Please wait a minute...

Frontiers of Optoelectronics

Front Optoelec Chin    2008, Vol. 1 Issue (3-4) : 223-225     DOI: 10.1007/s12200-008-0054-9
Research Article |
Temperature sensing capacity of fiber Bragg grating at liquid nitrogen temperature
Guoli CAI1(), Wei JIAN2
1. State Intellectual Property Office of the People's Republic of China; 2. Lightwave Technology Institute, Beijing Jiaotong University
Download: PDF(99 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

According to the temperature sensing model of the fiber Bragg grating (FBG), a theoretical method of temperature sensing capacity of FBG is proposed. Based on the temperature sensing model of FBG, a temperature sensing experiment was completed at liquid nitrogen temperature (-196°C). The theoretical and experimental results were compared and analyzed, which show that at liquid nitrogen temperature or in a large-scope temperature sensing, the relationship between thermal variation ΔT and relative shift of reflected center wavelength ΔλB/λB of FBG is nonlinear and conic multinomial.

Keywords fiber Bragg grating (FBG)      optical fiber sensing      temperature sensing      liquid nitrogen temperature     
Corresponding Authors: CAI Guoli,   
Issue Date: 05 September 2009
 Cite this article:   
Guoli CAI,Wei JIAN. Temperature sensing capacity of fiber Bragg grating at liquid nitrogen temperature[J]. Front Optoelec Chin, 2008, 1(3-4): 223-225.
E-mail this article
E-mail Alert
Articles by authors
Guoli CAI
Fig0  Experimental equipment of thermal sensing
λB (23°C)λB (-196°C)ΔλB0
Tab0  Measurement dada of temperature sensing(nm)
1 MalitsonI H. Interspecimen comparison of the refractive index of fused silica. Journal of the Optical Society of America , 1965, 55(10): 1205–1209
doi: 10.1364/JOSA.55.001205
2 WempleS H. Refractive-index behavior of amorphous semiconductors and glasses. Physical Review B , 1973, 7(8): 3767–3777
doi: 10.1103/PhysRevB.7.3767
3 TakahashiS, ShibataS. Thermal variation of attenuation for optical fibers. Journal of Non-Crystalline Solids , 1979, 30(3): 359–370
doi: 10.1016/0022-3093(79)90173-X
4 JiaZ A, QiaoX G, LiM, . Nonlinear phenomena of fiber Bragg grating temperature sensing. Acta Photonica Sinica , 2003, 32(7): 844–847 (in Chinese)
5 QiaoX G, JiaZ A, FuH W, . Theory and experiment about in-fiber Bragg grating temperature sensing. Acta Physica Sinica , 2004, 53(2): 494–497 (in Chinese)
Related articles from Frontiers Journals
[1] Yuewen HAN, Cheng CHENG. An optimized distributed fiber Bragg grating sensing system based on optical frequency domain reflectometry[J]. Front Optoelec, 2012, 5(3): 345-350.
[2] Jinjie CHEN, Bo LIU, Hao ZHANG. Review of fiber Bragg grating sensor technology[J]. Front Optoelec Chin, 2011, 4(2): 204-212.
[3] Xin LIU, Deming LIU, Wei WU, Zheng QIN. A modified dual-wavelength matrix calculation method[J]. Front Optoelec Chin, 2009, 2(3): 285-288.
[4] Yong ZHAO, Huawei ZHAO, Jian YANG. A novel weight measurement method based on birefringence in fiber Bragg gratings[J]. Front Optoelec Chin, 2008, 1(3-4): 226-230.
[5] GUO Tuan, ZHAO Qida, LIU Lihui, HUANG Guiling, XUE Lifang, LI Guoyu, LIU Bo, ZHANG Weigang, KAI Guiyun, YUAN Shuzhong, DONG Xiaoyi. Light intensity-referred and temperature-insensitive fiber Bragg grating dynamic pressure sensor[J]. Front. Optoelectron., 2008, 1(1-2): 113-118.
Full text