Please wait a minute...

Frontiers in Energy

Front. Energy    2020, Vol. 14 Issue (3) : 578-589     https://doi.org/10.1007/s11708-020-0808-7
RESEARCH ARTICLE
A comprehensive study of hydrogen production from ammonia borane via PdCoAg/AC nanoparticles and anodic current in alkaline medium: experimental design with response surface methodology
Hilal ÇELİK KAZICI(), Şakir YILMAZ, Tekin ŞAHAN(), Fikret YILDIZ, Ömer Faruk ER, Hilal KIVRAK
Department of Chemical Engineering, Faculty of Engineering, Van Yüzüncü Yıl University, 65080 Van, Turkey
Download: PDF(736 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, the optimization of hydrogen (H2) production by ammonia borane (NH3BH3) over PdCoAg/AC was investigated using the response surface methodology. Besides, the electro-oxidation of NH3BH3 was determined and optimized using the same method to measure its potential use in the direct ammonium boran fuel cells. Moreover, the ternary alloyed catalyst was synthesized using the chemical reduction method. The synergistic effect between Pd, Co and Ag plays an important role in enhancement of NH3BH3 hydrolysis. In addition, the support effect could also efficiently improve the catalytic performance. Furthermore, the effects of NH3BH3 concentration (0.1–50 mmol/5 mL), catalyst amount (1–30 mg) and temperature (20°C–50°C) on the rate of H2 production and the effects of temperature (20°C–50°C), NH3BH3 concentration (0.05–1 mol/L) and catalyst amount (0.5–5 µL) on the electro-oxidation reaction of NH3BH3 were investigated using the central composite design experimental design. The implementation of the response surface methodology resulted in the formulation of four models out of which the quadratic model was adjudged to efficiently appropriate the experimental data. A further statistical analysis of the quadratic model demonstrated the significance of the model with a p-value far less than 0.05 for each model and coefficient of determination (R2) of 0.85 and 0.95 for H2 production rate and NH3BH3 electrroxidation peak current, respectively.

Keywords ammonia borane      hydrogen production      fuel cell      response surface methodology     
Corresponding Author(s): Hilal ÇELİK KAZICI,Tekin ŞAHAN   
Online First Date: 30 April 2020    Issue Date: 14 September 2020
 Cite this article:   
Hilal ÇELİK KAZICI,Şakir YILMAZ,Tekin ŞAHAN, et al. A comprehensive study of hydrogen production from ammonia borane via PdCoAg/AC nanoparticles and anodic current in alkaline medium: experimental design with response surface methodology[J]. Front. Energy, 2020, 14(3): 578-589.
 URL:  
http://journal.hep.com.cn/fie/EN/10.1007/s11708-020-0808-7
http://journal.hep.com.cn/fie/EN/Y2020/V14/I3/578
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hilal ÇELİK KAZICI
Şakir YILMAZ
Tekin ŞAHAN
Fikret YILDIZ
Ömer Faruk ER
Hilal KIVRAK
Fig.1  Experimental set-up for hydrogen production hydrolysis of NH3BH3.
Independent parameters Coded and un-coded values
–1 0 + 1
H2 production rate /(mL·(g·min)–1) NH3BH3 conc./mmol/5 mL) (X1) 0.1 2.55 5
