CRISPR/Cas12a-loaded intelligent DNA hydrogel for universal and ultrasensitive exosome assay

Jie Luo, Binpan Wang, Xiaoqi Tang, Ping Huang, Sha Yang, Shuang Zhao, Shuang Xie, Qiaofeng Li, Kai Chang, Ming Chen

VIEW ›› 2024, Vol. 5 ›› Issue (2) : 20230086.

PDF
VIEW ›› 2024, Vol. 5 ›› Issue (2) : 20230086. DOI: 10.1002/VIW.20230086
RESEARCH ARTICLE

CRISPR/Cas12a-loaded intelligent DNA hydrogel for universal and ultrasensitive exosome assay

Author information +
History +

Abstract

Tumor-derived exosomes are crucial for early non-invasive and accurate tumor diagnosis in clinical diagnostics. The development of highly sensitive, simple, and intuitive exosome assays has sparked a research upsurge in clinical diagnostics. Here, we develop a bio-responsive intelligent DNA hydrogel loaded with CRISPR/Cas12a for universal and ultrasensitive detection of the exosomes. The aptamer serves as the target response unit and switch, competitively disintegrating the region of the DNA linkers and then Cas12a/crRNA was released and activated, resulting in a high fluorescent intensity for exosome detection at the detection limit of 119 particles/µL. Moreover, a constructed colorimetric tube is made by loading a colorimetric filter membrane on the tube lid and intelligent DNA hydrogel on the tube bottom, which enables one-pot portable colorimetric detection. Without the need for laboratory instruments and professionals, this strategy allows for naked eye detection with limit of detection as low as 104 particles/µL, and shows great applicability in distinguishing between healthy individuals, pretreatment patients, and post-treatment patients after obtaining a testable analyte. In this study, an ultrasensitive detection platform for exosomes that enables one-step sensing and dual signal output was introduced. The findings here suggest that this platform is a promising tool for the application of liquid biopsy based on exosomes in clinical diagnosis.

Keywords

colorimetric / CRISPR/Cas / exosomes / fluorescence / intelligent DNA hydrogel

Cite this article

Download citation ▾
Jie Luo, Binpan Wang, Xiaoqi Tang, Ping Huang, Sha Yang, Shuang Zhao, Shuang Xie, Qiaofeng Li, Kai Chang, Ming Chen. CRISPR/Cas12a-loaded intelligent DNA hydrogel for universal and ultrasensitive exosome assay. VIEW, 2024, 5(2): 20230086 https://doi.org/10.1002/VIW.20230086

References

[1]
R.Kalluri, V. S.LeBleu, Science 2020, 367, eaau6977.
[2]
P.Zhang, X.Wu, G.Gardashova, Y.Yang, Y.Zhang, L.Xu, Y.Zeng, Sci. Transl. Med. 2020, 12, eaaz2878.
[3]
H.Cheng, Q.Yang, R.Wang, R. Luo, S.Zhu, M.Li, W.Li, C.Chen, Y. Zou, Z.Huang, T.Xie, S.Wang, H.Zhang, Q. Tian, Int. J. Mol. Sci. 2022, 23, 868.
CrossRef Google scholar
[4]
K.Mei, T.Yan, Y.Wang, D. Rao, Y.Peng, W.Wu, Y.Chen, M.Ren, J. Yang, S.Wu, Q.Zhang, Small 2022, 19, 9.
[5]
X.Fang, C.Chen, B.Liu, Z. Ma, F.Hu, H.Li, H.Gu, H.Xu, Acta Biomater. 2021, 124, 336.
CrossRef Google scholar
[6]
Y.Tian, M.Gong, Y.Hu, H.Liu, W.Zhang, M. Zhang, X.Hu, D.Aubert, S.Zhu, L.Wu, X.Yan, J. Extracell. Vesicles 2019, 9, 1697028.
CrossRef Google scholar
[7]
A.Kim, W.Bernt, N.-J.Cho, Anal. Chem. 2019, 91, 9508.
CrossRef Google scholar
[8]
K.Boriachek, M. N.Islam, A.Moller, C. Salomon, N. T.Nguyen, M. S. A.Hossain, Y. Yamauchi, M. J. A.Shiddiky, Small 2018, 14, 1702153.
[9]
S.Wang, L.Zhang, S.Wan, S. Cansiz, C.Cui, Y.Liu, R.Cai, C.Hong, I. T. Teng, M.Shi, Y.Wu, Y.Dong, W.Tan, ACSNano 2017, 11, 3943.
CrossRef Google scholar
[10]
Y.Li, Y.Ma, X.Jiao, T. Li, Z.Lv, C. J.Yang, X.Zhang, Y.Wen, Nat. Commun. 2019, 10, 1036.
[11]
P.Song, D.Ye, X.Zuo, J. Li, J.Wang, H.Liu, M. T.Hwang, J.Chao, S. Su, L.Wang, J.Shi, L.Wang, W.Huang, R. Lal, C.Fan, Nano Lett. 2017, 17, 5193.
CrossRef Google scholar
[12]
D.Liu, S.Jia, H.Zhang, Y. Ma, Z.Guan, J.Li, Z.Zhu, T.Ji, C. J.Yang, ACS Appl. Mater. Interfaces 2017, 9, 22252.
CrossRef Google scholar
[13]
M.Chen, Y.Wang, X.Zhao, J. Zhang, Y.Peng, J.Bai, S.Li, D.Han, S. Ren, K.Qin, S.Li, T.Han, Z.Gao, Talanta 2022, 243, 123338.
CrossRef Google scholar
[14]
M.Chen, J.Zhang, Y.Peng, J. Bai, S.Li, D.Han, S.Ren, K.Qin, H. Zhou, T.Han, Y.Wang, Z.Gao, Biosens. Bioelectron. 2022, 218, 114792.
CrossRef Google scholar
[15]
F.Liu, Y.Yang, X.Wan, H. Gao, Y.Wang, J.Lu, L. P.Xu, S.Wang, ACS Nano 2022, 16, 6266.
CrossRef Google scholar
[16]
J.Ping, W.Wu, L.Qi, J.Liu, J.Liu, B. Zhao, Q.Wang, L.Yu, J.-M.Lin, Q.Hu, Biosens. Bioelectron. 2021, 192, 113548.
CrossRef Google scholar
[17]
Z.Wang, R.Chen, Y.Hou, Y. Qin, S.Li, S.Yang, Z.Gao, Anal. Chim. Acta 2022, 1228, 340312.
CrossRef Google scholar
[18]
X.He, H.Jia, N.Sun, M. Hou, Z.Tan, X.Lu, Int. J. Biol. Macromol. 2022, 213, 955.
CrossRef Google scholar
[19]
M.Chen, J.Zhang, Y.Peng, J. Bai, S.Li, D.Han, S.Ren, K.Qin, H. Zhou, T.Han, Y.Wang, Z.Gao, Biosens. Bioelectron. 2022, 218, 114792.
CrossRef Google scholar
[20]
C.Liu, S.Gou, Y.Bi, Q.Gao, J.Sun, S. Hu, W.Guo, Biosens. Bioelectron. 2022, 210, 114290.
CrossRef Google scholar
[21]
H.Kim, S.Lee, J.Yoon, J. Song, H. G.Park, Biosens. Bioelectron. 2021, 194, 113587.
CrossRef Google scholar
[22]
F.Song, Y.Wei, P.Wang, X. Ge, C.Li, A.Wang, Z.Yang, Y.Wan, J. Li, Biosens. Bioelectron. 2021, 185, 113262.
CrossRef Google scholar
[23]
Z.-H.Xu, Z.-Y.Zhao, H.Wang, S.-M. Wang, H.-Y.Chen, J.-J.Xu, Anal. Chim. Acta 2021, 1188, 339180.
CrossRef Google scholar
[24]
Y.Wang, Y.Peng, S.Li, D.Han, S.Ren, K. Qin, H.Zhou, T.Han, Z.Gao, J. Hazard. Mater. 2023, 449, 131044.
CrossRef Google scholar
[25]
M.Liu, W.Ma, Y.Zhou, B. Liu, X.Zhang, S.Zhang, ACS Sens. 2022, 7, 3153.
CrossRef Google scholar
[26]
W.Tong, X.Song, C.Gao, Chem. Soc. Rev. 2012, 41, 6103.
CrossRef Google scholar
[27]
W.Ma, M.Liu, S.Xie, B. Liu, L.Jiang, X.Zhang, X.Yuan, Anal. Chim. Acta 2022, 1231, 340439.
CrossRef Google scholar
[28]
F.Qiu, X.Gan, J.Yao, B. Jiang, R.Yuan, Y.Xiang, Biosens. Bioelectron. 2022, 216, 114665.
CrossRef Google scholar
[29]
Y. H.Roh, C. Y.Lee, S.Lee, H. Kim, A.Ly, C. M.Castro, J.Cheon, J. H.Lee, H. Lee, Adv. Sci. 2023, 10, e2206872.
[30]
H.-Y.Wang, P.-F.Liu, X.-M.Hang, K.-R. Zhao, L.Wang, Sens. Actuators B 2022, 372, 132691.
CrossRef Google scholar
[31]
S.Zhou, H.Sun, J.Dong, P. Lu, L.Deng, Y.Liu, M.Yang, D.Huo, C. Hou, Anal. Chim. Acta 2023, 1265, 341278.
CrossRef Google scholar
[32]
Y.Yu, W. S.Zhang, Y.Guo, H. Peng, M.Zhu, D.Miao, G.Su, Biosens. Bioelectron. 2020, 167, 112482.
CrossRef Google scholar
[33]
Q.Wang, Y.Hu, N.Jiang, J. Wang, M.Yu, X.Zhuang, Bioconjug. Chem. 2020, 31, 813.
CrossRef Google scholar
[34]
Z. H.Xu, Z. Y.Zhao, H.Wang, S. M. Wang, H. Y.Chen, J. J.Xu, Anal. Chim. Acta 2021, 1188, 339180.
CrossRef Google scholar
[35]
J.Kang, Y.Zhang, X.Li, L.Miao, A.Wu, ACS Appl. Mater. Interfaces 2016, 8, 1.
[36]
M.Nixon, F.Outlaw, T. S.Leung, PLoS One 2020, 15, e0230561.
CrossRef Google scholar
[37]
H.Liu, T.Cao, Y.Xu, Y.Dong, D.Liu, Int. J. Mol. Sci. 2018, 19, 1633.
CrossRef Google scholar
[38]
L.Mashouri, H.Yousefi, A. R.Aref, A. m.Ahadi, F.Molaei, S. K.Alahari, Mol. Cancer 2019, 18, 75.
[39]
M.Chen, Y.Wang, J.Zhang, Y. Peng, S.Li, D.Han, S.Ren, K.Qin, S. Li, Z.Gao, J. Nanobiotechnol. 2022, 20, 40.

RIGHTS & PERMISSIONS

2024 2024 The Authors. View published by Shanghai Fuji Technology Consulting Co., Ltd, authorized by Professional Community of Experimental Medicine, National Association of Health Industry and Enterprise Management (PCEM) and John Wiley & Sons Australia, Ltd.
PDF

Accesses

Citations

Detail

Sections
Recommended

/