Please wait a minute...

Frontiers in Energy

Front. Energy    2020, Vol. 14 Issue (3) : 607-619     https://doi.org/10.1007/s11708-016-0439-1
RESEARCH ARTICLE
Energy and exergy analysis of syngas production from different biomasses through air-steam gasification
S. Rupesh(), C. Muraleedharan, P. Arun
Department of Mechanical Engineering, National Institute of Technology Calicut, Calicut 673601, India
Download: PDF(1614 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Gasification is a thermo-chemical reaction which converts biomass into fuel gases in a reactor. The efficiency of conversion depends on the effective working of the gasifier. The first step in the conversion process is the selection of a suitable feedstock capable of generating more gaseous fuels. This paper analyses the performance of different biomasses during gasification through energy and exergy analysis. A quasi-equilibrium model is developed to simulate and compare the feasibility of different biomass materials as gasifier feedstock. Parametric studies are conducted to analyze the effect of temperature, steam to biomass ratio and equivalence ratio on energy and exergy efficiencies. Of the biomasses considered, sawdust has the highest energy and exergy efficiencies and lowest irreversibility. At a gasification temperature of 1000 K, the steam to biomass ratio of unity and the equivalence ratio of 0.25, the energy efficiency, exergy efficiency and irreversibility of sawdust are 35.62%, 36.98% and 10.62 MJ/kg, respectively. It is also inferred that the biomass with lower ash content and higher carbon content contributes to maximum energy and exergy efficiencies.

Keywords gasification      modeling      energy      exergy      syngas     
Corresponding Author(s): S. Rupesh   
Just Accepted Date: 08 November 2016   Online First Date: 20 December 2016    Issue Date: 14 September 2020
 Cite this article:   
S. Rupesh,C. Muraleedharan,P. Arun. Energy and exergy analysis of syngas production from different biomasses through air-steam gasification[J]. Front. Energy, 2020, 14(3): 607-619.
 URL:  
http://journal.hep.com.cn/fie/EN/10.1007/s11708-016-0439-1
http://journal.hep.com.cn/fie/EN/Y2020/V14/I3/607
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
S. Rupesh
C. Muraleedharan
P. Arun
Species cp/(kJ·kmol–1·K–1) Reference
H2 cp=29.11 0.1916×102T+0.4003×10 5T2 0.870× 109 T3 [25]
CO cp=28.16 +0.1675× 10 2T+0.5327 ×105T22.22 ×109T3 [25]
CO2 cp=22.26 +5.981× 10 2T3.501×10 5T2+ 7.469× 109 T3 [25]
CH4 cp=18.89 +5.024× 10 2T+1.269 ×105T211.01 ×109T3 [25]
N2 cp=39.060 512.79 ( T100)1.5+1072.7(T100) 2820.4 (T 100 ) 3 [26]
O2 cp=25.48 +1.52× 10 2T0.7155×10 5T2+ 1.312× 109 T3 [25]
H2O (g) cp=32.24 +0.1932× 10 2T+1.055 ×105T23.595 ×109T3 [25]
C cp=17.166 +4.271T 1000 8.79× 105T 2 [27]
C6H6 cp=36.22+48.475×10 2T 31.57× 3.501× 105 T2+77.62× 10 9T3 [25]
Tab.1  Constant specific heat capacity of product constituents
Feed stock FC (wt)/% VM (wt)/% M (wt)/% A(wt)/%
Rice husk 12 58 12 18
Coconut shell 17 71 8 4
Sawdust 16 76 7 1
Coir pith 20 57 10 13
Rubber seed shell 24 51 11 14
Tab.2  Proximate analysis results of biomass samples [24]
Feed stock N (wt)/% C (wt)/% S (wt)/% H (wt)/% O (wt)/%
Rice husk 2.43 34.35 0.31 5.22 57.66
Coconut shell 0.26 45.61 0.34 5.61 48.16
Sawdust 0.19 46.46 0 5.82 47.51
Coir pith 0.60 44.08 0 4.09 51.21
Rubber seed shell 2.13 41.11 0.27 6.60 49.88
Tab.3  Ultimate analysis results of biomass samples [24]
Biomass b LHV/(MJ·kg–1) HHV/(MJ·kg–1) xbiom ass/(MJ·kg–1)
Rice husk 1.48 18.02 19.17 26.66
Coconut shell 1.20 18.85 20.09 22.60
Sawdust 1.19 19.10 20.38 22.73
Coir pith 1.23 17.60 18.49 21.61
Rubber seed shell 1.24 19.39 20.84 24.11
Tab.4  b, LHV, HHV and exergy of fuels
Component Standard chemical exergy/(kJ·kmol–1) Component Standard chemical exergy/(kJ·kmol–1)
H2 236100 H2O (gas) 9500
CO 275100 N2 720
CO2 19870 C 410260
CH4 831650 C6H6 3303600
Tab.5  Standard chemical exergy for different components [25,30]
Fig.1  Effect of operating parameters on energy efficiency
Fig.2  Exergy destruction in gasification
Fig.3  Exergy distribution of product gas (SBR= 1, ER= 0.25)
Fig.4  Exergy distribution of product gas (T = 1000 K, ER= 0.25)
Fig.5  Effect of temperature on exergy efficiencies
Fig.6  Effect of ER on exergy efficiency
Fig.7  Effect of SBR on exergy efficiency
Fig.8  Effect of operating parameters on entropy generation
Biomass Efficiency Temperature/K
900 1100 1300 1500
Rice husk Energy/% 11.82 17.12 19.71 20.23
Exergy (hex2) /% 10.50 14.82 17.24 18.31
Coconut shell Energy/% 28.51 36.65 40.57 41.28
Exergy (hex2)) /% 29.68 37.67 42.19 44.16
Sawdust Energy/% 30.88 39.43 43.56 44.31
Exergy (hex2) /% 32.32 40.78 45.58 47.70
Coir pith Energy/% 20.17 27.03 30.15 30.57
Exergy (hex2) /% 21.06 27.64 31.20 32.65
Rubber seed shell Energy/% 22.49 29.18 32.58 33.37
Exergy (hex2) /% 22.25 28.59 32.29 34.02
Tab.6  Effect of temperature on energy and exergy efficiencies (SBR= 1, ER= 0.25)
Biomass Exergy efficiency Temperature/K
900 1000 1100 1200 1300 1400 1500
Rice husk hex1/% 2.70 4.24 5.44 6.12 6.38 6.37 6.21
hex2/% 10.51 12.91 14.82 16.24 17.23 17.89 18.31
hex3/% 21.86 22.65 23.48 24.23 24.86 25.40 25.86
Coconut shell hex1/% 6.23 9.60 12.39 14.19 15.11 15.41 15.34
hex2/% 29.68 34.09 37.67 40.34 42.19 43.41 44.17
hex3/% 49.50 51.36 53.28 54.97 56.37 57.52 58.52
Sawdust hex1/% 6.70 10.32 13.35 15.35 16.39 16.78 16.75
hex2/% 32.32 36.98 40.78 43.61 45.58 46.89 47.70
hex3/% 53.13 55.12 57.19 59.00 60.50 61.74 62.81
Coir pith hex1/% 4.63 7.06 8.91 9.93 10.28 10.22 9.93
hex2/% 21.06 24.73 27.64 29.76 31.20 32.12 32.65
hex3/% 38.44 39.89 41.38 42.67 43.72 44.60 45.36
Rubber seed shell hex1/% 4.96 7.73 10.11 11.71 12.59 12.95 13.00
hex2/% 22.25 25.73 28.59 30.75 32.29 33.34 34.02
hex3/% 37.62 38.99 40.46 41.77 42.87 43.79 44.58
Tab.7  Comparison of different exergy efficiencies for different biomasses (SBR= 1, ER= 0.25)
Sl. No. Biomass Regression equation/% R2/%
1 Rice husk ζex1=2.15+0.00616T2.77ER+0.438?SBR 80.1
ζex2=1.49 +0.0154T 11.8ER 1.64? SBR 91.2
ζex3=21.8 +0.00684T 21.9ER 0.508? SBR 99.6
ζen=8.09 +0.0157T 23.6ER 3.32SBR 93.3
LHV=1.08+0.00332T4.72ER 0.420?SBR 89.8
2 Coconut shell ζex1=5.98+0.0158T8.29ER+1.16?SBR 80.4
ζex2=14.8 +0.0291T 32.0ER 2.96? SBR 92.9
ζex3=51.2 +0.0145T 50.0ER 1.49? SBR 98
ζen=29.9 +0.0205T 44.8ER 5.61? SBR 88.3
LHV=4.52+0.00538T10.2ER 0.570?SBR 92.1
3 Sawdust ζex1=6.64+0.0172T9.03ER+1.26?SBR 81.3
ζex2=16.9 +0.0308T 35.0ER 3.15? SBR 93.1
ζex3=54.2 +0.0162T 53.9ER 1.62? SBR 99.6
ζen=19.6 +0.0274T 44.7ER 3.99? SBR 84.9
LHV=5.09+0.00574T11.2ER 0.600?SBR 92.3
4 Coir pith ζex1=3.634+0.01094T5.471ER+0.562?SBR 79.6
ζex2=5.94 +0.0250T 20.9ER 2.44? SBR 92.2
ζex3=38.7 +0.0118T 38.1ER 1.04? SBR 99.6
ζen=14.8 +0.0205T 32.1ER 4.14? SBR 94.1