Catalyst amount/mg (X2) 1 15.5 30
Temperature/°C (X3) 20 35 50
Temperature/°C (A) 20 35 50
Current/mA NH3BH3 conc./M (B) 0.05 0.525 1
Catalyst amount/mL (C) 0.5 2.75 5
Tab.1  Levels of selected independent parameters for both designs
Run NH3BH3 conc. (X1, mmol/5 mL) Catalyst amount (X2, mg) Temperature (X3, °C) H2 production rate /(mL·(g·min)–1)
1 2.55 (0) 1 (–1) 35 (0) 5263.16
2 0.1 (–1) 30 ( + 1) 50 ( + 1) 2000
3 2.55 (0) 15.5 (0) 35 (0) 8513.6
4 0.1 (–1) 1 (–1) 50 ( + 1) 6481.48
5 5 ( + 1) 15.5 (0) 35 (0) 4950.72
6 5 ( + 1) 1 (–1) 20 (–1) 1190.48
7 2.55 (0) 15.5 (0) 35 (0) 8513.6
8 2.55 (0) 15.5 (0) 35 (0) 8513.6
9 2.55 (0) 15.5 (0) 35 (0) 8513.6
10 2.55 (0) 15.5 (0) 20 (–1) 2150.54
11 2.55 (0) 15.5 (0) 50 ( + 1) 11414.4
12 5 ( + 1) 1 (–1) 50 ( + 1) 5133.61
13 0.1 (–1) 15.5 (0) 35 (0) 3154.12
14 2.55 (0) 15.5 (0) 35 (0) 8513.6
15 0.1 (–1) 1 (–1) 20 (–1) 2982.46
16 5 ( + 1) 30 ( + 1) 50 ( + 1) 6637.43
17 5 ( + 1) 30 ( + 1) 20 (–1) 1750
18 2.55 (0) 15.5 (0) 35 (0) 8513.6
19 2.55 (0) 30 ( + 1) 35 (0) 4851.85
20 0.1 (–1) 30 ( + 1) 20 (–1) 1666.67
Run Temperature (A, °C) NH3BH3 conc. (B, M) Catalyst amount (C, mL) Current/mA
1 50 ( + 1) 0.05 (–1) 5 ( + 1) 0.078
2 20 (–1) 0.05 (–1) 0.5 (–1) 0.268
3 35 (0) 1 ( + 1) 2.75 (0) 2.369
4 35 (0) 0.525 (0) 2.75 (0) 2.686
5 20 (–1) 0.525 (0) 2.75 (0) 2.028
6 35 (0) 0.525 (0) 2.75 (0) 2.686
7 20 (–1) 1 ( + 1) 5 ( + 1) 2.895
8 35 (0) 0.525 (0) 5 ( + 1) 2.487
9 35 (0) 0.525 (0) 2.75 (0) 2.686
10 50 ( + 1) 0.525 (0) 2.75 (0) 1.34
11 50 ( + 1) 0.05 (–1) 0.5 (–1) 0.649
12 35 (0) 0.05 (–1) 2.75 (0) 0.489
13 20 (–1) 0.05 (–1) 5 ( + 1) 0.881
14 50 ( + 1) 1 ( + 1) 5 ( + 1) 0.603
15 35 (0) 0.525 (0) 2.75 (0) 2.686
16 35 (0) 0.525 (0) 2.75 (0) 2.686
17 35 (0) 0.525 (0) 0.5 (–1) 1.897
18 35 (0) 0.525 (0) 2.75 (0) 2.686
19 50 ( + 1) 1 ( + 1) 0.5 (–1) 1.65
20 20 (–1) 1 ( + 1) 0.5 (–1) 2.151
Tab.2  CCD experimental runs and corresponding responses
Sum of squares df Mean square F value p-value
H2 production rate Model (significant) 1.481E+ 008 9 1.645E+ 007 6.05 0.0447
X1-NH3BH3 conc. 1.141E+ 006 1 1.141E+ 006 0.42 0.5316
X2-Catalyst amount 1.718E+ 006 1 1.718E+ 006 0.63 0.4450
X3-Temperature 4.808E+ 007 1 4.808E+ 007 17.69 0.0018
X1X2 7.724E+ 006 1 7.724E+ 006 2.84 0.1227
X1X3 3.123E+ 006 1 3.123E+ 006 1.15 0.3089
X2X3 6.168E+ 005 1 6.168E+ 005 0.23 0.6440
X12 2.130E+ 007 1 2.130E+ 007 7.84 0.0188
X22 8.692E+ 006 1 8.692E+ 006 3.20 0.1040
X32 7702.90 1 7702.90 2.835E-003 0.9586
Current Model (significant) 16.78 9 1.86 19.10 <0.0001
A-Temperature 1.52 1 1.52 15.61 0.0027
B-NH3BH3 conc. 5.33 1 5.33 54.64 <0.0001
C-Catalyst amount 0.011 1 0.011 0.11 0.7460
AB 0.70 1 0.70 7.20 0.0230
AC 1.11 1 1.11 11.33 0.0072
BC 0.015 1 0.015 0.15 0.7044
A2 0.86 1 0.86 8.85 0.0139
B2 1.83 1 1.83 18.74 0.0015
C2 7.606E-003 1 7.606E-003 0.078 0.7858
Tab.3  ANOVA results for H2 production rate and electro-oxidation current
Fig.2  Correlation between predicted and actual values.
Fig.3  Normal probability plot for residuals.
Fig.4  3D response surface plots showing the simultaneous effects.
Parameters Optimum value H2 production rate/(mL·(g·min)–1) Current/mA
Predicted Experimental Predicted Experimental
X1/(mmol/5 mL) 2.91 10105.6 9459.92
X2/mg 13.26
X3/°C 50
A/°C 28.21 2.77984 2.51799
B/M 2.5
C/mL 0.78
Tab.4  Comparison of predicted and experimental result optimum values of H2 production rate and electro-oxidation current
Fig.5  Experimental result optimum values of H2 production rate.
Fig.6  Experimental result optimum values of NH3BH3 electro-oxidation current.
1 J Andrews, B Shabani. Re-envisioning the role of hydrogen in a sustainable energy economy. International Journal of Hydrogen Energy, 2012, 37(2): 1184–1203
https://doi.org/10.1016/j.ijhydene.2011.09.137
2 A Tiwari, A Pandey. Cyanobacterial hydrogen production—a step towards clean environment. International Journal of Hydrogen Energy, 2012, 37(1): 139–150
https://doi.org/10.1016/j.ijhydene.2011.09.100
3 P Moriarty, D Honnery. Hydrogen’s role in an uncertain energy future. International Journal of Hydrogen Energy, 2009, 34(1): 31–39
https://doi.org/10.1016/j.ijhydene.2008.10.060
4 C Acar, I Dincer. Comparative assessment of hydrogen production methods from renewable and non-renewable sources. International Journal of Hydrogen Energy, 2014, 39(1): 1–12
https://doi.org/10.1016/j.ijhydene.2013.10.060
5 I Dincer, C Acar. Review and evaluation of hydrogen production methods for better sustainability. International Journal of Hydrogen Energy, 2015, 40(34): 11094–11111
https://doi.org/10.1016/j.ijhydene.2014.12.035
6 M Ball, M Weeda. The hydrogen economy–vision or reality? International Journal of Hydrogen Energy, 2015, 40(25): 7903–7919
https://doi.org/10.1016/j.ijhydene.2015.04.032
7 N D Meeks, S. Baxley Fuel cells and the hydrogen economy. Chem Eng Prog, 2016, 112(7): 34–37
8 M Granovskii, I Dincer, M A Rosen. Economic and environmental comparison of conventional, hybrid, electric and hydrogen fuel cell vehicles. Journal of Power Sources, 2006, 159(2): 1186–1193
https://doi.org/10.1016/j.jpowsour.2005.11.086
9 J Van Mierlo, G Maggetto, P Lataire. Which energy source for road transport in the future? A comparison of battery, hybrid and fuel cell vehicles. Energy Conversion Management, 2006, 47(17): 2748–2760
https://doi.org/10.1016/j.enconman.2006.02.004
10 Y Wang, W Meng, D Wang, Z R Wang, K L Zou, Z Q Cao, K Zhang, S W Wu, G D Li. Ultrafine cobalt-molybdenum-boron nanocatalyst for enhanced hydrogen generation property from the hydrolysis of ammonia borane. International Journal of Hydrogen Energy, 2019, 44(41): 23267–23276
https://doi.org/10.1016/j.ijhydene.2019.07.068
11 A J Appleby. Fuel cell technology: status and future prospects. Energy, 1996, 21(7–8): 521–653
https://doi.org/10.1016/0360-5442(96)00030-8
12 S C Amendola, S L Sharp-Goldman, M S Janjua, M T Kelly, P J Petillo, M Binder. An ultrasafe hydrogen generator: aqueous, alkaline borohydride solutions and Ru catalyst. Journal of Power Sources, 2000, 85(2): 186–189
https://doi.org/10.1016/S0378-7753(99)00301-8
13 C M Miesse, W S Jung, K J Jeong, J K Lee, J Lee, J Han, S P Yoon, S W Nam, T H Lim, S A Hong. Direct formic acid fuel cell portable power system for the operation of a laptop computer. Journal of Power Sources, 2006, 162(1): 532–540
https://doi.org/10.1016/j.jpowsour.2006.07.013
14 R Dillon, S Srinivasan, A S Arico, V Antonucci. International activities in DMFC R&D: status of technologies and potential applications. Journal of Power Sources, 2004, 127(1–2): 112–126
https://doi.org/10.1016/j.jpowsour.2003.09.032
15 A Zadick, L Dubau, K Artyushkova, A Serov, P Atanassov, M Chatenet. Nickel-based electrocatalysts for ammonia borane oxidation: enabling materials for carbon-free-fuel direct liquid alkaline fuel cell technology. Nano Energy, 2017, 37: 248–259
https://doi.org/10.1016/j.nanoen.2017.05.035
16 D F Wu, L Z Ouyang, J M Huang, J W Liu, H Wang, H Shao, M Zhu. Synthesis and hydrogen storage property tuning of fit Zr(BH4)4. 8NH3 via physical vapour deposition and composite formation. International Journal of Hydrogen Energy, 2018, 43(41): 19182–19188
