Three-dimensional printed biomimetic multilayer scaffolds coordinated with sleep-related small extracellular vesicles: A strategy for extracellular matrix homeostasis andmacrophage polarization to enhance osteochondral regeneration

Xu-Ran Li, Qing-Song Deng, Po-Lin Liu, Shu-Hang He, Yuan Gao, Zhan-Ying Wei, Chang-Ru Zhang, Fei Wang, Xiao-Qiu Dou, Helen Dawes, Shang-Chun Guo, Shi-Cong Tao

PDF
VIEW ›› 2024, Vol. 5 ›› Issue (2) : 20230069. DOI: 10.1002/VIW.20230069
RESEARCH ARTICLE

Three-dimensional printed biomimetic multilayer scaffolds coordinated with sleep-related small extracellular vesicles: A strategy for extracellular matrix homeostasis andmacrophage polarization to enhance osteochondral regeneration

Author information +
History +

Abstract

Cartilage defects resulting from injury or degeneration are a common clinical problem, and due to its avascular nature, articular cartilage has poor self-healing capacity. Three-dimensional (3D) bioprinting has attracted great attention in tissue engineering. Melatonin (MT), a hormone mainly secreted at night, plays an important role in tissue repair. Small extracellular vesicles (sEV) are considered ideal drug delivery vehicles and MT-sEV (sleep-related sEV) have the potential ability to promote cartilage regeneration. Here, biomimetic multilayer scaffolds were fabricated using 3D bioprinting. A double network hydrogel, composed of methacrylated hyaluronic acid and gelatin methacryloyl (HG), was prepared. MT-sEV and HG hydrogel were used to create a cartilage layer. A bone layer was formed using poly(ϵ-caprolactone) and hydroxyapatite ultralong nanowires. Additionally, two bioinks were alternately printed at the interface layer. The results of RNA sequencing revealed the potential regulatory mechanisms. MTsEV showed promotional effects on cell migration, proliferation, chondrogenic differentiation, and extracellular matrix (ECM) deposition. Moreover, MT-sEV altered macrophage polarization and regulated the expression of inflammatory cytokines. In vivo experiments demonstrated that the biomimetic multilayer scaffolds promoted cartilage regeneration. These experiments demonstrated the ability of MT-sEV to regulate the immune microenvironment and promote the secretion of ECM, providing a promising strategy for cartilage regeneration.

Keywords

3D bioprinting / cartilage regeneration / cartilage tissue engineering / hydrogels / small extracellular vesicles

Cite this article

Download citation ▾
Xu-Ran Li, Qing-Song Deng, Po-Lin Liu, Shu-Hang He, Yuan Gao, Zhan-Ying Wei, Chang-Ru Zhang, Fei Wang, Xiao-Qiu Dou, Helen Dawes, Shang-Chun Guo, Shi-Cong Tao. Three-dimensional printed biomimetic multilayer scaffolds coordinated with sleep-related small extracellular vesicles: A strategy for extracellular matrix homeostasis andmacrophage polarization to enhance osteochondral regeneration. VIEW, 2024, 5(2): 20230069 https://doi.org/10.1002/VIW.20230069

References

[1]
B.Xu, J.Ye, F.-Z.Yuan, J.-Y. Zhang, Y.-R.Chen, B.-S.Fan, D.Jiang, W.-B.Jiang, X. Wang, J.-K.Yu, Front. Bioeng. Biotechnol. 2020, 8, 247.
[2]
C.Becher, M. A.Malahias, M. M.Ali, N.Maffulli, H.Thermann, Knee Surg. Sports Traumatol. Arthrosc. 2019, 27, 2731.
CrossRef Google scholar
[3]
J.Elayyan, I.Carmon, L.Zecharyahu, G.Batshon, Y. H.Maatuf, E.Reich, M.Dumont, L.Kandel, M.Klutstein, M.Dvir-Ginzberg, Proc. Natl.Acad. Sci. U. S. A. 2022, 119, e2116855119.
[4]
M.-L.Ji, H.Jiang, Z.Li, R.Geng, J. Z.Hu, Y. C. Lin, J.Lu, Nat. Commun. 2022, 13, 7658.
[5]
Y.Lei, X.Wang, J.Liao, J. Shen, Y.Li, Z.Cai, N.Hu, X.Luo, W. Cui, W.Huang, Bioactive Mater. 2022, 16, 472.
CrossRef Google scholar
[6]
T. L.Fernandes, A. H.Gomoll, C.Lattermann, A. J.Hernandez, D. F.Bueno, M. T.Amano, Front. Immunol. 2020, 11, 111.
[7]
J.Yin, H.Zeng, K.Fan, H. Xie, Y.Shao, Y.Lu, J.Zhu, Z.Yao, L. Liu, H.Zhang, B.Luo, X.Wang, C.Zeng, X. Bai, H.Zhang, D.Cai, Cell Death. Dis. 2022, 13, 567.
[8]
J.Yang, X.Zhang, J.Chen, B. C. Heng, Y.Jiang, X.Hu, Z.Ge, J. Cell. Physiol. 2022, 237, 2258.
CrossRef Google scholar
[9]
S.Wang, S.Zhao, J.Yu, Z.Gu, Y.Zhang, Small 2022, 18, e2201869.
[10]
J.Wang, D.Huang, H.Yu, Y.Cheng, H.Ren, Y. Zhao, Eng. Regen. 2022, 3, 80.
CrossRef Google scholar
[11]
Y.Zhu, B.Kong, R.Liu, Y. Zhao, Smart Med. 2022, 1, e20220006.
[12]
C.Li, W.Zhang, Y.Nie, D. Jiang, J.Jia, W.Zhang, L.Li, Z.Yao, L. Qin, Y.Lai, Adv. Funct. Mater. 2023, 33, 2214158.
[13]
Y.Liu, L.Peng, L.Li, C.Huang, K.Shi, X. Meng, P.Wang, M.Wu, L.Li, H.Cao, K. Wu, Q.Zeng, H.Pan, W. W.Lu, L.Qin, C. Ruan, X.Wang, Biomaterials 2021, 279, 121216.
CrossRef Google scholar
[14]
C.Meng, D.Tang, X.Liu, J. Meng, W.Wei, R. H.Gong, J.Li, Int. J. Biol. Macromol. 2023, 235, 123781.
CrossRef Google scholar
[15]
G.-J.Huang, H.-P.Yu, X.-L.Wang, B.-B. Ning, J.Gao, Y.-Q.Shi, Y.-J.Zhu, J.-L.Duan, J. Mater. Chem. B 2021, 9, 1277.
CrossRef Google scholar
[16]
H.Hong, Y. B.Seo, D. Y.Kim, J. S. Lee, Y. J.Lee, H.Lee, O.Ajiteru, M. T.Sultan, O. J.Lee, S. H.Kim, C. H.Park, Biomaterials 2020, 232, 119679.
CrossRef Google scholar
[17]
M.Wang, J.Zhao, Y.Luo, Q. Liang, Y.Liu, G.Zhong, Y.Yu, F.Chen, Macromol. Biosci. 2022, 22, 2200179.
[18]
B.Velasco-Rodriguez, T. Diaz-Vidal, L. CRosales-Rivera, C. A.García-González, C.Alvarez-Lorenzo, A. Al-Modlej, V.Dominguez-Arca, G.Prieto, S.Barbosa, J. F. A.Soltero Martínez, P.Taboada, Int. J. Mol. Sci. 2021, 22, 6758.
CrossRef Google scholar
[19]
D. C. SCosta, P. D. C. Costa, M. C.Gomes, A.Chandrakar, P. A.Wieringa, L.Moroni, J. F.Mano, ACS Mater. Lett. 2022, 4, 701.
CrossRef Google scholar
[20]
Y.Wu, X.Zhang, B.Tan, Y. Shan, X.Zhao, J.Liao, Biomater. Adv. 2022, 133, 112641.
CrossRef Google scholar
[21]
M. S.Kang, M.Kwon, S. H.Lee, W.-H. Kim, G. W.Lee, H. J.Jo, B.Kim, S. Y.Yang, K. S. Kim, D.-W.Han, Chem. Asian J. 2022, 17, e202200620.
[22]
L. K.Shopperly, J.Spinnen, J.-P.Kruger, M.Endres, M.Sittinger, T.Lam, L.Kloke, T.Dehne, J. Biomed. Mater. Res., Part B 2022, 110, 2310.
CrossRef Google scholar
[23]
Y.Wang, F.Wen, X.Yao, L. Zeng, J.Wu, Q.He, H.Li, L.Fang, Front. Bioeng. Biotechnol. 2021, 9, 811652.
[24]
S.Pahoff, C.Meinert, O.Bas, L.Nguyen, T. J.Klein, D. W.Hutmacher, J. Mater. Chem. B 2019, 7, 1761.
CrossRef Google scholar
[25]
N.Nowak, T.Gaisl, D.Miladinovic, R.Marcinkevics, M.Osswald, S.Bauer, J.Buhmann, R.Zenobi, P.Sinues, S. A.Brown, M.Kohler, Cell Rep. 2021, 37, 109903.
CrossRef Google scholar
[26]
D.Zada, Y.Sela, N.Matosevich, A.Monsonego, T.Lerer-Goldshtein, Y.Nir, L.Appelbaum, Mol. Cell 2021, 81, 4979.
CrossRef Google scholar
[27]
M.Chennaoui, T.Vanneau, A.Trignol, P.Arnal, D.Gomez-Merino, C.Baudot, J.Perez, S.Pochettino, C.Eirale, H.Chalabi, J. Sci. Med. Sport 2021, 24, 982.
CrossRef Google scholar
[28]
J.Liu, Q.Sun, M.Sun, L. Lin, X.Ren, T.Li, Q.Xu, Z.Sun, J. Duan, Free Rad. Biol. Med. 2022, 181, 166.
CrossRef Google scholar
[29]
K.-H.Lu, P. W.-A. Lu, E. W.-H.Lu, C.-H.Tang, S.-C.Su, C.-W.Lin, S.-F. Yang, J. Pineal Res. 2021, 71, e12762.
[30]
S.-C.Tao, J.-Y.Huang, Y.Gao, Z.-X. Li, Z.-Y.Wei, H.Dawes, S.-C.Guo, Bioactive Mater. 2021, 6, 4455.
CrossRef Google scholar
[31]
E. C.Beck, M.Barragan, M. H.Tadros, S. H.Gehrke, M. S.Detamore, Acta Biomater. 2016, 38, 94.
CrossRef Google scholar
[32]
F.Malekipour, D.Oetomo, P. V.-S.Lee, J. Biomech. 2016, 49, 2053.
CrossRef Google scholar
[33]
Y.Wang, J.Wang, R.Gao, X. Liu, Z.Feng, C.Zhang, P.Huang, A.Dong, D. Kong, W.Wang, Biomaterials 2022, 285, 121538.
CrossRef Google scholar
[34]
X.Zhou, Y.Qian, L.Chen, T. Li, X.Sun, X.Ma, J.Wang, C.He, ACS Nano 2023, 17, 5140.
CrossRef Google scholar
[35]
Q.Zhang, X.Zhou, H.Du, Y.Ha, Y.Xu, R.Ao, C.He, ACS Biomater. Sci. Eng. 2023, 9, 4583.
CrossRef Google scholar
[36]
S.-C.Tao, T.Yuan, Y.-L.Zhang, W.-J. Yin, S.-C.Guo, C.-Q.Zhang, Theranostics 2017, 7, 180.
CrossRef Google scholar
[37]
P. P.Marie, S.-J.Fan, J.Mason, A. Wells, C. C.Mendes, S. M.Wainwright, S. Scott, R.Fischer, A. L.Harris, C.Wilson, D. C. I.Goberdhan, J. Extracell. Vesicles 2023, 12, e12311.
[38]
P.Chen, L.Zheng, Y.Wang, M. Tao, Z.Xie, C.Xia, C.Gu, J.Chen, P. Qiu, S.Mei, L.Ning, Y.Shi, C.Fang, S. Fan, X.Lin, Theranostics 2019, 9, 2439.
CrossRef Google scholar
[39]
S.Kim, J.-C.Lee, E.-S.Cho, J. Kwon, J. Cell. Biochem. 2013, 114, 2513.
CrossRef Google scholar
[40]
S.Koelling, J.Kruegel, M.Irmer, J. R.Path, B.Sadowski, X.Miro, N.Miosge, Cell Stem Cell 2009, 4, 324.
CrossRef Google scholar
[41]
K.Choocheep, S.Hatano, H.Takagi, H.Watanabe, K.Kimata, P.Kongtawelert, H.Watanabe, J. Biol. Chem. 2010, 285, 21114.
CrossRef Google scholar
[42]
J.Zhu, S.Yang, Y.Qi, Z.Gong, H.Zhang, K. Liang, P.Shen, Y.-Y.Huang, Z.Zhang, W.Ye, L.Yue, S.Fan, S. Shen, A. G.Mikos, X.Wang, X.Fang, Sci. Adv. 2022, 8, eabk0011.
[43]
D.Vallejo, F.Hernández-Torres, E.Lozano-Velasco, L.Rodriguez-Outeiriño, A.Carvajal, C.Creus, D.Franco, A. E. Aránega, Stem Cell Rep. 2018, 10, 1398.
CrossRef Google scholar
[44]
S.Bai, Y.Wei, W.Hou, Y. Yao, J.Zhu, X.Hu, W.Chen, Y.Du, W.He, B.Shen, J. Du, BMJ Open Diabetes Res. Care 2020, 8, e001400.
CrossRef Google scholar
[45]
F.Motta, E.Barone, A.Sica, C.Selmi, Clin. Rev.Allergy Immunol. 2023, 64, 222.
CrossRef Google scholar
[46]
Z.Yang, F.Cao, H.Li, S.He, T.Zhao, H. Deng, J.Li, Z.Sun, C.Hao, J.Xu, Q.Guo, S.Liu, W. Guo, Acta Biomater. 2022, 150, 181.
CrossRef Google scholar
[47]
Y.Gao, Q.Ma, Smart Med. 2022, 1, e20220012.
[48]
M.Afshar, G.Dini, S.Vaezifar, M. Mehdikhani, B.Movahedi, J. Drug Delivery Sci. Technol. 2020, 56, 101530.
CrossRef Google scholar
[49]
M.Furtado, L.Chen, Z.Chen, A. Chen, W.Cui, Eng. Regen. 2022, 3, 217.
CrossRef Google scholar
[50]
L.Li, J.Li, J.Guo, H. Zhang, X.Zhang, C.Yin, L.Wang, Y.Zhu, Q. Yao, Adv. Funct. Mater. 2019, 29, 1807356.
[51]
Z.Cai, Y.Tang, Y.Wei, P. Wang, H.Zhang, Acta Biomater. 2022, 152, 124.
CrossRef Google scholar
[52]
F.Mohabatpour, A.Karkhaneh, A. M.Sharifi, RSC Adv. 2016, 6, 83135.
CrossRef Google scholar
[53]
M. E.Prendergast, J. A. Burdick, Adv. Mater. 2020, 32, e1902516.
[54]
N.Yildirim, A.Amanzhanova, G.Kulzhanova, F.Mukasheva, C.Erisken, ACS Biomater. Sci. Eng. 2023, 9, 1205.
CrossRef Google scholar
[55]
X.Zhu, Y.Xu, X.Xu, J.Zhu, L.Chen, Y. Xu, Y.Yang, N.Song, Small 2022, 18, e2201874.
[56]
J.Chen, Y.Li, S.Liu, Y. Du, S.Zhang, J.Wang, Acta Biomater. 2022, 154, 168.
CrossRef Google scholar
[57]
D. K.Jeppesen, A. M.Fenix, J. L.Franklin, J. N.Higginbotham, Q. Zhang, L. J.Zimmerman, D. C.Liebler, J.Ping, Q.Liu, R. Evans, W. H.Fissell, J. G.Patton, L. H.Rome, D. T.Burnette, R. J.Coffey, Cell 2019, 177, 428.
CrossRef Google scholar
[58]
M.Li, S.Li, C.Du, Y.Zhang, Y.Li, L.Chu, X.Han, H. Galons, Y.Zhang, H.Sun, P.Yu, Eur. J. Med. Chem. 2020, 207, 112784.
CrossRef Google scholar
[59]
G. WonLee, M.Thangavelu, M.Joung Choi, E. YeongShin, H.Sol Kim, J. SeonBaek, Y.Woon Jeong, J. EunSong, C.Carlomagno, J.Miguel Oliveira, R. Luis Reis, G.Khang, J. Cell. Biochem. 2020, 121, 3642.
CrossRef Google scholar
[60]
G.Mao, Z.Zhang, S.Hu, Z.Zhang, Z.Chang, Z. Huang, W.Liao, Y.Kang, Stem Cell Res. Ther. 2018, 9, 247.
[61]
J.Shao, J.Zhu, Y.Chen, Q. Fu, L.Li, Z.Ding, J.Wu, Y.Han, H. Li, Q.Qian, Y.Zhou, Stem Cells Int. 2021, 2021, 6624874.
[62]
F.Fagiani, D.Di Marino, A.Romagnoli, C.Travelli, D.Voltan, L. DiCesare Mannelli, M.Racchi, S.Govoni, C.Lanni, Signal. Transduct. Target. Ther. 2022, 7, 41.
[63]
M.Keshvari, M.Nejadtaghi, F.Hosseini-Beheshti, A.Rastqar, N.Patel, Chronobiol. Int. 2020, 37, 151.
CrossRef Google scholar
[64]
C.Ke, H.Li, D.Yang, H. Ying, H.Zhu, J.Wang, J.Xu, L.Wang, Orthop. Surg. 2022, 14, 2230.
CrossRef Google scholar
[65]
S. S.Tan, W.Zhan, C. J.Poon, X. Han, D.Marre, S.Boodhun, J. A.Palmer, G. M.Mitchell, W. A.Morrison, J. Tissue Eng. Regen. Med. 2018, 12, 382.
CrossRef Google scholar
[66]
M. Y.Ha, D. H.Yang, S. J.You, H. J. Kim, H. J.Chun, NPJ Regen. Med. 2023, 8, 2.
[67]
Y. G.Kim, J.Choi, K.Kim, Biotechnol. J. 2020, 15, 2000082.
[68]
C.Bauer, E.Niculescu-Morzsa, V.Jeyakumar, D.Kern, S. S.Spath, S.Nehrer, J. Inflamm. 2016, 13, 31.
[69]
L.Li, G.Lv, B.Wang, L. Kuang, J. Cell. Physiol. 2020, 235, 281.
[70]
H.Zhang, D.Cai, X.Bai, Osteoarthritis Cartilage 2020, 28, 555.
CrossRef Google scholar
[71]
K.Li, G.Yan, H.Huang, M. Zheng, K.Ma, X.Cui, D.Lu, L.Zheng, B. Zhu, J.Cheng, J.Zhao, J. Nanobiotechnol. 2022, 20, 38.
[72]
S.Zhang, S. J.Chuah, R. C.Lai, J. H. P. Hui, S. K.Lim, W. S.Toh, Biomaterials 2018, 156, 16.
CrossRef Google scholar

RIGHTS & PERMISSIONS

2024 2024 The Authors. View published by Shanghai Fuji Technology Consulting Co., Ltd, authorized by Professional Community of Experimental Medicine, National Association of Health Industry and Enterprise Management (PCEM) and John Wiley & Sons Australia, Ltd.
PDF

Accesses

Citations

Detail

Sections
Recommended

/