Please wait a minute...

Frontiers in Biology

Front. Biol.    2018, Vol. 13 Issue (3) : 157-167     https://doi.org/10.1007/s11515-018-1483-5
REVIEW
Siberian plants: untapped repertoire of bioactive endosymbionts
Syed Baker1(), Svetlana V. Prudnikova2, Tatiana Volova3,4
1. Laboratory of Biotechnology of New Materials, Siberian Federal University, 79 Svobodny pr., Krasnoyarsk, 660041, Russia
2. Siberian Federal University, School of Fundamental Biology and Biotechnology, 79 Svobodny pr., Krasnoyarsk, 660041, Russia
3. Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS,” 50/50 Akademgorodok, Krasnoyarsk 660036, Russia
4. Siberian Federal University, 79 Svobodny pr., Krasnoyarsk, 660041, Russia
Download: PDF(738 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

BACKGROUND: Endosymbionts are microorganisms present in all plant species, and constitute the subject of interest among the scientific community. These symbionts have gained considerable attention in recent years, owing to their emerging biological roles. Global challenges, such as antimicrobial resistance, treatment of infectious diseases such as HIV and tuberculosis, cancer, and many genetic disorders, exist. Endosymbionts can help address these challenges by secreting value-added bioactive compounds with various activities.

OBJECTIVE: Herein, we describe the importance of plants inhabiting Siberian niches. These plants are considered to be among the least studied organisms in the plant kingdom worldwide. Barcoding these plants can be of interest for exploring bioactive endosymbionts possessing myriad biological properties.

METHODS: A systematic survey of relevant scientific reports was conducted using the PubMed search engine. The reports were analyzed, and compiled to draft this review.

RESULTS: The literature survey on Siberian plants regarding endosymbionts included a few reports, since extremely few exploratory studies have been conducted on the plants in these regions. Studies on the endosymbionts of these plants are highly valuable, as they report potent endosymbionts possessing numerous biological properties. Based on these considerations, this review aims to create awareness among the global scientific community working on related areas.

CONCLUSION: This review could provide the basis for barcoding novel endosymbionts of Siberian plants and their ecological importance, which can be exploited in various sectors. The main purpose of this review is to create awareness of Siberian plants, which are among the least studied organisms in the plant kingdom, with respect to endosymbionts, among the scientific community.

Keywords endosymbiont      endophyte      siberian plant      bioactive metabolite      novel compound     
Corresponding Author(s): Syed Baker   
Online First Date: 18 April 2018    Issue Date: 31 July 2018
 Cite this article:   
Syed Baker,Svetlana V. Prudnikova,Tatiana Volova. Siberian plants: untapped repertoire of bioactive endosymbionts[J]. Front. Biol., 2018, 13(3): 157-167.
 URL:  
http://journal.hep.com.cn/fib/EN/10.1007/s11515-018-1483-5
http://journal.hep.com.cn/fib/EN/Y2018/V13/I3/157
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Syed Baker
Svetlana V. Prudnikova
Tatiana Volova
Fig.1  Endophytes (Endosymbionts) and their biological properties
Fig.2  Characteristics of endophytes (Endosymbionts)
Endosymbionts Host Bioactive metabolite Activity References
Pseudomonas viridiflava Grass Ecomycins B & C Antimicrobial Miller et al., 1998
Chaetomium globosum Ginkgo biloba Chaetoglobosins A & C Antimicrobial Qin et al., 2009
Periconia sp. Taxus cuspidate Periconicins A & B Antibacterial Kim et al., 2004
Guignardia sp. Spondias mombin Guignardic acid Antibacterial Rodrigues-Heerklotz et al., 2001
Botryosphaeria rhodina Bidens pilosa Botryorhodines A-D Antifungal Randa et al., 2010
Streptomyces sp. Monstera sp. Coronamycin Antifungal Ezra et al., 2004
Cytonaema sp. Quercus sp Cytonic acids A Antiviral Guo et al., 2000
Streptomyces NRRL 30562 Kennedia nigriscans Munumbicin D Anti malarial Castillo et al., 2002
Streptomyces sp Bruguiera Gymnorrhiza Xiamycin Anti-HIV Ding et al., 2010
Aspergillus niger.
IFB-E003
Cyndon dactylon Rubrofusarin B Anti-tumor Song et al., 2004
Tab.1  Bioactive metabolites secreted from endosymbionts bearing biological potential
Fig.3  Important Secondary metabolites secreted from Endosymbionts
1 Abdou R, Scherlach K, Dahse H M, Sattler I, Hertweck C (2010). Botryorhodines A-D, antifungal and cytotoxic depsidones from Botryosphaeria rhodina, an endophyte of the medicinal plant Bidens pilosa. Phytochemistry, 71(1): 110–116
https://doi.org/10.1016/j.phytochem.2009.09.024 pmid: 19913264
2 Abhijeet Singh Y M (2014). Understanding the biodiversity and biological applications of endophytic fungi. J Microb Biochem Technol, s8(01): 004
https://doi.org/10.4172/1948-5948.S8-004
3 Alm T (2004). Ethnobotany of Rhodiola rosea (Crassulaceae) in Norway. SIDA Contrib Bot, 21: 321–344
4 Amna T, Puri S C, Verma V, Sharma J P, Khajuria R K, Musarrat J, Spiteller M, Qazi G N (2006). Bioreactor studies on the endophytic fungus Entrophospora infrequens for the production of an anticancer alkaloid camptothecin. Can J Microbiol, 52(3): 189–196
https://doi.org/10.1139/w05-122 pmid: 16604115
5 Arnold A E (2005). Diversity and ecology of fungal endophytes in tropical forests. 49–68. In: Deshmukh S (Ed.). Current Trends in Mycological Research. New Delhi, Oxford & IBH Publishing Co. Pvt. Ltd.
6 Azevedo J L, Maccheroni W Jr, Pereira J O, De Araújo W L (2000). Endophytic microorganisms: A review on insect control and recent advances on tropical plants. Electron J Biotechnol, 3(1): 40–65
https://doi.org/10.2225/vol3-issue1-fulltext-4
7 Baker S, Kavitha K S, Chinnappa H, Rao Y, Rakshith D, Harini B P, Kumar K, Satish S (2015). Bacterial endo-symbiont inhabiting Tridax procumbens L. and their antimicrobial potential. Zhongguo Shengwuzhipinxue Zazhi, 2015(2): 1473–1476
8 Baker S, Rakshith D, Kavitha K S, Santosh P, Kavitha H U, Rao Y, Satish S (2013). Plants: Emerging as nanofactories towards facile route in synthesis of nanoparticles. Bioimpacts, 3: 111–117
pmid: 24163802
9 Baker S, Satish S (2012). Endophytes: Natural warehouse of bioactive compounds. Drug Invent Today, 4: 548–553
10 Baker S, Satish S (2015). Biosynthesis of gold nanoparticles by Pseudomonas veronii AS41G inhabiting Annona squamosa L. Spectrochim Acta A Mol Biomol Spectrosc, 150: 691–695
https://doi.org/10.1016/j.saa.2015.05.080 pmid: 26093965
11 Banerjee D, Strobel G A, Booth E, Geary B, Sears J, Spakowicz D, Busse S (2010). An endophytic Myrothecium inundatum producing volatile organic compounds. Mycosphere, 1: 229–240
12 Bangera M G, Thomashow L S (1999). Identification and characterization of a gene cluster for synthesis of the polyketide antibiotic 2,4-diacetylphloroglucinol from Pseudomonas fluorescens Q2-87. J Bacteriol, 181(10): 3155–3163
pmid: 10322017
13 Bayoumi M T, Shaer H M E (1994). Impact of halophytes on animal health and nutrition. Halophytes as a resource for livestock and for rehabilitation of degraded lands Tasks for vegetation science, 267–272.
14 Bertozzi S, Padian N S, Wegbreit J, DeMaria L M, Feldman B, Gayle H, Gold J, Grant R, Isbell M T (2006). HIV/AIDS Prevention and Treatment. In: Dis Control Priorities Dev Ctries. 331–370.
15 Castillo U F, Strobel G A, Ford E J, Hess W M, Porter H, Jensen J B, Albert H, Robison R, Condron M A M, Teplow D B, Stevens D, Yaver D (2002). Munumbicins, wide-spectrum antibiotics produced by Streptomyces NRRL 30562, endophytic on Kennedia nigriscans. Microbiology, 148(Pt 9): 2675–2685
https://doi.org/10.1099/00221287-148-9-2675 pmid: 12213914
16 Chikhi I, Allali H, El Amine Dib M, Medjdoub H, Tabti B (2014). Antidiabetic activity of aqueous leaf extract of Atriplex halimus L. (Chenopodiaceae) in streptozotocin-induced diabetic rats. Asian Pac J Trop Dis, 4(3): 181–184
https://doi.org/10.1016/S2222-1808(14)60501-6
17 Compant S, Reiter B, Sessitsch A, Nowak J, Clément C, Ait Barka E (2005). Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Appl Environ Microbiol, 71(4): 1685–1693
https://doi.org/10.1128/AEM.71.4.1685-1693.2005 pmid: 15811990
18 Deshmukh S K, Mishra P D, Kulkarni-Almeida A, Verekar S, Sahoo M R, Periyasamy G, Goswami H, Khanna A, Balakrishnan A, Vishwakarma R (2009). Anti-inflammatory and anticancer activity of ergoflavin isolated from an endophytic fungus. Chem Biodivers, 6(5): 784–789
https://doi.org/10.1002/cbdv.200800103 pmid: 19479845
19 Dhankhar S, Dhankhar S, Yadav J P (2013). Investigations towards new antidiabetic drugs from fungal endophytes associated with Salvadora oleoides Decne. Med Chem, 9(4): 624–632
https://doi.org/10.2174/1573406411309040017 pmid: 22946533
20 Ding L, Münch J, Goerls H, Maier A, Fiebig H H, Lin W H, Hertweck C (2010). Xiamycin, a pentacyclic indolosesquiterpene with selective anti-HIV activity from a bacterial mangrove endophyte. Bioorg Med Chem Lett, 20(22): 6685–6687
https://doi.org/10.1016/j.bmcl.2010.09.010 pmid: 20880706
21 Dompeipen E J, Srikandace Y, Suharso W P, Cahyana H, Simanjuntak P (2011). Potential endophytic microbes selection for antidiabetic bioactive compounds production. Asian J Biochem, 6(6): 465–471
https://doi.org/10.3923/ajb.2011.465.471
22 Dragoeva A P, Koleva V P, Nanova Z D, Georgiev B P (2015). Allelopathic effects of Adonis vernalis L.: Root growth inhibition and cytogenetic alterations. J Agric Chem Environ, 4: 48–55
23 Ezra D, Castillo U F, Strobel G A, Hess W M, Porter H, Jensen J B, Condron M A, Teplow D B, Sears J, Maranta M, Hunter M, Weber B, Yaver D (2004). Coronamycins, peptide antibiotics produced by a verticillate Streptomyces sp. (MSU-2110) endophytic on Monstera sp. Microbiology, 150(Pt 4): 785–793
https://doi.org/10.1099/mic.0.26645-0 pmid: 15073289
24 Farrar K, Bryant D, Cope-Selby N (2014). Understanding and engineering beneficial plant-microbe interactions: plant growth promotion in energy crops. Plant Biotechnol J, 12(9): 1193–1206
https://doi.org/10.1111/pbi.12279 pmid: 25431199
25 Franke D, Hinz K, Reichert C (2004). Geology of the East Siberian Sea, Russian Arctic, from seismic images: Structures, evolution, and implications for the evolution of the Arctic Ocean Basin. J Geophys Res B Solid Earth, 109(7): 1–19
26 Gaiero J R, McCall C A, Thompson K A, Day N J, Best A S, Dunfield K E (2013). Inside the root microbiome: bacterial root endophytes and plant growth promotion. Am J Bot, 100(9): 1738–1750
https://doi.org/10.3732/ajb.1200572 pmid: 23935113
27 Govindappa M, Channabasava R, Sowmya D V, Meenakshi J, Shreevidya M R, Lavanya A, Santoyo G, Sadananda T S (2011). Phytochemical screening, antimicrobial and in vitro anti-inflammatory activity of endophytic extracts from Loranthus sp. Pharmacogn J, 3(25): 82–90
https://doi.org/10.5530/pj.2011.25.15
28 Guan S, Grabley S, Groth I, Lin W, Christner A, Guo D, Sattler I (2005). Structure determination of germacrane-type sesquiterpene alcohols from an endophyte Streptomyces griseus subsp. Magn Reson Chem, 43(12): 1028–1031
https://doi.org/10.1002/mrc.1710 pmid: 16170856
29 Guimarães D O, Borges W S, Kawano C Y, Ribeiro P H, Goldman G H, Nomizo A, Thiemann O H, Oliva G, Lopes N P, Pupo M T (2008). Biological activities from extracts of endophytic fungi isolated from Viguiera arenaria and Tithonia diversifolia. FEMS Immunol Med Microbiol, 52(1): 134–144
https://doi.org/10.1111/j.1574-695X.2007.00354.x pmid: 18081849
30 Guo B, Dai J R, Ng S, Huang Y, Leong C, Ong W, Carté B K (2000). Cytonic acids A and B: novel tridepside inhibitors of hCMV protease from the endophytic fungus Cytonaema species. J Nat Prod, 63(5): 602–604
https://doi.org/10.1021/np990467r pmid: 10843568
31 Hale I L, Broders K, Iriarte G (2014). A Vavilovian approach to discovering crop-associated microbes with potential to enhance plant immunity. Front Plant Sci, 5: 492
https://doi.org/10.3389/fpls.2014.00492 pmid: 25278956
32 Hardoim P R, van Overbeek L S, Berg G, Pirttilä A M, Compant S, Campisano A, Döring M, Sessitsch A (2015). The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev, 79(3): 293–320
https://doi.org/10.1128/MMBR.00050-14 pmid: 26136581
33 Hilarino M P A, Silveira F A O, Oki Y, Rodrigues L, Santos J C, Correa-Junior A, Fernandes G W, Rosa C A (2011). Distribution of the endophytic fungi community in leaves of Bauhinia brevipes (Fabaceae). Acta Bot Bras, 25(4): 815–821
https://doi.org/10.1590/S0102-33062011000400008
34 Inahashi Y, Iwatsuki M, Ishiyama A, Namatame M, Nishihara-Tsukashima A, Matsumoto A, Hirose T, Sunazuka T, Yamada H, Otoguro K, Takahashi Y, Ōmura S, Shiomi K (2011). Spoxazomicins A-C, novel antitrypanosomal alkaloids produced by an endophytic actinomycete, Streptosporangium oxazolinicum K07-0460(T). J Antibiot (Tokyo), 64(4): 303–307
https://doi.org/10.1038/ja.2011.16 pmid: 21386848
35 Karmakar R, Kumar S, Prakash H S (2013). Fungal endophytes from Garcinia species. Int J Pharm Pharm Sci, 5: 889–897
36 Kavitha K, Baker S, Rakshith D, Kavitha H, Yashwantha Rao H, Harini B, Satish S (2013). Plants as Green source towards synthesis of nanoparticles. Int Res J Biol Sci, 2: 66–76
37 Kharwar R N, Verma V C, Strobel G, Ezra D (2008). The endophytic fungal complex of Catharanthus roseus (L.) G. Don. Curr Sci, 95: 228–233
38 Kim D M, Nam B W (2006). Extracts and essential oil of Ledum palustre L. leaves and their antioxidant and antimicrobial activities. Prev Nutr Food Sci, 11(2): 100–104
https://doi.org/10.3746/jfn.2006.11.2.100
39 Kokoska L, Janovska D (2009). Chemistry and pharmacology of Rhaponticum carthamoides: a review. Phytochemistry, 70(7): 842–855
https://doi.org/10.1016/j.phytochem.2009.04.008 pmid: 19457517
40 Kokoska L, Polesny Z, Rada V, Nepovim A, Vanek T (2002). Screening of some Siberian medicinal plants for antimicrobial activity. J Ethnopharmacol, 82(1): 51–53
https://doi.org/10.1016/S0378-8741(02)00143-5 pmid: 12169406
41 Kusari S, Hertweck C, Spiteller M (2012). Chemical ecology of endophytic fungi: origins of secondary metabolites. Chem Biol, 19(7): 792–798
https://doi.org/10.1016/j.chembiol.2012.06.004 pmid: 22840767
42 Li J Y, Harper J K, Grant D M, Tombe B O, Bashyal B, Hess W M, Strobel G A (2001). Ambuic acid, a highly functionalized cyclohexenone with antifungal activity from Pestalotiopsis spp. and Monochaetia sp. Phytochemistry, 56(5): 463–468
https://doi.org/10.1016/S0031-9422(00)00408-8 pmid: 11261579
43 Liang J, Chen J, Tan Z, Peng J, Zheng X, Nishiura K, Ng J, Wang Z, Wang D, Chen Z, Liu L (2013). Extracts of medicinal herb Sanguisorba officinalisinhibit the entry of human immunodeficiency virus type one. Yao Wu Shi Pin Fen Xi, 21(4): S52–S58
pmid: 25191092
44 Lotocka B, Geszprych A (2004). Anatomy of the vegetative organs and secretory structures of Rhaponticum carthamoides (Asteraceae). Bot J Linn Soc, 144(2): 207–233
https://doi.org/10.1111/j.1095-8339.2003.00251.x
45 Maji A, Banerji P (2015). Chelidonium majus L.(Greater celandine)–A review on its phytochemical and therapeutic perspectives. Int J Herb Med, 3(1): 10–27
https://doi.org/10.22271/flora.2015.v3.i1.03
46 Marchev A S, Dinkova-Kostova A T, Gyrgy Z, Mirmazloum I, Aneva I Y, Georgiev M I (2016). Rhodiola rosea L.: from golden root to green cell factories. Phytochem Rev, 15(4): 515–536
https://doi.org/10.1007/s11101-016-9453-5
47 Miller C M, Miller R V, Garton-Kenny D, Redgrave B, Sears J, Condron M M, Teplow D B, Strobel G A (1998). Ecomycins, unique antimycotics from Pseudomonas viridiflava. J Appl Microbiol, 84(6): 937–944
https://doi.org/10.1046/j.1365-2672.1998.00415.x pmid: 9717277
48 Nadeem M, Ram M, Alam P, Ahmad M M, Mohammad A, Al-Qurainy F, Khan S, Abdin M Z (2012). Fusarium solani, P1, a new endophytic podophyllotoxin-producing fungus from roots of Podophyllum hexandrum. Afr J Microbiol Res, 6: 2493–2499
49 Nair D N, Padmavathy S (2014). Impact of endophytic microorganisms on plants, environment and humans. Sci World J, 2014: 250693
https://doi.org/10.1155/2014/250693 pmid: 24587715
50 Newman D J, Cragg G M (2015). Endophytic and epiphytic microbes as “sources” of bioactive agents. Front Chem, 3: 34
https://doi.org/10.3389/fchem.2015.00034 pmid: 26052511
51 Opletal L, Sovova M, Dittrich M, Solich P, Dvorak J, Kratky F, Cerovsky J, Hofbauer J (1997). Phytotherapeutic aspects of diseases of the circulatory system. 6. Leuzea carthamoides (WILLD.).
52 Pan J H, Chen Y, Huang Y H, Tao Y W, Wang J, Li Y, Peng Y, Dong T, Lai X M, Lin Y C (2011). Antimycobacterial activity of fusaric acid from a mangrove endophyte and its metal complexes. Arch Pharm Res, 34(7): 1177–1181
https://doi.org/10.1007/s12272-011-0716-9 pmid: 21811925
53 Panossian A, Wikman G, Sarris J (2010). Rosenroot (Rhodiola rosea): traditional use, chemical composition, pharmacology and clinical efficacy. Phytomedicine, 17(7): 481–493
https://doi.org/10.1016/j.phymed.2010.02.002 pmid: 20378318
54 Partida-Martínez L P, Heil M (2011). The microbe-free plant: fact or artifact? Front Plant Sci, 2: 100
https://doi.org/10.3389/fpls.2011.00100 pmid: 22639622
55 Popov S V, Popova G Y, Nikolaeva S Y, Golovchenko V V, Ovodova R G (2005). Immunostimulating activity of pectic polysaccharide from Bergenia crassifolia (L.) Fritsch. Phytother Res, 19(12): 1052– 1056
https://doi.org/10.1002/ptr.1789 pmid: 16372372
56 Powledge T M (2011). Behavioral epigenetics: how nurture shapes Nature. Bioscience, 61(8): 588–592
https://doi.org/10.1525/bio.2011.61.8.4
57 Qin J C, Zhang Y M, Gao J M, Bai M S, Yang S X, Laatsch H, Zhang A L (2009). Bioactive metabolites produced by Chaetomium globosum, an endophytic fungus isolated from Ginkgo biloba. Bioorg Med Chem Lett, 19(6): 1572–1574
https://doi.org/10.1016/j.bmcl.2009.02.025 pmid: 19246197
58 Raiklin E (2008). The Chinese challenge to Russia in Siberia and the Russian Far East. J Soc Polit Econ Stud, 33: 145–204
59 Rather M A, Mansoor S, Bhat Z S, Amin S (2016). Evaluation of antimicrobial and antioxidant activities of Swertia petiolata. Adv Biomed Pharma, 5: 272–279
60 Rodrigues-Heerklotz K F, Drandarov K, Heerldotz J, Hesse M, Werner C (2001). Guignardic acid, a novel type of secondary metabolite produced by the endophytic fungus Guignardia sp.: isolation, structure elucidation, and asymmetric synthesis. Helv Chim Acta, 84(12): 3766–3772
https://doi.org/10.1002/1522-2675(20011219)84:12<3766::AID-HLCA3766>3.0.CO;2-Z
61 Rodriguez R J, White J F J Jr, Arnold A E, Redman R S (2009). Fungal endophytes: diversity and functional roles. New Phytol, 182(2): 314–330
https://doi.org/10.1111/j.1469-8137.2009.02773.x pmid: 19236579
62 Saikkonen K, Wäli P, Helander M, Faeth S H (2004). Evolution of endophyte-plant symbioses. Trends Plant Sci, 9(6): 275–280
https://doi.org/10.1016/j.tplants.2004.04.005 pmid: 15165558
63 Satish S, Raveesha K A, Janardhana G R (1999). Antibacterial activity of plant extracts on phytopathogenic Xanthomonas campestris pathovars. Lett Appl Microbiol, 28(2): 145–147
https://doi.org/10.1046/j.1365-2672.1999.00479.x
64 Schulz B, Boyle C (2006). What are Endophytes? 9:1–14.
65 Schulz B, Haas S, Junker C, Andree N, Schobert M (2015). Fungal endophytes are involved in multiple balanced antagonisms. Curr Sci, 109: 39–45
66 Shikov A N, Pozharitskaya O N, Makarova M N, Makarov V G, Wagner H (2014). Bergenia crassifolia (L.) Fritsch--pharmacology and phytochemistry. Phytomedicine, 21(12): 1534–1542
https://doi.org/10.1016/j.phymed.2014.06.009 pmid: 25442262
67 Singh S B, Jayasuriya H, Dewey R, Polishook J D, Dombrowski A W, Zink D L, Guan Z, Collado J, Platas G, Pelaez F, Felock P J, Hazuda D J (2003). Isolation, structure, and HIV-1-integrase inhibitory activity of structurally diverse fungal metabolites. J Ind Microbiol Biotechnol, 30(12): 721–731
https://doi.org/10.1007/s10295-003-0101-x pmid: 14714192
68 Song Y C, Li H, Ye Y H, Shan C Y, Yang Y M, Tan R X (2004). Endophytic naphthopyrone metabolites are co-inhibitors of xanthine oxidase, SW1116 cell and some microbial growths. FEMS Microbiol Lett, 241(1): 67–72
https://doi.org/10.1016/j.femsle.2004.10.005 pmid: 15556711
69 Srobel G, Li J Y, Sugawara F, Koshino H, Harper J, Hess W M (1999). Oocydin A, a chlorinated macrocyclic lactone with potent anti-oomycete activity from Serratia marcescens. Microbiology, 145(Pt 12): 3557–3564
https://doi.org/10.1099/00221287-145-12-3557 pmid: 10627053
70 Stadler M, Schulz B (2009). High energy biofuel from endophytic fungi? Trends Plant Sci, 14(7): 353–355
https://doi.org/10.1016/j.tplants.2009.05.001 pmid: 19556159
71 Stierle A, Strobel G, Stierle D, Grothaus P, Bignami G (1995). The search for a taxol-producing microorganism among the endophytic fungi of the Pacific yew, Taxus brevifolia. J Nat Prod, 58(9): 1315–1324
https://doi.org/10.1021/np50123a002 pmid: 7494141
72 Strobel G, Daisy B (2003). Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev, 67(4): 491–502
https://doi.org/10.1128/MMBR.67.4.491-502.2003 pmid: 14665674
73 Strobel G, Daisy B, Castillo U, Harper J (2004). Natural products from endophytic microorganisms. J Nat Prod, 67(2): 257–268
https://doi.org/10.1021/np030397v pmid: 14987067
74 Svidén G A, Tham K, Borell L (2010). Involvement in everyday life for people with a life threatening illness. Palliat Support Care, 8(3): 345–352
https://doi.org/10.1017/S1478951510000143 pmid: 20875178
75 Syed B, Nagendra Prasad M N, Mohan Kumar K, Dhananjaya B L, Satish S (2017). Endo-symbiont mediated synthesis of gold nanobactericides and their activity against human pathogenic bacteria. Environ Toxicol Pharmacol, 52: 143–149
https://doi.org/10.1016/j.etap.2017.03.016 pmid: 28414941
76 Syed B, Nagendra Prasad M N, Satish S (2016). Synthesis and characterization of silver nanobactericides produced by Aneurinibacillus migulanus 141, a novel endophyte inhabiting Mimosa pudica L. Arab J Chem,
https://doi.org/10.1016/j.arabjc.2016.01.005
77 Tchebakova N M, Kuzmina N A, Parfenova E I, Senashova V A, Kuzmin S R (2016). Potential climate-induced distributions of Lophodermium needle cast across central Siberia in the 21 century. Web Ecol, 16(1): 37–39
https://doi.org/10.5194/we-16-37-2016
78 Turner J, Bracegirdle T J, Phillips T, Marshall G J, Hosking J S (2012). An initial assessment of antarctic sea ice extent in the CMIP5 models. J Clim, 26(5): 1473–1484
https://doi.org/10.1175/JCLI-D-12-00068.1
79 Vdovitchenko M Y, Kuzovkina I N, Paetz C, Schneider B (2007). Formation of phenolic compounds in the roots of Hedysarum theinum cultured in vitro. Russ J Plant Physiol, 54(4): 536–544
https://doi.org/10.1134/S1021443707040164
80 Xia Y, DeBolt S, Dreyer J, Scott D, Williams M A (2015). Characterization of culturable bacterial endophytes and their capacity to promote plant growth from plants grown using organic or conventional practices. Front Plant Sci, 6: 490
https://doi.org/10.3389/fpls.2015.00490 pmid: 26217348
81 Xue S Y, Li Z Y, Zhi H J, Sun H F, Zhang L Z, Guo X Q, Qin X M (2012). Metabolic finger printing investigation of Tussilago farfara L. by GC-MS and multivariate data analysis. Biochem Syst Ecol, 41: 6–12
https://doi.org/10.1016/j.bse.2011.11.003
82 Yashina S, Gubin S, Maksimovich S, Yashina A, Gakhova E, Gilichinsky D (2012). Regeneration of whole fertile plants from 30,000-y-old fruit tissue buried in Siberian permafrost. Proc Natl Acad Sci USA, 109(10): 4008–4013
https://doi.org/10.1073/pnas.1118386109 pmid: 22355102
83 You Y H, Yoon H, Kang S M, Shin J H, Choo Y S, Lee I J, Lee J M, Kim J G (2012). Fungal diversity and plant growth promotion of endophytic fungi from six halophytes in Suncheon Bay. J Microbiol Biotechnol, 22(11): 1549–1556
https://doi.org/10.4014/jmb.1205.05010 pmid: 23124347
84 Zabalgogeazcoa (2008). Fungal endophytes and their interactions with plant pathogens. Span J Agric Res 6: 138–146
Related articles from Frontiers Journals
[1] Ren Anzhi, Gao Yubao, Wang Wei, Wang Jinlong. Photosynthetic pigments and photosynthetic products of endophyte -infected and endophyte -free Lolium perenne L. under drought stress conditions[J]. Front. Biol., 2006, 1(2): 168-173.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed