Please wait a minute...

Frontiers of Earth Science

Front. Earth Sci.    2014, Vol. 8 Issue (3) : 375-384     DOI: 10.1007/s11707-014-0411-5
Ecological analysis of a typical farm-scale biogas plant in China
Na DUAN1,Cong LIN1,*(),Pingzhi WANG1,Jing MENG2,*(),Hui CHEN3,Xue LI1
1. College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
2. Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
3. Guangdong Huianhengda Management Consulting Co. Ltd., Guangzhou 510080, China
Download: PDF(381 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

The aim of this work was to present the common anaerobic digestion technologies in a typical farm-scale biogas plant in China. The comprehensive benefits of most biogas plants in China have not been fully assessed in past decades due to the limited information of the anaerobic digestion processes in biogas plants. This paper analyzed four key aspects (i.e., operational performance, nonrenewable energy (NE) savings, CO2 emission reduction (CER) and economic benefits (EBs)) of a typical farm-scale biogas plant, where beef cattle manure was used as feedstock. Owing to the monitoring system, stable operation was achieved with a hydraulic retention time of 18–22 days and a production of 876,000 m3 of biogas and 37,960 t of digestate fertilizer annually. This could substantially substitute for the nonrenewable energy and chemical fertilizer. The total amount of NE savings and CER derived from biogas and digestate fertilizer was 2.10×107 MJ (equivalent to 749.7 tce) and 9.71×105 kg, respectively. The EBs of the biogas plant was 6.84×105 CNY·yr-1 with an outputs-to-inputs ratio of 2.37. As a result, the monitoring system was proved to contribute significantly to the sound management and quantitative assessment of the biogas plant. Biogas plants could produce biogas which could be used to substitute fossil fuels and reduce the emissions of greenhouse gases, and digestate fertilizer is also an important bio-product.

Keywords biogas plant      monitoring system      ecological benefits      NE savings      CO2 emission reduction      economic benefits     
Corresponding Authors: Cong LIN   
Issue Date: 04 July 2014
 Cite this article:   
Na DUAN,Cong LIN,Pingzhi WANG, et al. Ecological analysis of a typical farm-scale biogas plant in China[J]. Front. Earth Sci., 2014, 8(3): 375-384.
E-mail this article
E-mail Alert
Articles by authors
Cong LIN
Pingzhi WANG
Xue LI
Fig.1  The schematic of the sub-systems and processes of the farm-scale biogas plant.
pH value6.8-7.4
Hydraulic retention time/d18-22
Average daily biogas yield/m32,400
Average biogas production /(m3·t-1·DM-1·d-1)242.4
CH4 content/%55-68
Average volumetric biogas production /(m3·m-3·d-1)0.89
Average daily digestate yield/t148.5
Average daily recycled feeding quantity/t44.5
Average daily discharging digestate quantity/t104.0
Tab.1  The operational performance of the farm biogas plant
Fig.2  Annual yields, their benefit relationships, and various utilization pathways of biogas and digestate.
Fertilizer sourceQuantity/%Quantity/tQuantity/tEnergy intensity/(MJ·kg-1)Energy/MJ
Digestate fertilizer0.05630.06670.11303796021.3725.3242.89
Chemical fertilizersUrea4624.9111.4674.291.85×106
Diammonium phosphate184655.049.9125.3212.130.67×106
Potassium chloride6071.4842.8913.780.98×106
Tab.2  Annual NE savings of digestate fertilizer
Chemical fertilizers
Diammonium phosphate55.040.532.92×104
Potassium chloride71.480.443.15×104
Total CER9.71×105
Tab.3  Annual CO2 emission reduction through utilization of biogas and digestate fertilizer
ItemCCBiogasDigestate fertilizerCEBs
Household energyElectricityUreaDiammonium phosphatePotassium chlorideDEMAPCWCHLMC
Scenario 128.6543.125.4820.3620.7322.337.744.564.5310.868.38
Scenario 26.0228.6543.125.4820.3620.7322.337.744.564.5310.874.40
Scenario 328.6543.125.4820.3620.7322.337.744.564.5310.840.1528.23
Scenario 46.0228.6543.125.4820.3620.7322.337.744.564.5310.840.1534.25
Tab.4  Annual EBs of the farm biogas plant (unit: ×104 CNY)
ItemInputs/(×104 CNY)Outputs/(×104 CNY)O/I
Scenario 149.96118.342.37
Scenario 249.96124.362.49
Scenario 390.11118.341.31
Scenario 490.11124.361.38
Tab.5  Annual inputs and outputs for economic analysis with four scenarios
1 Boe K, Batstone D J, Steyer J P, Angelidaki I (2010). State indicators for monitoring the anaerobic digestion process. Water Res, 44(20): 5973-5980
doi: 10.1016/j.watres.2010.07.043 pmid: 20692680
2 Bruni E, Jensen A P, Pedersen E S, Angelidaki I (2010). Anaerobic digestion of maize focusing on variety, harvest time and pretreatment. Appl Energy, 87(7): 2212-2217
doi: 10.1016/j.apenergy.2010.01.004
3 Cao Y C, Paw?owski A (2013). Life cycle assessment of two emerging sewage sludge-to-energy systems: evaluating energy and greenhouse gas emissions implications. Bioresour Technol, 127: 81-91
doi: 10.1016/j.biortech.2012.09.135 pmid: 23131626
4 Chen B, Chen G Q, Yang Z F, Jiang M M (2007). Ecological footprint accounting for energy and resource in China. Energy Policy, 35(3): 1599-1609
doi: 10.1016/j.enpol.2006.04.019
5 Chen G Q, Jiang M M, Chen B, Yang Z F, Lin C (2006). Emergy analysis of Chinese agriculture. Agric Ecosyst Environ, 115(1-4): 161-173
doi: 10.1016/j.agee.2006.01.005
6 Chen G Q, Zhang B (2010). Greenhouse gas emissions in China 2007: inventory and input-output analysis. Energy Policy, 38(10): 6180-6193
doi: 10.1016/j.enpol.2010.06.004
7 Chen H, Chen G Q (2011b). Energy cost of rapeseed-based biodiesel as alternative energy in China. Renew Energy, 36(5): 1374-1378
doi: 10.1016/j.renene.2010.11.026
8 Chen S Q, Chen B, Song D (2012). Life-cycle energy production and emissions mitigation by comprehensive biogas-digestate utilization. Bioresour Technol, 114: 357-364
doi: 10.1016/j.biortech.2012.03.084 pmid: 22513252
9 Chen Y, Yang G H, Sweeney S, Feng Y Z (2010). Household biogas use in rural China: a study of opportunities and constraints. Renew Sustain Energy Rev, 14(1): 545-549
doi: 10.1016/j.rser.2009.07.019
10 Chen Z M, Chen G Q (2011a). An overview of energy consumption of the globalized world economy. Energy Policy, 39(10): 5920-5928
doi: 10.1016/j.enpol.2011.06.046
11 Dai J, Chen B (2010). Materials flows analysis of fossil fuels in China during 2000-2007. Procedia Environmental Sciences, 2: 1818-1826
doi: 10.1016/j.proenv.2010.10.193
12 Dai J, Chen B (2011). Extended exergy-based ecological accounting of China during 2000-2007. Procedia Environmental Sciences, 5: 87-95
doi: 10.1016/j.proenv.2011.03.053
13 Duan N, Lin C, Liu X D, Wang Y, Zhang X J, Hou Y (2011). Study on the effect of biogas project on the development of low-carbon circular economy-a case study of Beilangzhong eco-village. Procedia Environmental Sciences, 5: 160-166
doi: 10.1016/j.proenv.2011.03.062
14 El-Mashad H M, Zhang R H (2010). Biogas production from co-digestion of dairy manure and food waste. Bioresour Technol, 101(11): 4021-4028
doi: 10.1016/j.biortech.2010.01.027 pmid: 20137909
15 FAO (1999). Agricultural Statistics. Food and Agriculture Organization, UN. (11/22/1999)
16 Fdez-Güelfo L A, álvarez-Gallego C, Sales D, Romero L (2012). New indirect parameters for interpreting a destabilization episode in an anaerobic reactor. Chem Eng J, 180: 32-38
doi: 10.1016/j.cej.2011.10.091
17 Gautam R, Baral S, Herat S (2009). Biogas as a sustainable energy source in Nepal: present status and future challenges. Renew Sustain Energy Rev, 13(1): 248-252
doi: 10.1016/j.rser.2007.07.006
18 Gebrezgabher S A, Meuwissen M P M, Prins B A M, Lansink A G J M O (2010). Economic analysis of anaerobic digestion-a case of green power biogas plant in the Netherlands. NJAS-Wageningen Journal of Life Sciences, 57(2): 109-115
doi: 10.1016/j.njas.2009.07.006
19 Genovesi A, Harmand J, Steyer J P (1999). A fuzzy logic based diagnosis system for the on-line supervision of an anaerobic digestor pilot-plant. Biochem Eng J, 3(3): 171-183
doi: 10.1016/S1369-703X(99)00015-7
20 Ghosh N (2004). Reducing dependence on chemical fertilizers and its financial implications for farmers in India. Ecol Econ, 49(2): 149-162
doi: 10.1016/j.ecolecon.2004.03.016
21 Gunamantha M, Sarto (2012). Life cycle assessment of municipal solid waste treatment to energy options: case study of Kartamantul region, Yogyakarta. Renew Energy, 41: 277-284
doi: 10.1016/j.renene.2011.11.008
22 Hoffmann G, Schingnitz D, Schnapke A, Bilitewski B (2010). Reduction of CO2-emissions by using biomass in combustion and digestion plants. Waste Manag, 30(5): 893-901
doi: 10.1016/j.wasman.2009.12.001 pmid: 20060281
23 Ihunegbo F N, Madsen M, Esbensen K H, Holm-Nielsen J B, Halstensen M (2012). Acoustic chemometric prediction of total solids in bioslurry: a full-scale feasibility study for on-line biogas process monitoring. Chemom Intell Lab Syst, 110(1): 135-143
doi: 10.1016/j.chemolab.2011.10.009
24 Jantsch T G, Mattiasson B (2004). An automated spectrophotometric system for monitoring buffer capacity in anaerobic digestion processes. Water Res, 38(17): 3645-3650
doi: 10.1016/j.watres.2004.05.010 pmid: 15350415
25 Jiang M M, Chen B, Zhou J B, Tao F R, Li Z, Yang Z F, Chen G Q (2007). Emergy account for biomass resource exploitation by agriculture in China. Energy Policy, 35(9): 4704-4719
doi: 10.1016/j.enpol.2007.03.014
26 Jiang X Y, Sommer S G, Christensen K V (2011). A review of the biogas industry in China. Energy Policy, 39(10): 6073-6081
doi: 10.1016/j.enpol.2011.07.007
27 Ju L P, Chen B (2011). Embodied energy and emergy evaluation of a typical biodiesel production chain in China. Ecol Modell, 222(14): 2385-2392
doi: 10.1016/j.ecolmodel.2010.07.021
28 Kahrl F, Li Y J, Su Y F, Tennigkeit T, Wilkes A, Xu J C (2010). Greenhouse gas emissions from nitrogen fertilizer use in China. Environ Sci Policy, 13(8): 688-694
doi: 10.1016/j.envsci.2010.07.006
29 Karellas S, Boukis I, Kontopoulos G (2010). Development of an investment decision tool for biogas production from agricultural waste. Renew Sustain Energy Rev, 14(4): 1273-1282
doi: 10.1016/j.rser.2009.12.002
30 Koroneos C J, Nanaki E A, Xydis G A (2011). Exergy analysis of the energy use in Greece. Energy Policy, 39(5): 2475-2481
doi: 10.1016/j.enpol.2011.02.012
31 Kowalski K, Stagl S, Madlener R, Omann I (2009). Sustainable energy futures: methodological challenges in combining scenarios and participatory multicriteria analysis. Eur J Oper Res, 197(3): 1063-1074
doi: 10.1016/j.ejor.2007.12.049
32 Kuang X Z, Shi X S, Wu X, Yuan X Z, Qiu Y L (2009). Progress of monitoring and control of anaerobic digestion. China Biogas, 27(1): 16-19(in Chinese)
doi: 10.3969/j.issn.1000-1166.2009.01.004
33 Lefroy E, Rydberg T (2003). Emergy evaluation of three cropping systems in southwestern Australia. Ecol Modell, 161(3): 195-211
doi: 10.1016/S0304-3800(02)00341-1
34 Li J S, Chen G Q (2013). Energy and greenhouse gas emissions review for Macao. Renew Sustain Energy Rev, 22: 23-32
doi: 10.1016/j.rser.2012.11.072
35 Li J S, Chen G Q, Lai T M, Ahmad B, Chen Z M, Shao L, Ji X (2013). Embodied greenhouse gas emission by Macao. Energy Policy, 59: 819-833
doi: 10.1016/j.enpol.2013.04.042
36 Li J S, Duan N, Guo S, Shao L, Lin C, Wang J H, Hou J, Hou Y, Meng J, Han M Y (2012). Renewable resource for agricultural ecosystem in China: ecological bene?t for biogas by-product for planting. Ecol Inform, 12: 101-110
doi: 10.1016/j.ecoinf.2012.05.004
37 Limmeechokchai B, Chawana S (2007). Sustainable energy development strategies in the rural Thailand: the case of the improved cooking stove and the small biogas digester. Renew Sustain Energy Rev, 11(5): 818-837
doi: 10.1016/j.rser.2005.06.002
38 Liu Y, Kuang Y Q, Huang N S (2008). Rural biogas development and greenhouse gas emission mitigation. China Population. Resources and Environment, 18(3): 48-53 (in Chinese)
39 Lu H F, Campbell D E, Li Z A, Ren H (2006). Emergy synthesis of an agro-forest restoration system in lower subtropical China. Ecol Eng, 27(3): 175-192
doi: 10.1016/j.ecoleng.2005.12.002
40 Meyer-Aurich A, Schattauer A, Hellebrand H J, Klauss H, Pl?chl M, Berg W (2012). Impact of uncertainties on greenhouse gas mitigation potential of biogas production from agricultural resources. Renew Energy, 37(1): 277-284
doi: 10.1016/j.renene.2011.06.030
41 Nguyen H X, Yamamoto R (2007). Modi?cation of ecological footprint evaluation method to include non-renewable resource consumption using thermodynamic approach. Resour Conserv Recycling, 51(4): 870-884
doi: 10.1016/j.resconrec.2007.01.004
42 Ozbilen A, Dincer I, Rosen M A (2012). Exergetic life cycle assessment of a hydrogen production process. Int J Hydrogen Energy, 37(7): 5665-5675
doi: 10.1016/j.ijhydene.2012.01.003
43 Patterson T, Esteves S, Dinsdale R, Guwy A (2011). Life cycle assessment of biogas infrastructure options on a regional scale. Bioresour Technol, 102(15): 7313-7323
doi: 10.1016/j.biortech.2011.04.063 pmid: 21616662
44 Pehnt M (2006). Dynamic life cycle assessment (LCA) of renewable energy technologies. Renew Energy, 31(1): 55-71
doi: 10.1016/j.renene.2005.03.002
45 Peng J Q, Lu L, Yang H X (2013). Review on life cycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems. Renew Sustain Energy Rev, 19: 255-274
doi: 10.1016/j.rser.2012.11.035
46 Poeschl M, Ward S, Owende P (2010). Prospects for expanded utilization of biogas in Germany. Renew Sustain Energy Rev, 14(7): 1782-1797
doi: 10.1016/j.rser.2010.04.010
47 Poeschl M, Ward S, Owende P (2012a). Environmental impacts of biogas deployment—Part II: life cycle assessment of multiple production and utilization pathways. J Clean Prod, 24: 184-201
doi: 10.1016/j.jclepro.2011.10.030
48 Poeschl M, Ward S, Owende P (2012b). Environmental impacts of biogas deployment—Part I: life cycle inventory for evaluation of production process emissions to airs. J Clean Prod, 24: 168-183
doi: 10.1016/j.jclepro.2011.10.039
49 Ramírez C A, Worrell E (2006). Feeding fossil fuels to the soil: an analysis of energy embedded and technological learning in the fertilizer industry. Resour Conserv Recycling, 46(1): 75-93
doi: 10.1016/j.resconrec.2005.06.004
50 Rehl T, Müller J (2011). Life cycle assessment of biogas digestate processing technologies. Resour Conserv Recycling, 56(1): 92-104
doi: 10.1016/j.resconrec.2011.08.007
51 Rehl T, Müller J (2013). CO2 abatement costs of greenhouse gas (GHG) mitigation by different biogas conversion pathways. J Environ Manage, 114: 13-25
doi: 10.1016/j.jenvman.2012.10.049 pmid: 23201599
52 Shao L, Wu Z, Chen G Q (2013). Exergy based ecological footprint accounting for China. Ecol Modell, 252: 83-96
doi: 10.1016/j.ecolmodel.2012.09.001
53 Simpson A P, Edwards C F (2013). The utility of environmental exergy analysis for decision making in energy. Energy, 55: 742-751
doi: 10.1016/
54 Talens Peiró L, Villalba Méndez G, Sciubba E, Gabarrell i Durany X (2010). Extended exergy accounting applied to biodiesel production. Energy, 35(7): 2861-2869
doi: 10.1016/
55 Tock J Y, Lai C L, Lee K T, Tan K T, Bhatia S (2010). Banana biomass as potential renewable energy resource: a Malaysian case study. Renew Sustain Energy Rev, 14(2): 798-805
doi: 10.1016/j.rser.2009.10.010
56 Vaneeckhaute C, Meers E, Michels E, Buysse J, Tack F M G (2013). Ecological and economic benefits of the application of bio-based mineral fertilizers in modern agriculture. Biomass Bioenergy, 49: 239-248
doi: 10.1016/j.biombioe.2012.12.036
57 Wei D H, Li W (2010). PLC and configuration software and its application in the process of the methane system. Journal of Agricultural Mechanization Research, (3): 196-198 (in Chinese)
58 Wei D Y, Yu T, Liu F, Niu L, Dong Z L, Xu Z C (2011). Economic effect of the clean development mechanism on the countryside biogas project. Journal of Arid Land Resources and Environment, (1): 176-179 (in Chinese)
59 Xi Y G, Qin P (2009). Emergy evaluation of organic rice-duck mutualism system. Ecol Eng, 35(11): 1677-1683
doi: 10.1016/j.ecoleng.2007.11.006
60 Xia Y, Massé D I, McAllister T A, Beaulieu C, Ungerfeld E (2012). Anaerobic digestion of chicken feather with swine manure or slaughterhouse sludge for biogas production. Waste Manag, 32(3): 404-409
doi: 10.1016/j.wasman.2011.10.024 pmid: 22088961
61 Xuan J, Leung M K H, Leung D, Ni M (2009). A review of biomass-derived fuel processors for fuel cell systems. Renew Sustain Energy Rev, 13(6-7): 1301-1313
doi: 10.1016/j.rser.2008.09.027
62 Yabe N (2013). Environmental and economic evaluations of centralized biogas plants running on cow manure in Hokkaido, Japan. Biomass Bioenergy, 49: 143-151
doi: 10.1016/j.biombioe.2012.12.001
63 Yang Q, Chen G (2013). Greenhouse gas emission of corn-ethanol production in China. Ecol Modell, 252: 176-184
doi: 10.1016/j.ecolmodel.2012.07.011
64 Yang Q, Chen G Q (2012). Nonrenewable energy cost of corn-ethanol in China. Energy Policy, 41: 340-347
doi: 10.1016/j.enpol.2011.10.055
65 Zeng X Y, Ma Y T, Ma L R (2007). Utilization of straw in biomass energy in China. Renew Sustain Energy Rev, 11(5): 976-987
doi: 10.1016/j.rser.2005.10.003
66 Zhang B, Chen G Q (2010). Physical sustainability assessment for the China society: exergy-based systems account for resources use and environmental emissions. Renew Sustain Energy Rev, 14(6): 1527-1545
doi: 10.1016/j.rser.2010.01.021
67 Zhang L X, Wang C B, Yang Z F, Chen B (2010). Carbon emissions from energy combustion in rural China. Procedia Environmental Sciences, 2: 980-989
doi: 10.1016/j.proenv.2010.10.110
68 Zhang W X, Sun G (2008). Potential of CDM project on agriculture and stockbreeding. Jiangxi Energy, 1: 21-23(in Chinese)
69 Zheng Y H, Li Z F, Feng S F, Lucas M, Wu G L, Li Y, Li C H, Jiang G M (2010). Biomass energy utilization in rural areas may contribute to alleviating energy crisis and global warming: a case study in a typical agro-village of Shandong, China. Renew Sustain Energy Rev, 14(9): 3132-3139
doi: 10.1016/j.rser.2010.07.052
70 Zhou M, Qiu L, Zou Z Y, Luo T (2010). The design of expert consulting system for the comprehensive utilization of biogas and residue of the rural biogas project. Journal of Agricultural Mechanization Research, 4: 179-181(in Chinese)
Full text