Novel strategies for enhanced fluorescence visualization of glioblastoma tumors based on HPMA copolymers conjugated with tumor targeting and/or cell-penetrating peptides

Eliška Grosmanová , Robert Pola , Marcela Filipová , Maxime Henry , Jean-Luc Coll , Tomáš Etrych

VIEW ›› 2024, Vol. 5 ›› Issue (3) : 20230116

PDF
VIEW ›› 2024, Vol. 5 ›› Issue (3) : 20230116 DOI: 10.1002/VIW.20230116
RESEARCH ARTICLE

Novel strategies for enhanced fluorescence visualization of glioblastoma tumors based on HPMA copolymers conjugated with tumor targeting and/or cell-penetrating peptides

Author information +
History +
PDF

Abstract

Nano-sized polymer systems are often used as carriers for drugs and contrast agents to increase circulation time and solubility and to reduce possible side effects. These nanomedicines usually accumulate in tumor tissue due to the enhanced permeability and retention (EPR) effect. However, a targeting group may be attached to the polymer carrier in addition to the active substance to further increase tumor accumulation and specificity. In this study, the oligopeptide sequence RGD was chosen to target αvβ3 integrins overexpressed in the tumor vasculature and on some tumor cells. A set of polymer conjugates bearing a fluorescent dye and RGD peptide of different structures (linear, cyclic, branched) was prepared for use in tumor diagnosis, with a potential future application in navigated surgery. The accumulation of the most promising candidate, a targeted fluorescent nanoprobe, increased by 35%in glioblastoma tumors compared to the non-targeted control, which accumulated only due to the EPR effect. However, the administration of a polymer-boundmodified cilengitide as an antiangiogenic treatment did not show a beneficial effect in the suppression of angiogenesis.

Keywords

cell-penetrating peptides / diagnostics / HPMA copolymers / RGD sequence / tumor angiogenesis

Cite this article

Download citation ▾
Eliška Grosmanová, Robert Pola, Marcela Filipová, Maxime Henry, Jean-Luc Coll, Tomáš Etrych. Novel strategies for enhanced fluorescence visualization of glioblastoma tumors based on HPMA copolymers conjugated with tumor targeting and/or cell-penetrating peptides. VIEW, 2024, 5(3): 20230116 DOI:10.1002/VIW.20230116

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. Pierschbacher, E. G. Hayman, E. Ruoslahti, Proc. Natl. Acad. Sci. U. S. A. 1983, 50, 1224.

[2]

F. Danhier, A. Le Breton, V. Preat, Mol. Pharm. 2012, 9, 2961.

[3]

R. Haubner, D. Finsinger, H. Kessler, Angew. Chem. 1997, 36, 1374.

[4]

D. A. Reardon, K. L. Fink, T. Mikkelsen, T. F. Cloughesy, A. O’Neill, S. Plotkin, M. Glantz, P. Ravin, J. J. Raizer, K. M. Rich, D. Schiff, W. R. Shapiro, S. Burdette-Radoux, E. J. Dropcho, S. M. Wittemer, J. Nippgen, M. Picard, L. Burt Nabors, J. Clin. Oncol. 2008, 26, 5610.

[5]

R. Soffietti, E. Trevisan, R. Rudà, Expert Rev. Neurother. 2014, 14, 1.

[6]

T. Teesalu, K. N. Sugahara, V. R. Kotamraju, E. Ruoslahti, Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 16157.

[7]

M. Barczyk, S. Carracedo, D. Gullberg, Cell Tissue Res. 2010, 339, 269.

[8]

D. Duret, A. Grassin, M. Henry, T. Jacquet, F. Thoreau, S. Denis-Quanquin, J. L. Coll, D. Boturyn, A. Favier, M. T. Charreyre, Bioconjug. Chem. 2017, 28, 2241.

[9]

E. Garanger, D. Boturyn, Z. Jin, P. Dumy, M. C. Favrot, J. L. Coll, Mol. Ther. 2005, 12, 1168.

[10]

L. Sancey, E. Garanger, S. Foillard, G. Schoehn, A. Hurbin, C. Albiges Rizo, D. Boturyn, C. Souchier, A. Grichine, P. Dumy, D. Pascal, J. L. Coll, C. Jean-Luc, Mol. Ther. 2009, 17, 837.

[11]

S. Foillard, Z. H. Jin, E. Garanger, D. Boturyn, M. C. Favrot, J. L. Coll, P. Dumy, ChemBioChem. 2008, 9, 2326.

[12]

T. Jia, J. Ciccione, T. Jacquet, M. Maurel, T. Montheil, A. Mehdi, J. Martinez, B. Eymin, G. Subra, J. L. Coll, Int. J. Pharm. 2019, 568, 118507.

[13]

A. Karageorgis, M. Claron, R. Jugé, C. Aspord, F. Thoreau, C. Leloup, J. Kucharczak, J. Plumas, M. Henry, A. Hurbin, P. Verdie, J. Martinez, G. Subra, P. Dumy, D. Boturyn, A. Aouacheria, J. L. Coll, Mol. Ther. 2017, 25, 534.

[14]

Z. Zhen, W. Tang, H. Chen, X. Lin, T. Todd, G. Wang, T. Cowger, X. Chen, J. Xie, ACS Nano 2013, 7, 4830.

[15]

A. J. Li, Y. H. Zheng, G. D. Liu, W. S. Liu, P. C. Cao, Z. F. Bu, Mol. Med. Rep. 2015, 11, 3078.

[16]

M. P. Borgman, O. Aras, S. Geyser-Stoops, E. A. Sausville, H. Ghandehari, Mol. Pharm. 2009, 6, 1836.

[17]

F. Biscaglia, G. Ripani, S. Rajendran, C. Benna, S. Mocellin, G. Bocchinfuso, M. Meneghetti, A. Palleschi, M. Gobbo, ACS Appl. Nano Mater. 2019, 2, 6436.

[18]

A. Mitra, A. Nan, B. R. Line, H. Ghandehari, Nanotechnol. Cancer Ther. 2006, 12, 4729.

[19]

I. Atallah, C. Milet, M. Henry, V. Josserand, E. Reyt, J. L. Coll, A. Hurbin, C. A. Righini, Head Neck 2016, 38, E246.

[20]

C. H. F. Wenk, F. Ponce, S. Guillermet, C. Tenaud, D. Boturyn, P. Dumy, D. Watrelot-Virieux, C. Carozzo, V. Josserand, J. L. Coll, Cancer Lett. 2013, 334, 188.

[21]

T. Etrych, V. Šubr, J. Strohalm, M. Širova, B. Řihova, K. Ulbrich, J. Control. Release 2012, 164, 346.

[22]

E. Böhmová, R. Pola, M. Pechar, J. Parnica, D. Machová, O. Janoušková, T. Etrych, Pharmaceutics 2020, 12, 59.

[23]

G. D. Maurer, I. Tritschler, B. Adams, G. Tabatabai, W. Wick, R. Stupp, M. Weller, Neuro. Oncol. 2009, 11, 747.

[24]

X. Zhang, X. Li, H. Hua, A. Wang, W. Liu, Y. Li, F. Fu, Y. Shi, K. Sun, Int. J. Nanomed. 2017, 12, 5717.

[25]

C. Mas-Moruno, F. Rechenmacher, H. Kessler, Anticancer Agents Med. Chem. 2011, 10, 753.

[26]

Z. Y. Soe, E. J. Park, M. Shimaoka, Int. J. Mol. Sci. 2021, 22, 1.

[27]

D. Boturyn, J. L. Coll, E. Garanger, M. C. Favrot, P. Dumy, J. Am. Chem. Soc. 2004, 126, 5730.

[28]

R. E. Nisato, J. C. Tille, A. Jonczyk, S. L. Goodman, M. S. Pepper, Angiogenesis 2003, 6, 105.

[29]

Y. Chen, D. Chen, W. Hu, G. Lin, S. Huang, Int. J. Clin. Exp. Med. 2015, 8, 15482.

[30]

R. Satchi-Fainaro, J. Drug Target. 2002, 10, 529.

[31]

A. Karageorgis, S. Dufort, L. Sancey, M. Henry, S. Hirsjarvi, C. Passirani, J. P. Benoit, J. Gravier, I. Texier, O. Montigon, M. Benmerad, V. Siroux, E. L. Barbier, J.-L. Coll, Sci. Rep. 2016, 6, 21417.

[32]

K. Ulbrich, V. Šubr, J. Strohalm, D. Plocová, M. Jelínková, B. Říhová, J. Control. Release 2000, 64, 63.

[33]

R. Pola, V. Král, S. K. Filippov, L. Kaberov, T. Etrych, I. Sieglová, J. Sedláček, M. Fábry, M. Pechar, Biomacromolecules 2019, 20, 412.

[34]

S. Perrier, P. Takolpuckdee, C. A. Mars, Macromolecules 2005, 38, 2033.

[35]

R. Pola, M. Studenovsky, M. Pechar, K. Ulbrich, O. Hovorka, D. Vetvicka, B. Rihova, J. Drug Target. 2009, 17, 763.

[36]

V. Krchňák, J. Vágner, M. Lebl, Int. J. Pept. Protein Res. 1988, 32, 415.

[37]

R. Pola, E. Böhmová, M. Filipová, M. Pechar, J. Pankrác, D. Větvička, T. Olejár, M. Kabešová, P. Poučková, L. Šefc, M. Zábrodský, O. Janoušková, J. Bouček, T. Etrych, Pharmaceutics 2020, 12, 1.

[38]

Z. H. Jin, V. Josserand, S. Foillard, D. Boturyn, P. Dumy, M. C. Favrot, J. L. Coll, Mol. Cancer 2007, 6, 41.

[39]

A. Briat, C. H. F. Wenk, M. Ahmadi, M. Claron, D. Boturyn, V. Josserand, P. Dumy, D. Fagret, J. L. Coll, C. Ghezzi, L. Sancey, J.-P. Vuillez, Cancer Sci. 2012, 103, 1105.

[40]

C. Rüegg, A. Yilmaz, G. Bieler, J. Bamat, P. Chaubert, F. J. Lejeune, Nat. Med. 1998, 4, 408.

[41]

X. Wang, X. Xie, G. Ku, L. V. Wang, G. Stoica, J. Biomed. Opt. 2006, 11, 24015.

RIGHTS & PERMISSIONS

2024 The Authors. View published by Shanghai Fuji Technology Consulting Co., Ltd, authorized by Professional Community of Experimental Medicine, National Association of Health Industry and Enterprise Management (PCEM) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

229

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/