LHV=2.18+0.00444T6.83ER 0.469?SBR 91.3
5 Rubber seed shell ζex1=5.51+0.0139T7.39ER+0.756?SBR 83.3
ζex2=9.74 +0.0237T 25.7ER 2.18? SBR 93.2
ζex3=37.9 +0.0118T 38.5ER 0.897? SBR 99.7
ζen=19.3 +0.0202T 37.9ER 4.13? SBR 95.1
LHV=3.35+0.00464T8.51ER 0.460?SBR 92.6
Tab.8  Regression equations for energy and exergy efficiencies, and LHV of syngas
1 R C Saxena, D Seal, S Kumar, H B Goyal. Thermo-chemical routes for hydrogen rich gas from biomass: a review. Renewable and Sustainable Energy Reviews, 2008, 12(7): 1909–1927
2 P Basu. Biomass Gasification and Pyrolysis-Practical Design and Theory.U.K: Academic Press, 2010
3 A V Bridgwater. Renewable fuels and chemicals by thermal processing of biomass. Chemical Engineering Journal, 2003, 91(2–3): 87–102
https://doi.org/10.1016/S1385-8947(02)00142-0
4 A Sues, M Juraščík, K Ptasinski. Exergetic evaluation of 5 biowastes-to-biofuels routes via gasification. Energy, 2010, 35(2): 996–1007
https://doi.org/10.1016/j.energy.2009.06.027
5 B M Guell, J Sandquist, L Sorum. Gasification of biomass to second generation biofuels: a review. Journal of Energy Resources Technology, 2013, 135(1): 1–9
6 R Saidur. G BoroumandJazi, S Mekhilef, H A Mohammed. A review on exergy analysis of biomass based fuels. Renewable and Sustainable Energy Reviews, 2012, 16(2): 1217–1222
7 A Abuadala, I Dincer, G F Naterer. Exergy analysis of hydrogen production from biomass gasification. International Journal of Hydrogen Energy, 2010, 35(10): 4981–4990
https://doi.org/10.1016/j.ijhydene.2009.08.025
8 A Abuadala, I Dincer. Efficiency evaluation of dry hydrogen production from biomass gasification. Thermochimica Acta, 2010, 507–508(10): 127–134
https://doi.org/10.1016/j.tca.2010.05.013
9 M K Cohce, I Dincer , M. A Rosen . Thermodynamic analysis of hydrogen production from biomass gasification. International Journal of Hydrogen Energy, 2010, 35(10): 4970–4980
10 A Bhattacharya, A Dasa, A Datta. Exergy based performance analysis of hydrogen production from rice straw using oxygen blown gasification. 2014, 69 (1): 525–533
11 R Toonssen, N Woudstra, A H M Verkooijen. Exergy analysis of hydrogen production plants based on biomass gasification. International Journal of Hydrogen Energy, 2008, 33(15): 4074–4082
https://doi.org/10.1016/j.ijhydene.2008.05.059
12 M Hosseini, I Dincer, M A Rosen. Steam and air fed biomass gasification: comparisons based on energy and exergy. International Journal of Hydrogen Energy, 2012, 37(21): 16446–16452
https://doi.org/10.1016/j.ijhydene.2012.02.115
13 S Jarungthammachote , A Dutta. Thermodynamic equilibrium model and second law analysis of a downdraft waste gasifier. Energy, 2007, 32(9): 1660–1669
https://doi.org/10.1016/j.energy.2007.01.010
14 R Karamarkovic, V Karamarkovic. Energy and exergy analysis of biomass gasification at different temperatures. Energy, 2010, 35(2): 537–549
https://doi.org/10.1016/j.energy.2009.10.022
15 L F Pellegrini, S Jr de Oliveira. Exergy analysis of sugarcane bagasse gasification. Energy, 2007, 32(4): 314–327
https://doi.org/10.1016/j.energy.2006.07.028
16 T Srinivas, A V S S K S Gupta, B V Reddy. Thermodynamic equilibrium model and exergy analysis of a biomass gasifier. Journal of Energy Resources Technology, 2009, 131(3): 031801
https://doi.org/10.1115/1.3185354
17 Y Zhang, B Li, H Li, H Liu. Thermodynamic evaluation of biomass gasification with air in autothermal gasifiers. Thermochimica Acta, 2011, 519(1–2): 65–71
