Please wait a minute...

Frontiers in Energy

Front. Energy    2018, Vol. 12 Issue (1) : 178-184
Realization of energy-saving glass using photonic crystals
Yen-Hsiang CHEN1(), Li-Hung LIAO1, Yu-Bin CHEN2
1. Department of Mechanical Engineering, Cheng Kung University, Tainan 701, Taiwan, China
2. Department of Power Mechanical Engineering, TsingHua University, Hsinchu 300, Taiwan, China
Download: PDF(289 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

This work successfully developed an energy-saving glass with wavelength selectivity. The glass is composed of a SiO2 substrate and two layers of three-dimensional photonic crystals. Each crystal is composed of identical and transparent polystyrene spheres after their self-assembling. The glass then possesses dual photonic band gaps in the near-infrared region to suppress penetration of thermal radiation. Experimental results show that the energy-saving glass decreases temperature increment in a mini-house. Moreover, the temperature after thermal equilibrium is lower than that inside a counterpart using ordinary glass.

Keywords energy-saving glass      photonic crystals      polystyrene spheres      self-assembly     
Corresponding Authors: Yen-Hsiang CHEN   
Online First Date: 12 January 2018    Issue Date: 08 March 2018
 Cite this article:   
Yen-Hsiang CHEN,Li-Hung LIAO,Yu-Bin CHEN. Realization of energy-saving glass using photonic crystals[J]. Front. Energy, 2018, 12(1): 178-184.
E-mail this article
E-mail Alert
Articles by authors
Yen-Hsiang CHEN
Li-Hung LIAO
Fig.1  Schematic view of a 3D PC composed of two dielectric rectangular pillars
Fig.2  Band diagram of the 3D PC, which is composed of polystyrene spheres and air
Diameter/nm Bandgap/nm
508 1130 - 1210
707 1572 - 1683
Tab.1  Numerical predictions for bandgaps of two commercially available polystyrene spheres.
Fig.3  Sketch of fabrication system for PCs
Fig.4  SEM images of fabricated PCs composed of polystyrene spheres
Fig.5  Prototype of energy-saving glass developed
Fig.6  Transmittance spectra through PCs and the energy-saving glass sample
Fig.7  Radiative heating experiment set-up
Fig.8  Temperature variation for a chamber mounting normal glass, PCs, or energy-saving glass prototype as its window
a Lattice period/m
B Magnetic flux density/(Wb•m?2)
c0 Light speed in vacuum (3×108 m/s)
D Electric displacement field/(C·m?2)
d Diameter of spheres/m
E Electric field/(V·m?1)
G, G?′ Reciprocal lattice vector/m?1
H Magnetic field/(V·m?1)
h Expansion coefficients
J Electric current density/(V·m?2)
j Square root of ?1
r Position vector/m
T Temperature/°C
t Time/s
Greek symbols
e0 Absolute permittivity (8.854 × 10-12 F/m)
εr Relative permittivity
λ Wavelength/m
μ0 Absolute permeability (4p× 10-7 N/A2)
μr Relative permeability
τ Transmittance
ω Frequency/(rad?s?1)
1 Incropera F P,  Dewitt D P,  Bergman T L,  Lavine A S. Foundations of Heat Transfer. 6th ed. Hoboken: Wiley, 2013
2 Iqbal M. An Introduction to Solar Radiation. Amsterdam: Elsevier, 2012
3 Kiani G I, Karlsson  A, Olsson L,  Esselle K P. Glass characterization for designing frequency selective surfaces to improve transmission through energy saving glass windows. In: Asia-Pacific Microwave Conference 2007 (APMC 2007). Bangkok, Thailand, 2007, 4554974
4 Vasiliev M, Alghamedi  R, Nur-E-Alam M,  Alameh K. Photonic microstructures for energy-generating clear glass and net-zero energy buildings. Scientific Reports, 2016, 6(1): 31831 pmid: 27550827
5 Ferrara M, Castaldo  A, Esposito S,  D’Angelo A,  Guglielmo A,  Antonaia A. AlN-Ag based low-emission sputtered coatings for high visible transmittance window. Surface and Coatings Technology, 2016, 295: 2–7
6 Liu Z, Xu  W, Lin A,  He T, Lin  F. Deposition of NaGd(WO4)2:Eu3+/Bi3+ films on glass substrates and potential applications in white light emitting diodes. Energy and Building, 2016, 113: 9–14
7 Ho C C, Chen  Y B, Shih  F Y. Tailoring broadband radiative properties of glass with silver nano-pillars for saving energy. International Journal of Thermal Sciences, 2016, 102: 17–25
8 Fu C, Zhang  Z M. Thermal radiative properties of metamaterials and other nanostructured materials: a review. Frontiers of Energy and Power Engineering in China, 2009, 3(1): 11–26
9 Huang C L, Ho  C C, Chen  Y B. Development of an energy-saving glass using two-dimensional periodic nano-structures. Energy and Building, 2015, 86: 589–594
10 Madani A, Roshan Entezar  S. Optical properties of one-dimensional photonic crystals containing graphene sheets. Physica B, Condensed Matter, 2013, 431: 1–5
11 Englund D, Fattal  D, Waks E,  Solomon G,  Zhang B,  Nakaoka T,  Arakawa Y,  Yamamoto Y,  Vucković J. Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal. Physical Review Letters, 2005, 95(1): 013904 pmid: 16090618
12 Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics. Physical Review Letters, 1987, 58(20): 2059–2062 pmid: 10034639
13 John S. Strong localization of photons in certain disordered dielectric superlattices. Physical Review Letters, 1987, 58(23): 2486–2489 pmid: 10034761
14 Kondo T, Hirano  S, Yanagishita T,  Nguyen N T,  Schmuki P,  Masuda H. Two-dimensional photonic crystals based on anodic porous TiO2 with ideally ordered hole arrangement. Applied Physics Express, 2016, 9(10): 102001
15 Egen M, Voss  R, Griesebock B,  Zentel R,  Romanov S,  Torres C S. Heterostructures of polymer photonic crystal films. Chemistry of Materials, 2003, 15(20): 3786–3792
16 Seelig E W, Tang  B, Yamilov A,  Cao H, Chang  R P H. Self-assembled 3D photonic crystals from ZnO colloidal spheres. Materials Chemistry and Physics, 2003, 80(1): 257–263
17 Lash M H, Fedorchak  M V, Little  S R, McCarthy  J J. Fabrication and characterization of non-Brownian particle-based crystals. Langmuir, 2015, 31(3): 898–905 pmid: 24983125
18 Deotare P B, Kogos  L C, Bulu  I, Loncar M. Photonic crystal nanobeam cavities for tunable filter and router applications. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(2): 3600210
19 Goyal A K, Dutta  H S, Pal  S. Recent advances and progress in photonic crystal-based gas sensors. Journal of Physics D, Applied Physics, 2017, 50(20): 203001
20 Wehrspohn R B,  Schweizer S L,  Gesemann B,  Pergande D,  Geppert T M,  Moretton S,  Lambrecht A. Macroporous silicon and its application in sensing. Comptes Rendus Chimie, 2013, 16(1): 51–58
21 Florescu M, Lee  H, Stimpson A J,  Dowling J. Thermal emission and absorption of radiation in finite inverted-opal photonic crystals.  Physical Review A, 2005, 72(3): 033821
22 Luan P G, Chen  C C, eds. Photonic Cystals. 2nd ed. Taipei: Wunan, 2010 (in Chinese)
23 Prather D W, Shi  S, Sharkawy A,  Murakowski J,  Schneider G J. Photonic Crystals Theory, Applications, and Fabrication. Hoboken: Wiley, 2009
24 Miklyaev Y V, Meisel  D C, Blanco  A, von Freymann G, Busch K,  Koch W, Enkrich  C, Deubel M,  Wegener M. Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations. Applied Physics Letters, 2003, 82(8): 1284–1286
Full text