Boundedness and continuity of Marcinkiewicz integrals associated to homogeneous mappings on Triebel-Lizorkin spaces
Feng LIU, Zunwei FU, Seong Tae JHANG
Boundedness and continuity of Marcinkiewicz integrals associated to homogeneous mappings on Triebel-Lizorkin spaces
We establish the boundedness and continuity of parametric Marcinkiewicz integrals associated to homogeneous compound mappings on Triebel-Lizorkin spaces and Besov spaces. Here the integral kernels are provided with some rather weak size conditions on the unit sphere and in the radial direction. Some known results are naturally improved and extended to the rough case.
Parametric Marcinkiewicz integral / homogeneous mapping / Triebel-Lizorkin space / Besov space
[1] |
Al-Salman A, Al-Qassem H, Cheng L C, Pan Y. Lp bounds for the function of Marcinkiewicz. Math Res Lett, 2002, 9: 697–700
|
[2] |
Al-Salman A, Pan Y.Singular integrals with rough kernels in Llog+ L(Sn−1): J Lond Math Soc, 2002, 66(1): 153–174
|
[3] |
Cheng L C.Singular integrals related to homogeneous mappings. Michigan Math J, 2000, 47(2): 407–416
|
[4] |
Coifman R,Weiss G. Extension of Hardy spaces and their use in analysis. Bull Amer Math Soc, 1977, 83: 569–645
|
[5] |
Colzani L. Hardy Spaces on Spheres. Ph D Thesis. Washington Univ, St Louis, 1982
|
[6] |
Ding Y, Fan D, Pan Y. Lp-boundedness of Marcinkiewicz integrals with Hardy space function kernel. Acta Math Sin (Engl Ser), 2000, 16(4): 593–600
|
[7] |
Ding Y, Fan D, Pan Y. On the Lp boundedness of Marcinkiewicz integrals. Michigan Math J, 2002, 50: 17–26
|
[8] |
Ding Y, Xue Q, Yabuta K. Boundedness of the Marcinkiewicz integrals with rough kernel associated to surfaces. Tohoku Math J, 2010, 62(2): 233–262
|
[9] |
Fan D, Guo K, Pan Y. Lp estimates for singular integrals associated to homogeneous surfaces. J Reine Angew Math, 2002, 542: 1–22
|
[10] |
Fan D, Pan Y. Singular integral operators with rough kernels supported by subvarieties. Amer J Math, 1997, 119(4): 799–839
|
[11] |
Frazier M, Jawerth B, Weiss G. Littlewood-Paley Theory and the Study of Function Spaces. CBMS Reg Conf Ser Math, No 79. Providence: Amer Math Soc, 1991
CrossRef
Google scholar
|
[12] |
Grafakos L. Classical and Modern Fourier Analysis. Upper Saddle River: Prentice Hall, 2003
|
[13] |
Liu F.Integral operators of Marcinkiewicz type on Triebel-Lizorkin spaces. Math Nachr, 2017, 290(1): 75–96
|
[14] |
Liu F. On the Triebel-Lizorkin space boundedness of Marcinkiewicz integrals along compound surfaces. Math Inequal Appl, 2017, 20(2): 515–535
|
[15] |
Liu F. A note on Marcinkiewicz integrals associated to surfaces of revolution. J Aust Math Soc, 2018, 104: 380–402
|
[16] |
Liu F, Wu H. Lp bounds for Marcinkiewicz integrals associated to homogeneous mappings. Monatsh Math, 2016, 181(4): 875–906
|
[17] |
Liu F, Wu H. On the regularity of maximal operators supported by submanifolds. J Math Anal Appl, 2017, 453: 144–158
|
[18] |
Stein E M. On the function of Littlewood-Paley, Lusin and Marcinkiewicz. Trans Amer Math Soc, 1958, 88(2): 430–466
|
[19] |
Triebel H. Theory of Function Spaces. Monogr Math, Vol 78. Basel: Birkhäser, 1983
CrossRef
Google scholar
|
[20] |
Walsh T. On the function of Marcinkiewicz. Studia Math, 1972, 44: 203–217
|
[21] |
Wu Q, Fu Z. Boundedness of Hausdorff operators on Hardy spaces in the Heisenberg group. Banach J Math Anal, 2018, 12(4): 909–934
|
[22] |
Xu S, Yan D. A restriction theorem for oscillatory integral operator with certain polynomial phase. Front Math China, 2017, 12(4): 967–980
|
[23] |
Yabuta K. Triebel-Lizorkin space boundedness of Marcinkiewicz integrals associated to surfaces. Appl Math J Chinese Univ Ser B, 2015, 30(4): 418–446
|
[24] |
Yang M, Fu Z,Sun J. Global solutions to Chemotaxis-Navier-Stokes equations in critical Besov spaces. Discrete Contin Dyn Syst Ser B, 2018, 23(8): 3427–3460
|
[25] |
Yang M, Fu Z, Sun J. Existence and large time behavior to coupled chemotaxis-fluid equations in Besov-Morrey spaces. J Differential Equations,https://doi.org/10.1016/j.jde.2018.10.050
CrossRef
Google scholar
|
[26] |
Zhang C, Chen J. Boundedness of g-functions on Triebel-Lizorkin spaces. Taiwanese J Math, 2009, 13(3): 973{981
|
[27] |
Zhang C, Chen J. Boundedness of Marcinkiewicz integral on Triebel-Lizorkin spaces. Appl Math J Chinese Univ Ser B, 2010, 25(1): 48–54
|
/
〈 | 〉 |