https://doi.org/10.1016/j.tca.2011.03.005
18 Y Lim, U Lee. Quasi-equilibrium thermodynamic model with empirical equations for air–steam biomass gasification in fluidised–beds. Fuel Processing Technology, 2014, 128: 199–210
https://doi.org/10.1016/j.fuproc.2014.07.017
19 Z A Zainal, R Ali, C H Lean, K N Seetharamu. Prediction of performance of a downdraft gasifier using equilibrium modeling for different biomass materials. Energy Conversion and Management, 2001, 42(12): 1499–1515
https://doi.org/10.1016/S0196-8904(00)00078-9
20 S Kaewluan, S Pipatmanomai. Potential of synthesis gas production from rubber wood chip gasification in a bubbling fluidised bed gasifier. Energy Conversion and Management, 2011, 52(1): 75–84
https://doi.org/10.1016/j.enconman.2010.06.044
21 C Loha, H Chattopadhyay, P K Chatterjee. Energy generation from fluidised bed gasification of rice husk. Journal of Renewable and Sustainable Energy, 2013, 5(4): 043111
https://doi.org/10.1063/1.4816496
22 A Melgar, J F Pérez, H Laget, A Horillo. Thermochemical equilibrium modelling of a gasifying process. Energy Conversion and Management, 2007, 48(1): 59–67
https://doi.org/10.1016/j.enconman.2006.05.004
23 T H Jayah, L Aye, R J Fuller, D F Stewart. Computer simulation of a downdraft wood gasifier for tea drying. Biomass and Bioenergy, 2003, 25(4): 459–469
https://doi.org/10.1016/S0961-9534(03)00037-0
24 S Rupesh, C Muraleedharan, P Arun. A comparative study on gaseous fuel generation capability of biomass materials by thermo-chemical gasification using stoichiometric quasi-steady-state model. International Journal of Energy and Environmental Engineering, 2015, 6(4): 375–384
https://doi.org/10.1007/s40095-015-0182-0
25 J Szargut. Exergy Method: Technical and Ecological Applications.Boston: WIT Press, 2005
26 Y A Cengel, M A Boles. Thermodynamics: An Engineering Approach.New York:McGraw-Hill series in mechanical engineering, 1989, 33(4): 1297–1305
27 S Bilgen, K Kaygusuz, A Sari. Second law analysis of various types of coal and woody biomass in Turkey. Energy Sources, 2004, 26(11): 1083–1094
https://doi.org/10.1080/00908310490494621
28 R T Balmer. Thermodynamics. St.Paul: West Publishing Company, 1990
29 J Szargut, D Morrison, F Steward. Exergy Analysis of Thermal, Chemical and Metallurgical Processes.Berlin: Springer, 1988
30 M J Moran, H N Shapiro, D D Boettner, M B Bailey. Fundamentals of Engineering Thermodynamics.New York: John Wiley & Sons, Inc., 2000
31 S Rupesh, C Muraleedharan, P Arun. Analysis of hydrogen generation through thermo-chemical gasification of coconut shell using thermodynamic equilibrium model considering char and tar. International Scholarly Research Notices,2014, 654946
32 K J Ptasinski, M J Prins, A Pierik. Exergetic evaluation of biomass gasification. Energy, 2007, 32(4): 568–574
https://doi.org/10.1016/j.energy.2006.06.024
33 C C Sreejith, C Muraleedharan, P Arun. Energy and exergy analysis of steam gasification of biomass materials: a comparative study. International Journal of Ambient Energy, 2013, 34(1): 35–52
https://doi.org/10.1080/01430750.2012.711085
Related articles from Frontiers Journals
[1] Philip Kofi ADOM, Michael Owusu APPIAH, Mawunyo Prosper AGRADI. Does financial development lower energy intensity?[J]. Front. Energy, 2020, 14(3): 620-634.
[2] Ru Shien TAN, Tuan Amran TUAN ABDULLAH, Anwar JOHARI, Khairuddin MD ISA. Catalytic steam reforming of tar for enhancing hydrogen production from biomass gasification: a review[J]. Front. Energy, 2020, 14(3): 545-569.
[3] Liang YIN, Yonglin JU. Review on the design and optimization of hydrogen liquefaction processes[J]. Front. Energy, 2020, 14(3): 530-544.
[4] Alireza HEIDARI, Ali ESMAEEL NEZHAD, Ahmad TAVAKOLI, Navid REZAEI, Foad H. GANDOMAN, Mohammad Reza MIVEH, Abdollah AHMADI, Majid MALEKPOUR. A comprehensive review of renewable energy resources for electricity generation in Australia[J]. Front. Energy, 2020, 14(3): 510-529.
[5] Junjie LI, Yajun TIAN, Xiaohui YAN, Jingdong YANG, Yonggang WANG, Wenqiang XU, Kechang XIE. Approach and potential of replacing oil and natural gas with coal in China[J]. Front. Energy, 2020, 14(2): 419-431.
[6] Abdalla M. ABDALLA, Shahzad HOSSAIN, Pg MohdIskandr PETRA, Mostafa GHASEMI, Abul K. AZAD. Achievements and trends of solid oxide fuel cells in clean energy field: a perspective review[J]. Front. Energy, 2020, 14(2): 359-382.
[7] Y. YU, Q. W. PAN, L. W. WANG. A small-scale silica gel-water adsorption system for domestic air conditioning and water heating by the recovery of solar energy[J]. Front. Energy, 2020, 14(2): 328-336.
[8] Jidong WANG, Boyu CHEN, Peng LI, Yanbo CHE. Distributionally robust optimization of home energy management system based on receding horizon optimization[J]. Front. Energy, 2020, 14(2): 254-266.
[9] Pei LI, Guotian CAI, Yuntao ZHANG, Shangjun KE, Peng WANG, Liping GAO. Multi-objective optimal allocation strategy for the energy internet in Huangpu District, Guangzhou, China[J]. Front. Energy, 2020, 14(2): 241-253.
[10] Yeo Beom YOON, Byeongmo SEO, Brian Baewon KOH, Soolyeon CHO. Heating energy savings potential from retrofitting old apartments with an advanced double-skin façade system in cold climate[J]. Front. Energy, 2020, 14(2): 224-240.
[11] Boqiang LIN, Hermas ABUDU. Impact of inter-fuel substitution on energy intensity in Ghana[J]. Front. Energy, 2020, 14(1): 27-41.
[12] Mingqiang LIN, Jian MOU, Chunyun CHI, Guotong HONG, Panhe GE, Gu HU. A space power system of free piston Stirling generator based on potassium heat pipe[J]. Front. Energy, 2020, 14(1): 1-10.
[13] Hamid BAHRAMPOUR, Amir Khosro BEHESHTI MARNANI, Mohammad Bagher ASKARI, Mohammad Reza BAHRAMPOUR. Evaluation of renewable energies production potential in the Middle East: confronting the world’s energy crisis[J]. Front. Energy, 2020, 14(1): 42-56.
[14] Jiahui JIN, Lei WANG, Mingkai FU, Xin LI, Yuanwei LU. Thermodynamic assessment of hydrogen production via solar thermochemical cycle based on MoO2/Mo by methane reduction[J]. Front. Energy, 2020, 14(1): 71-80.
[15] Ridha CHEIKH, Arezki MENACER, L. CHRIFI-ALAOUI, Said DRID. Robust nonlinear control via feedback linearization and Lyapunov theory for permanent magnet synchronous generator-based wind energy conversion system[J]. Front. Energy, 2020, 14(1): 180-191.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed