Please wait a minute...

Frontiers in Energy

Front. Energy    2014, Vol. 8 Issue (2) : 160-172     https://doi.org/10.1007/s11708-014-0321-y
RESEARCH ARTICLE |
Experimental study of heat transfer coefficient with rectangular baffle fin of solar air heater
Foued CHABANE1,*(),Nesrine HATRAF2,Noureddine MOUMMI1
1. Mechanical Department and Mechanical Laboratory, University of Biskra, Biskra 07000, Algeria
2. Mechanical Department, University of Biskra, Biskra 07000, Algeria
Download: PDF(1763 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper presents an experimental analysis of a single pass solar air collector with, and without using baffle fin. The heat transfer coefficient between the absorber plate and air can be considerably increased by using artificial roughness on the bottom plate and under the absorber plate of a solar air heater duct. An experimental study has been conducted to investigate the effect of roughness and operating parameters on heat transfer. The investigation has covered the range of Reynolds number Re from 1259 to 2517 depending on types of the configuration of the solar collectors. Based on the experimental data, values of Nusselt number Nu have been determined for different values of configurations and operating parameters. To determine the enhancement in heat transfer and increment in thermal efficiency, the values of Nusselt have been compared with those of smooth duct under similar flow conditions.

Keywords Nusselt number      flow rate      heat transfer      heat transfer coefficient      thermal efficiency      forced convection     
Corresponding Authors: Foued CHABANE   
Issue Date: 19 May 2014
 Cite this article:   
Foued CHABANE,Nesrine HATRAF,Noureddine MOUMMI. Experimental study of heat transfer coefficient with rectangular baffle fin of solar air heater[J]. Front. Energy, 2014, 8(2): 160-172.
 URL:  
http://journal.hep.com.cn/fie/EN/10.1007/s11708-014-0321-y
http://journal.hep.com.cn/fie/EN/Y2014/V8/I2/160
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Foued CHABANE
Nesrine HATRAF
Noureddine MOUMMI
Fig.1  Thermal network of flat plate SAH

1–Coverglass; 2–Absorber plate; 3–Bottom; 4–Insulation; 5–Back plate

Fig.2  Schematic view of solar air collector
Fig.3  Composition of a solar box with baffle fin and smooth plate
Fig.4  Position of baffle fin on the bottom plate and under the absorber plate
Fig.5  Thermal efficiency as a function to air flow rate, corresponding to solar collectors with, and without using baffle
Fig.6  Average temperature of an absorber plate as a function to length of a solar collector for each flow rate from 40 m3/h to 80 m3/h, corresponding to smooth plate

(a) Mass flow rate of 40 m3/h; (b) mass flow rate of 60 m3/h; (c) mass flow rate of 80 m3/h

L/mTemperature of the absorber plate/°C
Configuration AQv/(m3·h-1)Configuration BQv/(m3·h-1)Configuration CQv/(m3·h-1)
406080406080406080
06.8610.0511.098.0910.1114.77.249.3517.37
0.97518.8729.3143.1320.2226.5353.9121.7332.0658.63
1.9537.7458.6364.6940.4360.6569.3143.4664.1178.17
Tab.1  Average temperature of the absorber plate for each solar collector configuration, corresponding to the air flow rate of 40 m3/h, 60 m3/h and 80 m3/h, and the solar collector length from 0 m to 1.95 m with a tilt angle β = 34.8°
Fig.7  Average air temperature as a function to length of a solar collector for each flow rate from 40 to 80 (m3/h), corresponding to smooth plate

(a) Mass flow rate of 40 m3/h; (a) mass flow rate of 60 m3/h; (a) mass flow rate of 80 m3/h

L/mAir temperatures/°C
Configuration AQv/(m3·h-1)Configuration BQv/(m3·h-1)Configuration CQv/(m3·h-1)
406080406080406080
0292623242327262327
0.975585851645957595556
1.95575547676056616057
Tab.2  Average air temperature of the absorber plate for each solar collector configuration, corresponding to the air flow rate of 40, 60 and 80 m3/h, and the solar collector length from 0 m to 1.95 m with a tilt angle β = 34.8°
Fig.8  Heat transfer coefficient as a function to length of solar collector, for each type of solar collector

(a) Mass flow rate of 40 m3/h; (a) mass flow rate of 60 m3/h; (a) mass flow rate of 80 m3/h

L/mh/(W·m-2·K-1)
Configuration AQv/(m3·h-1)Configuration BQv/(m3·h-1)Configuration CQv/(m3·h-1)
406080406080406080
06.8610.0511.098.0910.1114.77.249.3517.37
0.97518.8729.3143.1320.2226.5353.9121.7332.0658.63
1.9537.7458.6364.6940.4360.6569.3143.4664.1178.17
Tab.3  Heat transfer coefficient for each solar collector configuration, corresponding to the air flow rate of 40 m3/h, 60 m3/h and 80 m3/h, and solar collector length from 0 m to 1.95 m with a tilt angle β = 34.8°
Fig.9  Solar intensity and inlet, outlet and ambient temperatures as a function to air flow rate, corresponding to the solar collector with smooth plate

(a) Mass flow rate of 40 m3/h; (a) mass flow rate of 60 m3/h; (a) mass flow rate of 80 m3/h

Configuration AConfiguration BConfiguration C
Qv/(m3·h-1)Qv/(m3·h-1)Qv/(m3·h-1)
406080406080406080
I/(W·m-2)783899787888880885925900701
Tin/°C242522232526252526
Tout/°C555749616257636150
Ta/°C192018151820181922
Tab.4  Average temperature of the inlet, outlet and ambient for each solar collector configuration, corresponding to the air flow rate of 40 m3/h, 60 m3/h and 80 m3/h, and a solar collector length from 0 m to 1.95 m with a tilt angle of β = 34.8°
Fig.10  Nusselt number (Nu) as a function to length of solar collector, for each type of solar collector

Mass flow rate is 40 m3/h; (a) mass flow rate is 60 m3/h; (a) mass flow rate is 80 m3/h

L/mNusselt number
Configuration AQv/(m3·h-1)Configuration BQv/(m3·h-1)Configuration CQv/(m3·h-1)
406080406080406080
013.60919.93921.99616.03920.04829.16114.36818.54534.454
0.97537.42458.1485.5440.09752.627106.92543.10463.582113.281
1.9574.848116.281128.3180.194120.291137.47586.208127.164155.041
Tab.5  Nusselt number for each solar collector configuration, corresponding to the air flow rate of 40 m3/h, 60 m3/h and 80 m3/h, a solar collector length from 0 m to 1.95 m with a tilt angle of β = 34.8°
Fig.11  Variation of collector efficiency with temperature parameters (Tin - Ta)/I at different mass flow rates
Mode of collectorsFR(τvαab)FRULFRUL/(°C·m2·W-1)
Smooth plate0.5814.320.72719.7
Baffle under an absorber plate0.613.480.75217.93
Baffle on the bottom plate0.62513.440.78317.16
Tab.6  Results of collector test
Fig.12  Variation of solar radiation at different days
1 YehH M, LinT T. Efficiency improvement of flat-plate solar air heaters. Energy, 1996, 21(6): 435–443
doi: 10.1016/0360-5442(96)00008-4
2 SparrowE M, TienK K. Forced convection heat transfer at an inclined and yawed square flat plate—application to solar collectors. Journal of Heat Transfer, 1977, 99(4): 507–512
doi: 10.1115/1.3450734
3 SimateI N. Optimization of mixed mode and indirect mode natural convection solar dryers. Renewable Energy, 2003, 28(3): 435–453
doi: 10.1016/S0960-1481(02)00041-1
4 SharmaA, ChenC R, Vu LanV. Solar-energy drying systems: a review. Renewable & Sustainable Energy Reviews, 2009, 13(6–7): 1185–1210
doi: 10.1016/j.rser.2008.08.015
5 GargH P, KumarR. Studies on semi-cylindrical solar tunnel dryers: thermal performance of collector. Applied Thermal Engineering, 2000, 20(2): 115–131
doi: 10.1016/S1359-4311(99)00017-4
6 MonteroI, BlancoJ, MirandaT, RojasS, CelmaA R. Design, construction and performance testing of a solar dryer for agro-industrial by-products. Energy Conversion and Management, 2010, 51(7): 1510–1521
doi: 10.1016/j.enconman.2010.02.009
7 SmitabhinduR, JanjaiS, ChankongV. Optimization of a solar-assisted drying system for drying bananas. Renewable Energy, 2008, 33(7): 1523–1531
doi: 10.1016/j.renene.2007.09.021
8 AkpinarE K, KoçyigitF. Experimental investigation of thermal performance of solar air heater having different obstacles on absorber plates. International Communications in Heat and Mass Transfer, 2010, 37(4): 416–421
doi: 10.1016/j.icheatmasstransfer.2009.11.007
9 KarsliS. Performance analysis of new-design solar air collectors for drying applications. Renewable Energy, 2007, 32(10): 1645–1660
doi: 10.1016/j.renene.2006.08.005
10 RomdhaneB S. The air solar collectors: Comparative study, introduction of baffles to favor the heat transfer. Solar Energy, 2007, 81(1): 139–149
doi: 10.1016/j.solener.2006.05.002
11 OmojaroA P, AldabbaghL B Y. Experimental performance of single and double pass solar air heater with fins and steel wire mesh as absorber. Applied Energy, 2010, 87(12): 3759–3765
doi: 10.1016/j.apenergy.2010.06.020
12 NaphonP. On the performance and entropy generation of the double-pass solar air heater with longitudinal fins. Renewable Energy, 2005, 30(9): 1345–1357
doi: 10.1016/j.renene.2004.10.014
13 NwosuN P. Employing exergy-optimized pin fins in the design of an absorber in a solar air heater. Energy, 2010, 35(2): 571–575
doi: 10.1016/j.energy.2009.10.027
14 El-SebaiiA A, Aboul-EneinS, RamadanM R I, ShalabyS M, MoharramB M. Thermal performance investigation of double pass-finned plate solar air heater. Applied Energy, 2011, 88(5): 1727–1739
doi: 10.1016/j.apenergy.2010.11.017
15 HachemiA. Experimental study of thermal performance of offset rectangular plate fin absorber-plates. Renewable Energy, 1999, 17(3): 371–384
doi: 10.1016/S0960-1481(98)00115-3
16 KarimM A, HawladerM N A. Development of solar air collectors for drying applications. Energy Conversion and Management, 2004, 45(3): 329–344
doi: 10.1016/S0196-8904(03)00158-4
17 LinW, GaoW, LiuT. A parametric study on the thermal performance of cross-corrugated solar air collectors. Applied Thermal Engineering, 2006, 26(10): 1043–1053
doi: 10.1016/j.applthermaleng.2005.10.005
18 GaoW, LinW, LiuT, XiaC. Analytical and experimental studies on the thermal performance of cross-corrugated and flat-plate solar air heaters. Applied Energy, 2007, 84(4): 425–441
doi: 10.1016/j.apenergy.2006.02.005
19 PengD, ZhangX, DongH, LvK. Performance study of a novel solar air collector. Applied Thermal Engineering, 2010, 30(16): 2594–2601
doi: 10.1016/j.applthermaleng.2010.07.010
20 MoummiN, Youcef-AliS, MoummiA, DesmonsJ Y. Energy analysis of a solar air collector with rows of fins. Renewable Energy, 2004, 29(13): 2053–2064
doi: 10.1016/j.renene.2003.11.006
21 AndohH Y, GbahaP, KouaB K, KoffiP M E, TouréS. Thermal performance study of a solar collector using a natural vegetable fiber, coconut coir, as heat insulation. Energy for Sustainable Development, 2010, 14(4): 297–301
doi: 10.1016/j.esd.2010.09.006
22 ChabaneF, MoummiN, BenramacheS, TolbaA S. Experimental study of heat transfer and an effect the tilt angle with variation of the mass flow rates on the solar air heater. International Journal of Science and Engineering Investigations, 2012, 1(9): 61–65
23 ChabaneF, MoummiN, BenramacheS.Experimental performance of solar air heater with internal fins inferior an absorber plate: in the region of Biskra. International Journal of Energy & Technology, 2012, 4: Paper 33–2012 (1,6)
24 ChabaneF, MoummiN, BrimaA, BenramacheS. Thermal efficiency analysis of a single-flow solar air heater with different mass flow rates in a smooth plate. Frontiers in Heat and Mass Transfer, 2013, 4(1): 013006
doi: 10.5098/hmt.v4.1.3006
25 ChabaneF, MoummiN, BenramacheS, BelahssenO, BensahalD. Nusselt number correlation of SAH. Journal of Power Technologies, 2013, 93(2): 100–110
26 ChabaneF, MoummiN, BenramacheS, BensahalD, BelahssenO, LemmadiF Z. Thermal performance optimization of a flat plate solar air heater. International Journal of Energy & Technology, 2013, 5(8): 1–6
27 ChabaneF, MoummiN, BenramacheS. Experimental study of heat transfer and thermal performance with longitudinal fins of solar air heater. Journal of Advertising Research, 2014, 5(2): 183–192
28 CloseD J, PryorT L. The behaviour of adsorbent energy storage beds. Solar Energy, 1976, 18(4): 287–292
doi: 10.1016/0038-092X(76)90055-4
29 LiuC H, SparrowE M. Convective-radiative interaction a parallel plate channel-application to air-operated solar collectors. International Journal of Heat and Mass Transfer, 1980, 23(8): 1137–1146
doi: 10.1016/0017-9310(80)90178-7
30 SeluckM K. Solar Air Heaters and Their Applications. New York: Academic Press, Inc., 1977, 155–182
31 TanH M, ChartersW W S. Experimental investigation of forced-convective heat transfer for fully developed turbulent flow in a rectangular duct with asymmetric heating. Solar Energy, 1970, 13(1): 121–125
doi: 10.1016/0038-092X(70)90012-5
32 WhillierA. Plastic covers for solar collectors. Solar Energy, 1963, 7(3): 148–151
doi: 10.1016/0038-092X(63)90060-4
33 DuffieJ A, BeckmanW A. Solar Engineering of Thermal Processes, 3rd ed. John Wiley & Sons, 2006
34 TonuiJ K, TripanagnostopoulosY. Improved PV/T solar collectors with heat extraction by forced or natural air circulation. Renewable Energy, 2007, 32(4): 623–637
doi: 10.1016/j.renene.2006.03.006
35 GaoW, LinW, LiuT, XiaC. Analytical and experimental studies on the thermal performance of cross-corrugated and flat-plate solar air heaters. Applied Energy, 2007, 84(4): 425–441
doi: 10.1016/j.apenergy.2006.02.005
36 MohamadA A. High efficiency solar air heater. Solar Energy, 1997, 60(2): 71–76
doi: 10.1016/S0038-092X(96)00163-6
37 VermaS K, PrasadB N. Investigation for the optimal thermohydraulic performance of artificially roughened solar air heaters. Renewable Energy, 2000, 20(1): 19–36
doi: 10.1016/S0960-1481(99)00081-6
38 YehH M. Theory of baffled solar air heaters. Energy, 1992, 17(7): 697–702
doi: 10.1016/0360-5442(92)90077-D
39 AkpinarE K, KoçyiğitF. Experimental investigation of thermal performance of solar air heater having different obstacles on absorber plates. International Communications in Heat and Mass Transfer, 2010, 37(4): 416–421
doi: 10.1016/j.icheatmasstransfer.2009.11.007
40 AkpinarE K, KocyiğitF. Energy and exergy analysis of a new flat-plate solar air heater having different obstacles on absorber plates. Applied Energy, 2010, 87(11): 3438–3450
doi: 10.1016/j.apenergy.2010.05.017
41 McAdamsW H. Heat Transmission. New York: McGraw-Hill, 1954
42 KleinS A. Calculation of flat-plate collector loss coefficients. Solar Energy, 1975, 17(1): 79–80
doi: 10.1016/0038-092X(75)90020-1
43 KarsliS. Performance analysis of new-design solar air collectors for drying applications. Renewable Energy, 2007, 32(10): 1645–1660
doi: 10.1016/j.renene.2006.08.005
44 KurtbasI, DurmusA. Efficiency and exergy analysis of a new solar air heater. Renewable Energy, 2004, 29(9): 1489–1501
doi: 10.1016/j.renene.2004.01.006
45 EsenH. Experimental energy and exergy analysis of a double-flow solar air heater having different obstacles on absorber plates. Building and Environment, 2008, 43(6): 1046–1054
doi: 10.1016/j.buildenv.2007.02.016
46 HolmanJ P. Heat Transfer, 7th ed. New York: McGraw-Hill Book Co., 1990
Related articles from Frontiers Journals
[1] M. ARULPRAKASAJOTHI,K. ELANGOVAN,K. HEMA CHANDRA REDDY,S. SURESH. Experimental investigation on heat transfer effect of conical strip inserts in a circular tube under laminar flow[J]. Front. Energy, 2016, 10(2): 136-142.
[2] Jie GUO,Danmei XIE,Hengliang ZHANG,Wei JIANG,Yan ZHOU. Effect of heat transfer coefficient of steam turbine rotor on thermal stress field under off-design condition[J]. Front. Energy, 2016, 10(1): 57-64.
[3] R. Senthil KUMAR,M. LOGANATHAN,E. James GUNASEKARAN. Performance, emission and combustion characteristics of CI engine fuelled with diesel and hydrogen[J]. Front. Energy, 2015, 9(4): 486-494.
[4] Anil Singh YADAV,J. L. BHAGORIA. Heat transfer and fluid flow analysis of an artificially roughened solar air heater: a CFD based investigation[J]. Front. Energy, 2014, 8(2): 201-211.
[5] Manli LUO, Jing LIU. Experimental investigation of liquid metal alloy based mini-channel heat exchanger for high power electronic devices[J]. Front Energ, 2013, 7(4): 479-486.
[6] Chunlong LIU, Qunyi ZHU, Zhengqi LI, Qiudong ZONG, Xiang ZHANG, Zhichao CHEN. Influence of different oil feed rate on bituminous coal ignition in a full-scale tiny-oil ignition burner[J]. Front Energ, 2013, 7(3): 406-412.
[7] Qingqing SHEN, Wensheng LIN, Anzhong GU, Yonglin JU. A simplified model of direct-contact heat transfer in desalination system utilizing LNG cold energy[J]. Front Energ, 2012, 6(2): 122-128.
[8] Jing HUANG, Yuwen ZHANG, J. K. CHEN, Mo YANG. Ultrafast solid-liquid-vapor phase change of a thin gold film irradiated by femtosecond laser pulses and pulse trains[J]. Front Energ, 2012, 6(1): 1-11.
[9] Jinying YIN, Linhua LIU. Analysis of the radiation heat transfer process of phase change for a liquid droplet radiator in space power systems[J]. Front Energ Power Eng Chin, 2011, 5(2): 166-173.
[10] C Y ZHAO, D ZHOU, Z G WU. Heat transfer of phase change materials (PCMs) in porous materials[J]. Front Energ, 2011, 5(2): 174-180.
[11] Minghou LIU, Yaqing WANG, Dong LIU, Kan XU, Yiliang CHEN. Experimental study of the effects of structured surface geometry on water spray cooling performance in non-boiling regime[J]. Front Energ, 2011, 5(1): 75-82.
[12] Yufei MAO, Liejin GUO, Bofeng BAI, Ximin ZHANG. Convective heat transfer in helical coils for constant-property and variable-property flows with high Reynolds numbers[J]. Front Energ Power Eng Chin, 2010, 4(4): 546-552.
[13] Baoxing LI, Maocheng TIAN, Xueli LENG, Zheng ZHANG, Bo JIANG. Theoretical study of vibrating effect on heat transfer in laminar flow[J]. Front Energ Power Eng Chin, 2010, 4(4): 542-545.
[14] Xin ZOU, Maoqiong GONG, Gaofei CHEN, Zhaohu SUN, Jianfeng WU. Experimental study on saturated flow boiling heat transfer of R290/R152a binary mixtures in a horizontal tube[J]. Front Energ Power Eng Chin, 2010, 4(4): 527-534.
[15] Liangbi WANG, Xiaoping GAI, Kun HUANG, Yongheng ZHANG, Xiang YANG, Xiang WU. A way to explain the thermal boundary effects on laminar convection through a square duct[J]. Front Energ Power Eng Chin, 2010, 4(4): 496-506.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed