation , 1996, 44(3): 302-309
doi: 10.1109/8.486297
Related articles from Frontiers Journals
[1] Zhefeng HU, Jianhui XU, Min HOU. Theoretical demonstration of all-optical switchable and tunable UWB doublet pulse train generator utilizing SOA wavelength conversion and tunable time delay[J]. Front. Optoelectron., 2017, 10(2): 180-188.
[2] Michael J. CONNELLY,Lukasz KRZCZANOWICZ,Pascal MOREL,Ammar SHARAIHA,Francois LELARGE,Romain BRENOT,Siddharth JOSHI,Sophie BARBET. 40 Gb/s NRZ-DQPSK data wavelength conversion with amplitude regeneration using four-wave mixing in a quantum dash semiconductor optical amplifier[J]. Front. Optoelectron., 2016, 9(3): 341-345.
[3] Tong CAO,Xinliang ZHANG. Performance improvement by enhancing the well-barrier hole burning in a quantum well semiconductor optical amplifier[J]. Front. Optoelectron., 2016, 9(3): 353-361.
[4] Xuelin YANG,Weisheng HU. Principle and applications of semiconductor optical amplifiers-based turbo-switches[J]. Front. Optoelectron., 2016, 9(3): 346-352.
[5] Zhao WU,Yu YU,Xinliang ZHANG. Chromatic dispersion monitoring using semiconductor optical amplifier[J]. Front. Optoelectron., 2014, 7(3): 399-405.
[6] Li HUO, Qiang WANG, Yanfei XING, Caiyun LOU. Signal generation and processing at 100 Gb/s based on optical time division multiplexing[J]. Front Optoelec, 2013, 6(1): 57-66.
[7] Ehsan MOHADESRAD, Kambiz ABEDI. Proposal for modeling of tapered quantum-dot semiconductor optical amplifiers[J]. Front Optoelec, 2012, 5(4): 457-464.
[8] Hussein TALEB, Kambiz ABEDI. Homogeneous and inhomogeneous broadening effects on static and dynamic responses of quantum-dot semiconductor optical amplifiers[J]. Front Optoelec, 2012, 5(4): 445-456.
[9] Tan SHU, Yonglin YU, Hui LV, Dexiu Huang, Kai SHI, Liam BARRY. Influence of facet reflection of SOA on SOA-integrated SGDBR laser[J]. Front Optoelec, 2012, 5(4): 390-394.
[10] Yin ZHANG, Jianji DONG, Lei LEI, Hao HE, Xinliang ZHANG. 40-Gbit/s 3-input all-optical priority encoder based on cross-gain modulation in two parallel semiconductor optical amplifiers[J]. Front Optoelec, 2012, 5(2): 195-199.
[11] Jing HUANG, Deming LIU. WDM PON using 10-Gb/s DPSK downstream and re-modulated 10-Gb/s OOK upstream based on SOA[J]. Front Optoelec Chin, 2010, 3(4): 339-342.
[12] Yin ZHANG, Xinliang ZHANG, Xi HUANG, Cheng CHENG. Experimental investigation on slow light via four-wave mixing in semiconductor optical amplifier[J]. Front Optoelec Chin, 2009, 2(3): 259-263.
Full text