https://doi.org/10.1016/j.ijhydene.2018.08.189
17 X B Zhang, J M Yan, S Han, H Shioyama, K Yasuda, N Kuriyama, Q Xu. A high performance anion exchange membrane-type ammonia borane fuel cell. Journal of Power Sources, 2008, 182(2): 515–519
https://doi.org/10.1016/j.jpowsour.2008.04.032
18 X B Zhang, S Han, J M Yan, M Chandra, H Shioyama, K Yasuda, N Kuriyama, T Kobayashi, Q Xu. A new fuel cell using aqueous ammonia-borane as the fuel. Journal of Power Sources, 2007, 168(1): 167–171
https://doi.org/10.1016/j.jpowsour.2007.03.009
19 L Z Ouyang, W Chen, J W Liu, M Felderhoff, H Wang, M Zhu. Enhancing the regeneration process of consumed NaBH4 for hydrogen storage. Advanced Energy Mater, 2017, 7(19): 1700299
https://doi.org/10.1002/aenm.201700299
20 W Chen, L Z Ouyang, J W Liu, X D Yao, H Wang, Z W Liu, M Zhu. Hydrolysis and regeneration of sodium borohydride (NaBH4): a combination of hydrogen production and storage. Journal of Power Sources, 2017, 359: 400–407
https://doi.org/10.1016/j.jpowsour.2017.05.075
21 T Q Hua, R K Ahluwalia. Off-board regeneration of ammonia borane for use as a hydrogen carrier for automotive fuel cells. International Journal of Hydrogen Energy, 2012, 37(19): 14382–14392
https://doi.org/10.1016/j.ijhydene.2012.07.013
22 N V Rees, R G. Compton Carbon-free energy: a review of ammonia- and hydrazine-based electrochemical fuel cells. Energy & Environmental Science, 2011, 4(4): 1255–1260
https://doi.org/10.1039/c0ee00809e
23 Z H Tan, L Z Ouyang, J W Liu, H Wang, H Y Shao, M Zhu. Hydrogen generation by hydrolysis of Mg-Mg2Si composite and enhanced kinetics performance from introducing of MgCl2 and Si. International Journal of Hydrogen Energy, 2018, 43(5): 2903–2912
https://doi.org/10.1016/j.ijhydene.2017.12.163
24 M Chandra, Q Xu. A high-performance hydrogen generation system: transition metal-catalyzed dissociation and hydrolysis of ammonia-borane. Journal of Power Sources, 2006, 156(2): 190–194
https://doi.org/10.1016/j.jpowsour.2005.05.043
25 X G Li, T Liu, M Sato, S Takahashi. Synthesis and characterization of Fe-Ti nanoparticles by nitrogen plasma metal reaction. Powder Technology, 2006, 163(3): 183–187
https://doi.org/10.1016/j.powtec.2006.02.003
26 M Rakap, E E Kalu, S Ozkar. Polymer-immobilized palladium supported on TiO2 (Pd-PVB-TiO2) as highly active and reusable catalyst for hydrogen generation from the hydrolysis of unstirred ammonia-borane solution. International Journal of Hydrogen Energy, 2011, 36(2): 1448–1455
https://doi.org/10.1016/j.ijhydene.2010.10.097
27 N Sahiner, O Ozay, N Aktas, E Inger, J B He. The on demand generation of hydrogen from Co-Ni bimetallic nano catalyst prepared by dual use of hydrogel: as template and as reactor. International Journal of Hydrogen Energy, 2011, 36(23): 15250–15258
https://doi.org/10.1016/j.ijhydene.2011.08.082
28 H Yuzawa, T Yoshida, H Yoshida. Gold nanoparticles on titanium oxide effective for photocatalytic hydrogen formation under visible light. Applied Catalysis B: Environmental, 2012, 115–116: 294–302
https://doi.org/10.1016/j.apcatb.2011.12.029
29 T Turhan, Y G Avcibasi, N Sahiner. Versatile p(3-sulfopropyl methacrylate) hydrogel reactor for the preparation of Co, Ni nanoparticles and their use in hydrogen production. Journal of Industrial and Engineering Chemistry, 2013, 19(4): 1218–1225
https://doi.org/10.1016/j.jiec.2012.12.021
30 D G Tong, X Han, W Chu, H Chen, X Y Ji. Preparation of mesoporous Co-B catalyst via self-assembled triblock copolymer templates. Materials Letters, 2007, 61(25): 4679–4682
https://doi.org/10.1016/j.matlet.2007.03.005
31 N Sahiner, L Sagbas. The use of poly(vinyl phosphonic acid) microgels for the preparation of inherently magnetic Co metal catalyst particles in hydrogen production. Journal of Power Sources, 2014, 246: 55–62
https://doi.org/10.1016/j.jpowsour.2013.07.043
32 Q L Yao, Z H Lu, Y W Yang, Y Z Chen, X S Chen, H L Jiang. Facile synthesis of graphene-supported Ni-CeOx nano-composites as highly efficient catalysts for hydrolytic dehydrogenation of ammonia borane. Nano Research, 2018, 11(8): 4412–4422
https://doi.org/10.1007/s12274-018-2031-y
33 S M Choi, M H Seo, H Kim, W B Kim. Synthesis and characterization of graphene-supported metal nanoparticles by impregnation method with heat treatment in H2 atmosphere. Synthetic Metals, 2011, 161(21–22): 2405–2411
https://doi.org/10.1016/j.synthmet.2011.09.008
34 O Ozay, N Aktas, E Inger, N Sahiner. Hydrogel assisted nickel nanoparticle synthesis and their use in hydrogen production from sodium boron hydride. International Journal of Hydrogen Energy, 2011, 36(3): 1998–2006
https://doi.org/10.1016/j.ijhydene.2010.11.045
35 R Fernandes, N Patel, A Miotello. Hydrogen generation by hydrolysis of alkaline NaBH4 solution with Cr-promoted Co-B amorphous catalyst. Applied Catalysis B: Environmental, 2009, 92(1–2): 68–74
https://doi.org/10.1016/j.apcatb.2009.07.019
36 S Wang, D Zhang, Y Y Ma, H Zhang, J Gao, Y T Nie, X H Sun. Aqueous solution synthesis of Pt-M (M= Fe, Co, Ni) bimetallic nanoparticles and their catalysis for the hydrolytic dehydrogenation of ammonia borane. ACS Applied Materials & Interfaces, 2014, 6(15): 12429–12435
https://doi.org/10.1021/am502335j
37 T Tano, K Esumi, K Meguro. Preparation of organopalladium sols by thermal-decomposition of palladium acetate. Journal of Colloid and Interface Science, 1989, 133(2): 530–533
https://doi.org/10.1016/S0021-9797(89)80069-4
38 M A Bezerra, R E Santelli, E P Oliveira, L S Villar, L A Escaleira. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 2008, 76(5): 965–977
https://doi.org/10.1016/j.talanta.2008.05.019
39 Z Ling, J Cao, W Zhang, Z Zhang, X Fang, X Gao. Compact liquid cooling strategy with phase change materials for Li-ion batteries optimized using response surface methodology. Applied Energy, 2018, 228: 777–788
https://doi.org/10.1016/j.apenergy.2018.06.143
40 Ş Yılmaz, Ü Ecer, T Şahan. Modelling and optimization of As(III) adsorption onto thiol-functionalized bentonite from aqueous solutions using response surface methodology approach. ChemistrySelect, 2018, 3(32): 9326–9335
https://doi.org/10.1002/slct.201801037
41 H Çelik Kazici, F Yildiz, M S İzgi, B Ulaş, H Kivrak. Novel activated carbon supported trimetallic PdCoAg nanoparticles as efficient catalysts for the hydrolytic dehydrogenation of ammonia borane. International Journal of Hydrogen Energy, 2019, 44(21): 10561–10572
https://doi.org/10.1016/j.ijhydene.2019.02.198
42 T Şahan, F Erol, Ş Yılmaz. Mercury(II) adsorption by a novel adsorbent mercapto-modified bentonite using ICP-OES and use of response surface methodology for optimization. Microchemical Journal, 2018, 138: 360–368
https://doi.org/10.1016/j.microc.2018.01.028
43 Z Y Hitit, C Z Lazaro, P C Hallenbeck. Hydrogen production by co-cultures of Clostridium butyricum and Rhodospeudomonas palustris: optimization of yield using response surface methodology. International Journal of Hydrogen Energy, 2017, 42(10): 6578–6589
https://doi.org/10.1016/j.ijhydene.2016.12.122
44 X B Zhang, S Han, J M Yan, H Shioyama, N Kuriyama, T Kobayashi, Q Xu. Electrochemical oxidation of ammonia borane on gold electrode. International Journal of Hydrogen Energy, 2009, 34(1): 174–179
https://doi.org/10.1016/j.ijhydene.2008.09.083
45 M Smiljanić, I Srejic, J Potocnik, M Mitric, Z Rakocevic, S Strbac. Synergistic electrocatalytic effect of Pd and Rh nanoislands co-deposited on Au(poly) on HER in alkaline solution. International Journal of Hydrogen Energy, 2018, 43(42): 19420–19431
https://doi.org/10.1016/j.ijhydene.2018.08.117
Related articles from Frontiers Journals
[1] Abdalla M. ABDALLA, Shahzad HOSSAIN, Pg MohdIskandr PETRA, Mostafa GHASEMI, Abul K. AZAD. Achievements and trends of solid oxide fuel cells in clean energy field: a perspective review[J]. Front. Energy, 2020, 14(2): 359-382.
[2] Rashmi P. SHETTY, A. SATHYABHAMA, P. Srinivasa PAI. Comparison of modeling methods for wind power prediction: a critical study[J]. Front. Energy, 2020, 14(2): 347-358.
[3] Jiahui JIN, Lei WANG, Mingkai FU, Xin LI, Yuanwei LU. Thermodynamic assessment of hydrogen production via solar thermochemical cycle based on MoO2/Mo by methane reduction[J]. Front. Energy, 2020, 14(1): 71-80.
[4] Shammya AFROZE, AfizulHakem KARIM, Quentin CHEOK, Sten ERIKSSON, Abul K. AZAD. Latest development of double perovskite electrode materials for solid oxide fuel cells: a review[J]. Front. Energy, 2019, 13(4): 770-797.
[5] Seyed Saeed HOSEINI, Mohammad Amin SOBATI. Performance and emission characteristics of a diesel engine operating on different water in diesel emulsion fuels: optimization using response surface methodology (RSM)[J]. Front. Energy, 2019, 13(4): 636-657.
[6] Ali MOSTAFAEIPOUR, Mojtaba QOLIPOUR, Hossein GOUDARZI. Feasibility of using wind turbines for renewable hydrogen production in Firuzkuh, Iran[J]. Front. Energy, 2019, 13(3): 494-505.
[7] Mostafa REZAEI, Ali MOSTAFAEIPOUR, Mojtaba QOLIPOUR, Mozhgan MOMENI. Energy supply for water electrolysis systems using wind and solar energy to produce hydrogen: a case study of Iran[J]. Front. Energy, 2019, 13(3): 539-550.
[8] Arunkumar JAYAKUMAR. A comprehensive assessment on the durability of gas diffusion electrode materials in PEM fuel cell stack[J]. Front. Energy, 2019, 13(2): 325-338.
[9] S. Y. SHEN, Y. G. GUO, G. H. WEI, L. X. LUO, F. LI, J. L. ZHANG. A perspective on the promoting effect of Ir and Au on Pd toward the ethanol oxidation reaction in alkaline media[J]. Front. Energy, 2018, 12(4): 501-508.
[10] Han HAO, Zhexuan MU, Zongwei LIU, Fuquan ZHAO. Abating transport GHG emissions by hydrogen fuel cell vehicles: Chances for the developing world[J]. Front. Energy, 2018, 12(3): 466-480.
[11] Alireza AHMADIAN YAZDI, Jie XU. Nitrogen-doped graphene approach to enhance the performance of a membraneless enzymatic biofuel cell[J]. Front. Energy, 2018, 12(2): 233-238.
[12] Gang WU. Current challenge and perspective of PGM-free cathode catalysts for PEM fuel cells[J]. Front. Energy, 2017, 11(3): 286-298.
[13] Xiong PENG, Travis J. OMASTA, Justin M. ROLLER, William E. MUSTAIN. Highly active and durable Pd-Cu catalysts for oxygen reduction in alkaline exchange membrane fuel cells[J]. Front. Energy, 2017, 11(3): 299-309.
[14] Qiaowan CHANG, Yuan XU, Shangqian ZHU, Fei XIAO, Minhua SHAO. Pt-Ni nanourchins as electrocatalysts for oxygen reduction reaction[J]. Front. Energy, 2017, 11(3): 254-259.
[15] Jun HUANG, Zhe LI, Jianbo ZHANG. Review of characterization and modeling of polymer electrolyte fuel cell catalyst layer: The blessing and curse of ionomer[J]. Front. Energy, 2017, 11(3): 334-364.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed