Please wait a minute...

Frontiers of Engineering Management

Front. Eng    2019, Vol. 6 Issue (3) : 351-367     https://doi.org/10.1007/s42524-019-0023-6
RESEARCH ARTICLE
Effects of design parameters on rooftop photovoltaic economics in the urban environment: A case study in Melbourne, Australia
Hongying ZHAO1, Rebecca YANG1(), Chaohong WANG2, W. M. Pabasara U. WIJERATNE1, Chengyang LIU1, Xiaolong XUE3, Nishara ABDEEN4
1. School of Property, Construction and Project Management, Royal Melbourne Institute of Technology, Melbourne, Australia
2. School of Architecture, Hebei University of Technology, Tianjin 300130, China
3. School of Business, Guangzhou University, Guangzhou 510006, China
4. Department of Building Economics, University of Moratuwa, Moratuwa, Sri Lanka
Download: PDF(2502 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Many researchers found high potential of adopting building photovoltaic (PV) systems in urban areas, especially on building rooftop, to improve the sustainability of urban environment. However, the optimal energy output performance and economic benefit of the PV system are affected by the usable roof area, PV array layout, and shading effect considering high city density. This study aims to understand the effects of these design parameters in the urban environment of rooftop PV’s economic performance. This study carries out a case study in the urban area of Melbourne with 90 PV designs under three shading conditions to generate 270 scenarios. Through a lifecycle cost-benefit analysis, including net present value (NPV), NPV per kW, internal return rate (IRR), and payback year, the results can help in developing a comprehensive understanding of the economic performance of rooftop PV designs that cover most of the urban areas of Melbourne. The optimal PV design scenarios for the urban environment are identified, thereby providing investors and industry professionals with useful information on value-for-money PV design. Meanwhile, the maximum shading loss that makes the PV systems financially unfeasible is investigated, and design scenarios with greatest ability to sustain the shading effect are identified. This research can also support the policy makers’ decision on the development and deployment of the roof PV systems in urban planning.

Keywords building photovoltaics      tilt and azimuth      orientation      shading analysis      economic analysis     
Corresponding Authors: Rebecca YANG   
Just Accepted Date: 20 March 2019   Online First Date: 24 April 2019    Issue Date: 04 September 2019
 Cite this article:   
Hongying ZHAO,Rebecca YANG,Chaohong WANG, et al. Effects of design parameters on rooftop photovoltaic economics in the urban environment: A case study in Melbourne, Australia[J]. Front. Eng, 2019, 6(3): 351-367.
 URL:  
http://journal.hep.com.cn/fem/EN/10.1007/s42524-019-0023-6
http://journal.hep.com.cn/fem/EN/Y2019/V6/I3/351
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hongying ZHAO
Rebecca YANG
Chaohong WANG
W. M. Pabasara U. WIJERATNE
Chengyang LIU
Xiaolong XUE
Nishara ABDEEN
Fig.1  3D modeling of case building and its surroundings
Fig.2  3D models for PV design scenarios when the tilt angle was 38°. Note: B stands for the building orientation; A stands for the azimuth angle of the PV arrays; T stands for the tilt angle of the PV arrays
Azimuth angle/(° ) Design scenarios
10° 20° 30° 38° 50° 60°
0 A0T10 A0T20 A0T30 A0T38 A0T50 A0T60
10 A10T10 A10T20 A10T30 A10T38 A10T50 A10T60
20 A20T10 A20T20 A20T30 A20T38 A20T50 A20T60
340 A340T10 A340T20 A340T30 A340T38 A340T50 A340T60
350 A350T10 A350T20 A350T30 A350T38 A350T50 A350T60
Tab.1  Thirty design scenarios on the basis of tilt and azimuth angles
Plane azimuth/(° ) Annual daily irradiation
10° 20° 30° 40° 50° 60° 70° 80° 90°
0 86% 93% 98% 100% 100% 98% 93% 86% 77% 67%
10 86% 92% 97% 99% 99% 97% 92% 85% 77% 67%
20 86% 92% 96% 99% 98% 96% 91% 84% 76% 67%
30 86% 92% 95% 97% 96% 94% 89% 83% 75% 66%
40 86% 91% 94% 95% 95% 92% 87% 81% 74% 65%
340 86% 92% 97% 99% 99% 97% 93% 86% 78% 68%
350 86% 93% 98% 100% 100% 98% 93% 87% 78% 67%
Tab.2  Annual daily irradiation on different plane inclination expressed as percentage of maximum value (source: Clean Energy Council, 2009)
Feature Description
Solar cell 156 mm×156 mm (6.1 in×6.1 in) polycrystalline silicon
No. of cells 60 (6×10)
Dimensions 1640 mm×992 mm× 35 mm (64.6 in×39.1 in×1.4 in)
Weight 18.2 kg (40.1 lb)
Front glass 3.2 mm (0.1 in) tempered glass
Frame Anodized aluminum alloy
Junction box IP67 rated (three bypass diodes)
Output cables TUV (2Pfg1169:2007), UL 4703, UL44
4.0 mm2 (0.006 in2), symmetrical lengths (-) 1000 mm (39.4 in) and (+) 1000 mm (39.4 in)
Connectors MC4 connectors
Optimum operating voltage (Vmp) 30.7 V
Optimum operating current (Imp) 8.15 A
Open circuit voltage (Voc) 37.4 V
Short circuit current (Isc) 8.63 A
Module efficiency 15.4%
Operating module temperature -40 °C to+85 °C
Maximum power at STC (Pmax) 250 W
Tab.3  Specification of PV module used in the study
Fig.3  Monthly solar irradiation value of the building block (Yang and Carre, 2018)
Benefits Values
Electricity rate 0.14 AUD per kW?h (0:00–7:00)
0.19 AUD per kW?h (7:00–24:00; Australian Energy Market Commission, 2017)
Electricity growth rate 5.42% per annum (Australian Energy Regulator, 2017)
Feed-in-tariff 0.113 AUD per kW?h (State Government of Victoria, 2018)
Tab.4  Benefits of applying PV designs
Fig.4  NPV of all the scenarios under three shading conditions
Fig.5  NPV per kW of all the scenarios under three shading conditions
Fig.6  PB of all the scenarios under three shading conditions
Fig.7  IRR of all the scenarios under three shading conditions
Building orientation Shading condition Parameter Best design Worst design Difference
Design scenario Value Design scenario Value
B0 7% NPV (7%) after 25 years A0T10 147595 A340T60 67560 118.46%
NPV per kW of system A20T38 2287 A0T10 1658 37.93%
Payback period (years) ? 11 A0T10 13 2 years
IRR A10T38 15.31% A0T10 13.33% 14.85%
Self-consumption ratio A340T60 99.29% A0T10 80.02% 24.08%
Total energy generation A0T10 2572243 A340T60 1002102 156.68%
19% NPV (7%) after 25 years A0T10 113972 A340T60 48,489. 135.05%
NPV per kW of system A10T38 1733 A0T10 1281 35.31%
Payback period (years) 13 ? 14 1 year
IRR A10T38 13.53% A0T10 12.00% 12.75%
Self-consumption ratio A340T60 99.78% A0T10 85.57% 16.61%
Total energy generation A0T10 2240341 A340T60 872798 156.68%
25% NPV (7%) after 25 years A0T10 95699 A340T60 38851 146.32%
NPV per kW of system A10T38 1452 A340T60 1043 39.19%
Payback period (years) ? 14 ? 15 1 year
IRR A10T38, A20T30 12.57% A0T10 11.26% 11.63%
Self-consumption ratio A340T60 99.93% A0T10 88.28% 13.20%
Total energy generation A0T10 2074390 A340T60 808147 156.68%
B10 7% NPV (7%) after 25 years A0T10 148280 A340T60 69712 112.70%
NPV per kW of system A20T38 2275 A0T10 1643 38.47%
Payback period (years) ? 11 A0T10 13 2 years
IRR A20T38 15.29% A0T10 13.28% 15.14%
Self-consumption ratio A340T60 99.13% A0T10 79.44% 24.79%
Total energy generation A0T10 2608370 A340T60 1035729 151.84%
19% NPV (7%) after 25 years A0T10 114565 A340T60 50074 128.79%
NPV per kW of system A10T38 1727 A0T10 1269 36.06%
Payback period (years) ? 13 ? 14 1 year
IRR A10T38 13.51% A0T10 11.96% 12.96%
Self-consumption ratio A340T60 99.68% A0T10 85.04% 17.22%
Total energy generation A0T10 2271806 A340T60 902087 151.84%
25% NPV (7%) after 25 years A0T10 96218 A340T60 40140 139.71%
NPV per kW of system A10T50 1456 A340T60 1,043 39.62%
Payback period (years) ? 14 ? 15 1 year
IRR A10T30 12.57% A340T60 11.13% 12.94%
Self-consumption ratio A340T60 99.87% A0T10 87.82% 13.72%
Total energy generation A0T10 2103524 A340T60 8352656 151.84%
B340 7% NPV (7%) after 25 years A0T10 146267 A340T60 72689 101.22%
NPV per kW of system A20T38, A10T38 2289 A350T10 1677 36.51%
Payback period (years) ? 11 A0T10, A350T10 13 2 years
IRR A10T38, A20T38 15.34% A350T10 13.39% 14.56%
Self-consumption ratio A20T60 99.05% A0T10 81.09% 22.15%
Total energy generation A0T10 2507215 A20T60 1061318 136.24%
19% NPV (7%) after 25 years A0T10 112816 A340T60 522656 115.85%
NPV per kW of system A10T38 1737 A350T10 1292 34.49%
Payback period (years) ? 12 ? 14 2 year
IRR A10T38, A20T30 13.54% A350T10 12.04% 12.46%
Self-consumption ratio A20T60 99.64% A0T10 86.51% 15.18%
Total energy generation A0T10 2183703 A20T60 924374 136.24%
25% NPV (7%) after 25 years A0T10 94687 A340T60 41927 125.84%
NPV per kW of system A10T30 1456 A340T60 1042 39.73%
Payback period (years) ? 14 ? 15 1 year
IRR A10T30 12.59% A340T60 11.13% 13.12%
Self-consumption ratio A20T60 99.85% A0T10 89.11% 12.05%
Total energy generation A0T10 2021947 A20T60 855902 136.24%
Tab.5  Summary of the best and worst design scenarios under three shading conditions
Fig.8  Maximum annual shading loss of all the design scenarios
Azimuth angle Annual daily irradiation/(kW?h?m−2?d−1)
T10 T20 T30 T38 T50 T60
A0 4.58 4.77 4.84 4.82 4.65 4.39
A10 4.59 4.78 4.85 4.83 4.66 4.41
A20 4.58 4.76 4.84 4.81 4.65 4.39
A340 4.54 4.70 4.75 4.71 4.52 4.26
A350 4.57 4.74 4.81 4.78 4.60 4.34
Tab.6  Annual daily irradiation (kW?h?m2?d1, source: NREL, 2018)
Name Building orientation/(° ) PV azimuth angle/(° ) PV tilt angle/(° ) Number of PV panels System capacity/kW
B0A0T10 0 0 10 356 89.00
B0A10T10 0 10 10 347 86.75
B0A20T10 0 20 10 320 80.00
B0A340T10 0 340 10 320 80.00
B0A350T10 0 350 10 347 86.75
B10A0T10 10 0 10 361 90.25
B10A10T10 10 10 10 339 84.75
B10A20T10 10 20 10 334 83.50
B10A340T10 10 340 10 320 80.00
B10A350T10 10 350 10 329 82.25
B340A0T10 340 0 10 347 86.75
B340A10T10 340 10 10 340 85.00
B340A20T10 340 20 10 319 79.75
B340A340T10 340 340 10 330 82.50
B340A350T10 340 350 10 347 86.75
B0A0T20 0 0 20 288 72.00
B0A10T20 0 10 20 262 65.50
B0A20T20 0 20 20 241 60.25
B0A340T20 0 340 20 243 60.75
B0A350T20 0 350 20 262 65.50
B10A0T20 10 0 20 282 70.50
B10A10T20 10 10 20 271 67.75
B10A20T20 10 20 20 252 63.00
B10A340T20 10 340 20 246 61.50
B10A350T20 10 350 20 254 63.50
B340A0T20 340 0 20 271 67.75
B340A10T20 340 10 20 258 64.50
B340A20T20 340 20 20 239 59.75
B340A340T20 340 340 20 254 63.50
B340A350T20 340 350 20 264 66.00
B0A0T30 0 0 30 237 59.25
B0A10T30 0 10 30 222 55.50
B0A20T30 0 20 30 199 49.75
B0A340T30 0 340 30 199 49.75
B0A350T30 0 350 30 222 55.50
B10A0T30 10 0 30 240 60.00
B10A10T30 10 10 30 220 55.00
B10A20T30 10 20 30 208 52.00
B10A340T30 10 340 30 204 51.00
B10A350T30 10 350 30 211 52.75
B340A0T30 340 0 30 228 57.00
B340A10T30 340 10 30 214 53.50
B340A20T30 340 20 30 193 48.25
B340A340T30 340 340 30 212 53.00
B340A350T30 340 350 30 224 56.00
B0A0T38 0 0 38 220 55.00
B0A10T38 0 10 38 197 49.25
B0A20T38 0 20 38 177 44.25
B0A340T38 0 340 38 177 44.25
B0A350T38 0 350 38 199 49.75
B10A0T38 10 0 38 216 54.00
B10A10T38 10 10 38 203 50.75
B10A20T38 10 20 38 186 46.50
B10A340T38 10 340 38 178 44.50
B10A350T38 10 350 38 190 47.50
B340A0T38 340 0 38 209 52.25
B340A10T38 340 10 38 192 48.00
B340A20T38 340 20 38 175 43.75
B340A340T38 340 340 38 186 46.50
B340A350T38 340 350 38 201 50.25
B0A0T50 0 0 50 195 48.75
B0A10T50 0 10 50 177 44.25
B0A20T50 0 20 50 158 39.50
B0A340T50 0 340 50 158 39.50
B0A350T50 0 350 50 179 44.75
B10A0T50 10 0 50 197 49.25
B10A10T50 10 10 50 178 44.5
B10A20T50 10 20 50 163 40.75
B10A340T50 10 340 50 158 39.50
B10A350T50 10 350 50 171 42.75
B340A0T50 340 0 50 190 47.50
B340A10T50 340 10 50 170 42.50
B340A20T50 340 20 50 159 39.75
B340A340T50 340 340 50 169 42.25
B340A350T50 340 350 50 179 44.75
B0A0T60 0 0 60 195 48.75
B0A10T60 0 10 60 171 42.75
B0A20T60 0 20 60 149 37.25
B0A340T60 0 340 60 149 37.25
B0A350T60 0 350 60 179 44.75
B10A0T60 10 0 60 190 47.50
B10A10T60 10 10 60 169 42.25
B10A20T60 10 20 60 153 38.25
B10A340T60 10 340 60 154 38.50
B10A350T60 10 350 60 161 40.25
B340A0T60 340 0 60 181 45.25
B340A10T60 340 10 60 164 41.00
B340A20T60 340 20 60 153 38.25
B340A340T60 340 340 60 161 40.25
B340A350T60 340 350 60 170 42.50
  Table A1 Summary of all 90 scenarios established by Skelion
1 Australian Energy Market Commission (2018). 2018 residential electricity price trends review. , 2018-8-15
2 Australian Energy Regulator (2017). State of the Energy Market-May 2017. Performance Report
3 K Bakirci (2012). General models for optimum tilt angles of solar panels: Turkey case study. Renewable & Sustainable Energy Reviews, 16(8): 6149–6159
https://doi.org/10.1016/j.rser.2012.07.009
4 S Bana, R P Saini (2017). Experimental investigation on power output of different photovoltaic array configurations under uniform and partial shading scenarios. Energy, 127: 438–453
https://doi.org/10.1016/j.energy.2017.03.139
5 P Bhattacharya, S Dey, B Mustaphi (2014). Some analytical studies on the performance of grid connected solar photovoltaic system with different parameters. Procedia Materials Science, 6: 1942–1950
https://doi.org/10.1016/j.mspro.2014.07.228
6 Y P Chang (2010). Optimal the tilt angles for photovoltaic modules in Taiwan. International Journal of Electrical Power & Energy Systems, 32(9): 956–964
https://doi.org/10.1016/j.ijepes.2010.02.010
7 City of Melbourne (2012). Thematic history: a history of the city of Melbourne’s urban environment.
8 Clean Energy Council (2009). Grid-Connected PV Systems System Design Guidelines for Accredited Designers
9 R Compagnon (2004). Solar and daylight availability in the urban fabric. Energy and Building, 36(4): 321–328
https://doi.org/10.1016/j.enbuild.2004.01.009
10 C Deline, J Meydbray, M Donovan, J Forrest (2012). Photovoltaic Shading Testbed for Module-Level Power Electronics. NREL Technical Report 5200-54876. Golden: National Renewable Energy Laboratory
11 S Freitas, C Reinhart, M C Brito (2018). Minimizing storage needs for large scale photovoltaics in the urban environment. Solar Energy, 159: 375–389
https://doi.org/10.1016/j.solener.2017.11.011
12 F Frontini, S M Bouziri, G Corbellini, V Medici (2016). S.M.O solution: an innovative design approach to optimize the output of BIPV systems located in dense urban environments. Energy Procedia, 91: 945–953
https://doi.org/10.1016/j.egypro.2016.06.261
13 B Horn (2011). Maximizing Performance: Determining the Relative Influence of Key Design Elements on the Performance Grid Connected Solar Photovoltaic Systems in Geraldton, Western Australia. Thesis for the Master’s Degree. Perth: Murdoch University
14 F Jafarkazemi, S A Saadabadi (2013). Optimum tilt angle and orientation of solar surfaces in Abu Dhabi, UAE. Renewable Energy, 56: 44–49
https://doi.org/10.1016/j.renene.2012.10.036
15 M Jantsch, M Stoll, W Roth, R Kaiser, H Schmidt, J Schmid (1991). The effect of tilt angle and voltage conditions on PV system performance an experimental investigation. In: Luque A, Sala G, Palz W, Dos Santos G, Helm P, eds. Tenth E.C. Photovoltaic Solar Energy Conference. Dordrecht: Springer, 431–434
https://doi.org/10.1007/978-94-011-3622-8_110
16 T O Kaddoura, M A M Ramli, Y A Al-Turki (2016). On the estimation of the optimum tilt angle of PV panel in Saudi Arabia. Renewable & Sustainable Energy Reviews, 65: 626–634
https://doi.org/10.1016/j.rser.2016.07.032
17 S F Khahro, K Tabbassum, S Talpur, M B Alvi, X Liao, L Dong (2015). Evaluation of solar energy resources by establishing empirical models for diffuse solar radiation on tilted surface and analysis for optimum tilt angle for a prospective location in southern region of Sindh, Pakistan. International Journal of Electrical Power & Energy Systems, 64: 1073–1080
https://doi.org/10.1016/j.ijepes.2014.09.001
18 N M Loulas, M M Karteris, P A Pilavachi, A M Papadopoulos (2012). Photovoltaics in urban environment: a case study for typical apartment buildings in Greece. Renewable Energy, 48: 453–463
https://doi.org/10.1016/j.renene.2012.06.009
19 J Melius, R Margolis, S Ong (2013). Estimating Rooftop Suitability for PV: A Review of Methods, Patents, and Validation Techniques. NREL Technical Report 6A20-60593. Golden: National Renewable Energy Laboratory
20 N Mohajeri, G Upadhyay, A Gudmundsson, D Assouline, J Kämpf, J L Scartezzini (2016). Effects of urban compactness on solar energy potential. Renewable Energy, 93: 469–482
https://doi.org/10.1016/j.renene.2016.02.053
21 J D Mondol, Y G Yohanis, B Norton (2007). The impact of array inclination and orientation on the performance of a grid-connected photovoltaic system. Renewable Energy, 32(1): 118–140
https://doi.org/10.1016/j.renene.2006.05.006
22 National Centers for Environmental Information (2018). Magnetic declination. , 2018-6-2
23 H T Nguyen, J M Pearce (2012). Incorporating shading losses in solar photovoltaic potential assessment at the municipal scale. Solar Energy, 86(5): 1245–1260
https://doi.org/10.1016/j.solener.2012.01.017
24 NREL (2018). PVWatts calculator. , 2018-5-20
25 Office of Best Practice Regulation (2016). Cost-benefit analysis guidance note. , 2018-6-2
26 P Redweik, C Catita, M Brito (2013). Solar energy potential on roofs and facades in an urban landscape. Solar Energy, 97: 332–341
https://doi.org/10.1016/j.solener.2013.08.036
27 I H Rowlands, B P Kemery, I Beausoleil-Morrison (2011). Optimal solar-PV tilt angle and azimuth: an Ontario (Canada) case-study. Energy Policy, 39(3): 1397–1409
https://doi.org/10.1016/j.enpol.2010.12.012
28 J J Sarralde, D J Quinn, D Wiesmann, K Steemers (2015). Solar energy and urban morphology: scenarios for increasing the renewable energy potential of neighbourhoods in London. Renewable Energy, 73: 10–17
https://doi.org/10.1016/j.renene.2014.06.028
29 R Singh, R Banerjee (2016). Impact of solar panel orientation on large scale rooftop solar photovoltaic scenario for Mumbai. Energy Procedia, 90: 401–411
https://doi.org/10.1016/j.egypro.2016.11.207
30 State Government of Victoria (2018). Victorian feed-in tariff. , 2018-6-2
31 P Talebizadeh, M A Mehrabian, M Abdolzadeh (2011). Prediction of the optimum slope and surface azimuth angles using the genetic algorithm. Energy and Building, 43(11): 2998–3005
https://doi.org/10.1016/j.enbuild.2011.07.013
32 University of Melbourne (2008). Grid plan. , 2018-6-1
33 W M P U Wijeratne, R J Yang, E Too, R Wakefield (2018). Design and development of distributed solar PV systems: do the current tools work? Sustainable Cities and Society, 45: 553–578
https://doi.org/10.1016/j.scs.2018.11.035
34 M S Wong, R Zhu, Z Liu, L Lu, J Peng, Z Tang, C H Lo, W K Chan (2016). Estimation of Hong Kong’s solar energy potential using GIS and remote sensing technologies. Renewable Energy, 99: 325–335
https://doi.org/10.1016/j.renene.2016.07.003
35 A Woyte, J Nijs, R Belmans (2003). Partial shadowing of photovoltaic arrays with different system configurations: literature review and field test results. Solar Energy, 74(3): 217–233
https://doi.org/10.1016/S0038-092X(03)00155-5
36 R J Yang, A Carre (2018). A feasibility study and assessment: distributed solar system in high-density areas. In: Rajagopalan P, Andamon M M, Moore T, eds. Energy Performance in the Australian Built Environment. Singapore: Springer, 167–181
https://doi.org/10.1007/978-981-10-7880-4_11
37 C Zomer, A Nobre, T Reindl, R Rüther (2016). Shading analysis for rooftop BIPV embedded in a high-density environment: a case study in Singapore. Energy and Building, 121: 159–164
https://doi.org/10.1016/j.enbuild.2016.04.010
38 C Zomer, A Nobre, D Yang, T Reindl, R Rüther (2014). Performance analysis for BIPV in high-rise, high-density cities: a case study in Singapore. In: Proceedings of the 6th World Conference on Photovoltaic Energy Conversion, Kyoto, Japan, 1151–1152
Related articles from Frontiers Journals
[1] An Wang. Management and Practice of Large-Scale Modern Coal Enterprises[J]. Front. Eng, 2014, 1(1): 13-17.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed