Contactless calibration of microchanneled AFM cantilevers for fluidic forcemicroscopy

Sebastian Sittl, Nicolas Helfricht, Georg Papastavrou

PDF
VIEW ›› 2024, Vol. 5 ›› Issue (1) : 20230063. DOI: 10.1002/VIW.20230063
RESEARCH ARTICLE

Contactless calibration of microchanneled AFM cantilevers for fluidic forcemicroscopy

Author information +
History +

Abstract

Atomic force microscopy (AFM) is an analytical technique that is increasingly utilized to determine interaction forces on the colloidal and cellular level. Fluidic force microscopy, also called FluidFM, became a vital tool for biomedical applications. FluidFM combines AFM and nanofluidics by means of a microchanneled cantilever that bears an aperture instead of a tip at its end. Thereby, single colloids or cells can be aspirated and immobilized to the cantilever, for example, to determine adhesion forces. To allow for quantitative measurements, the socalled (inverse) optical lever sensitivity (OLS and InvOLS, respectively) must be determined, which is typically done in a separate set of measurements on a hard, non-deformable substrate. Here, we present a different approach that is entirely based on hydrodynamic principles and does make use of the internal microfluidic channel of a FluidFM-cantilever and an external pressure control. Thereby, a contact-free calibration of the (inverse) optical lever sensitivity (InvOLS) becomes possible in under a minute. A quantitative model based on the thrust equation, which is well-known in avionics, and finite element simulations, is provided to describe the deflection of the cantilever as a function of the externally applied pressure. A comparison between the classical and the here-presented hydrodynamic method demonstrates equal accuracy.

Keywords

atomic force microscopy / bio(adhesion) / fluidic force microscopy / instrumentation / method development / nanomanipulation

Cite this article

Download citation ▾
Sebastian Sittl, Nicolas Helfricht, Georg Papastavrou. Contactless calibration of microchanneled AFM cantilevers for fluidic forcemicroscopy. VIEW, 2024, 5(1): 20230063 https://doi.org/10.1002/VIW.20230063

References

[1]
G. Binnig, C. F. Quate, C. Gerber, Phys. Rev. Lett. 1986, 56, 930.
CrossRef Google scholar
[2]
H.-J. Butt, B. Cappella, M. Kappl, Surf. Sci. Rep. 2005, 59, 1.
[3]
H.-J. Butt, R. Berger, E. Bonaccurso, Y. Chen, J. Wang, Adv. Colloid Interface Sci. 2007, 133, 91.
CrossRef Google scholar
[4]
M. Krieg, G. Fläschner, D. Alsteens, B. M. Gaub, W. H. Roos, G. J. L. Wuite, H. E. Gaub, C. Gerber, Y. F. Dufrêne, D. J. Muller, Nat. Rev. Phys. 2019, 1, 41.
CrossRef Google scholar
[5]
D. Alsteens, H. E. Gaub, R. Newton, M. Pfreundschuh, C. Gerber, D. J. Müller, Nat Rev. Mater. 2017, 2, 1.
[6]
Y. F. Dufrêne, T. Ando, R. Garcia, D. Alsteens, D. Martinez-Martin, A. Engel, C. Gerber, D. J. Muller, Nat. Nanotechnol. 2017, 12, 295.
CrossRef Google scholar
[7]
K. Bian, C. Gerber, A. J. Heinrich, D. J. Muller, S. Scheuring, Y. Jiang, Nat. Rev. Methods Primers 2021, 1, 36.
[8]
A. L. Weisenhorn, P. K. Hansma, T. R. Albrecht, C. F. Quate, Appl. Phys. Lett. 1989, 54, 2651.
CrossRef Google scholar
[9]
W. A. Ducker, T. J. Senden, R. M. Pashley, Nature 1991, 353, 239.
CrossRef Google scholar
[10]
H.-J. Butt, Biophys. J. 1991, 60, 1438.
CrossRef Google scholar
[11]
S. Rentsch, R. Pericet-Camara, G. Papastavrou, M. Borkovec, Phys. Chem. Chem. Phys. 2006, 8, 2531.
CrossRef Google scholar
[12]
J. Helenius, C.-P. Heisenberg, H. E. Gaub, D. J. Muller, J. Cell Sci. 2008, 121, 1785.
CrossRef Google scholar
[13]
J. Friedrichs, J. Helenius, D. J. Muller, Nat. Protocols 2010, 5, 1353.
CrossRef Google scholar
[14]
N. Helfricht, E. Doblhofer, V. Bieber, P. Lommes, V. Sieber, T. Scheibel, G. Papastavrou, Soft Matter 2017, 13, 578.
CrossRef Google scholar
[15]
A. Meister, M. Gabi, P. Behr, P. Studer, J. Voeroes, P. Niedermann, J. Bitterli, J. Polesel-Maris, M. Liley, H. Heinzelmann, T. Zambelli, Nano Lett. 2009, 9, 2501.
CrossRef Google scholar
[16]
P. Dorig, D. Ossola, A. M. Truong, M. Graf, F. Stauffer, J. Voros, T. Zambelli, Biophys. J. 2013, 105, 463.
CrossRef Google scholar
[17]
N. Helfricht, A. Mark, L. Dorwling-Carter, L. Dorwling-Carter, T. Zambelli, G. Papastavrou, Nanoscale 2017, 9, 9491.
CrossRef Google scholar
[18]
A. Mark, N. Helfricht, A. Rauh, M. Karg, G. Papastavrou, Small 2019, 15, 1902976.
[19]
P. Dörig, P. Stiefel, P. Behr, E. Sarajlic, D. Bijl, M. Gabi, J. Voeroes, J. A. Vorholt, T. Zambelli, Appl. Phys. Lett. 2010, 97, 023701.
[20]
C. G. Gäbelein, Q. Feng, E. Sarajlic, T. Zambelli, O. Guillaume-Gentil, B. Kornmann, J. A. Vorholt, PLoS Biol. 2022, 20, e3001576.
CrossRef Google scholar
[21]
M. Sztilkovics, T. Gerecsei, B. Peter, A. Saftics, S. Kurunczi, I. Szekacs, B. Szabo, R. Horvath, Sci. Rep. 2020, 10, 61.
CrossRef Google scholar
[22]
A. Sancho, I. Vandersmissen, S. Craps, A. Luttun, J. Groll, Sci. Rep. 2017, 7, 461.
[23]
A. Sancho, M. B. Taskin, L. Wistlich, P. Stahlhut, K. Wittmann, A. Rossi, J. Groll, ACS Biomater. Sci. Eng. 2022, 8, 649.
CrossRef Google scholar
[24]
O. Guillaume-Gentil, C. G. Gäbelein, S. Schmieder, V. Martinez, T. Zambelli, M. Kunzler, J. A. Vorholt, Commun. Biol. 2022, 5, 180.
CrossRef Google scholar
[25]
O. Guillaume-Gentil, R. V. Grindberg, R. Kooger, L. Dorwling-Carter, V. Martinez, D. Ossola, M. Pilhofer, T. Zambelli, J. A. Vorholt, Cell 2016, 166, 506.
CrossRef Google scholar
[26]
J. L. Hutter, J. Bechhoefer, Rev. Sci. Instrum. 1993, 64, 1868.
CrossRef Google scholar
[27]
J. P. Cleveland, S. Manne, D. Bocek, P. K. Hansma, Rev. Sci. Instrum. 1993, 64, 403.
CrossRef Google scholar
[28]
J. E. Sader, I. Larson, P. Mulvaney, L. R. White, Rev. Sci. Instrum. 1995, 66, 3789.
CrossRef Google scholar
[29]
J. E. Sader, J. W. M. Chon, P. Mulvaney, Rev. Sci. Instrum. 1999, 70, 3967.
CrossRef Google scholar
[30]
G. A. Matei, E. J. Thoreson, J. R. Pratt, D. B. Newell, N. A. Burnham, Rev. Sci. Instrum. 2006, 77, 083703.
[31]
J. te Riet, A. J. Katan, C. Rankl, S. W. Stahl, A. M. van Buul, I. Y. Phang, A. Gomez-Casado, P. Schon, J. W. Gerritsen, A. Cambi, A. E. Rowan, G. J. Vancso, P. Jonkheijm, J. Huskens, T. H. Oosterkamp, H. Gaub, P. Hinterdorfer, C. G. Figdor, S. Speller, Ultramicroscopy 2011, 111, 1659.
CrossRef Google scholar
[32]
Á. G. Nagy, J. Kámán, R. Horváth, A. Bonyár, Sci. Rep. 2019, 9, 10287.
[33]
M. J. Higgins, R. Proksch, J. E. Sader, M. Polcik, S. Mc Endoo, J. P. Cleveland, S. P. Jarvis, Rev. Sci. Instrum. 2006, 77, 013701.
[34]
G. Meyer, N. M. Amer, Appl. Phys. Lett. 1988, 53, 1045.
[35]
D. T. Edwards, T. T. Perkins, J. Struct. Biol. 2017, 197, 13.
CrossRef Google scholar
[36]
T. J. Senden, Curr. Opin. Colloid Interface Sci. 2001, 6, 95.
CrossRef Google scholar
[37]
M. Allegrini, C. Ascoli, P. Baschieri, F. Dinelli, C. Frediani, A. Lio, T. Mariani, Ultramicroscopy 1992, 42, 371.
CrossRef Google scholar
[38]
J. Kámán, R. Huszánk, A. Bonyár, Micron 2019, 125, 102717.
CrossRef Google scholar
[39]
C. T. Gibson, B. L. Weeks, J. R. I. Lee, C. Abell, T. Rayment, Rev. Sci. Instrum. 2001, 72, 2340.
CrossRef Google scholar
[40]
T. Witko, Z. Baster, Z. Rajfur, K. Sofińska, J. Barbasz, Sci. Rep. 2021, 11, 209.
[41]
V. S. J Craig, C. Neto, Langmuir 2001, 17, 6018.
CrossRef Google scholar
[42]
A. Saftics, B. Türk, A. Sulyok, N. Nagy, T. Gerecsei, I. Szekacs, S. Kurunczi, R. Horvath, Langmuir 2019, 35, 2412.
CrossRef Google scholar
[43]
Á. G. Nagy, N. Kanyó, A. Vörös, I. Székács, A. Bonyár, R. Horvath, Sci. Rep. 2022, 12, 7747.
[44]
N. P. D’Costa, J. H. Hoh, Rev. Sci. Instrum. 1995, 66, 5096.
CrossRef Google scholar
[45]
L. Y. Beaulieu, M. Godin, O. Laroche, V. Tabard-Cossa, P. Grütter, Ultramicroscopy 2007, 107, 422.
CrossRef Google scholar
[46]
A. Weber, B. Zbiral, J. Iturri, R. Benitez, J. L Toca-Herrera, Microsc. Res. Tech. 2021, 84, 1078.
CrossRef Google scholar
[47]
A. Weber, J. Iturri, R. Benitez, J. L Toca-Herrera, Microsc. Res. Tech. 2019, 82, 1392.
CrossRef Google scholar
[48]
J. Domke, M. Radmacher, Langmuir 1998, 14, 3320.
CrossRef Google scholar
[49]
H. Schillers, C. Rianna, J. Schäpe, T. Luque, H. Doschke, M. Wälte, J. J. Uriarte, N. Campillo, G. P. A. Michanetzis, J. Bobrowska, A. Dumitru, E. T. Herruzo, S. Bovio, P. Parot, M. Galluzzi, A. Podestà, L. Puricelli, S. Scheuring, Y. Missirlis, R. Garcia, M. Odorico, J.-M. Teulon, F. Lafont, M. Lekka, F. Rico, A. Rigato, J.-L. Pellequer, H. Oberleithner, D. Navajas, M. Radmacher, Sci. Rep. 2017, 7, 265.
[50]
C. T. Gibson, G. S. Watson, S. Myhra, Scanning 2006, 19, 564.
[51]
J. P. Best, J. Cui, M. Mullner, F. Caruso, Langmuir 2013, 29, 9824.
CrossRef Google scholar
[52]
R. Buzio, A. Bosca, S. Krol, D. Marchetto, S. Valeri, U. Valbusa, Langmuir 2007, 23, 9293.
CrossRef Google scholar
[53]
O. Guillaume-Gentil, E. Potthoff, D. Ossola, C. M. Franz, T. Zambelli, J. A. Vorholt, Trends Biotechnol. 2014, 32, 381.
CrossRef Google scholar
[54]
M. Li, L. Liu, T. Zambelli, Nano Res. 2022, 15, 773.
CrossRef Google scholar
[55]
P. Saha, T. Duanis-Assaf, M. Reches, Adv. Mat. Interfaces 2020, 7, 2001115.
[56]
L. Angeloni, B. Popa, M. Nouri-Goushki, M. Minneboo, A. A. Zadpoor, M. K. Ghatkesar, L. E Fratila-Apachitei, Small 2023, 19, 2204662.
[57]
P. Actis, Small Methods 2018, 2, 1700300.
[58]
N. Helfricht, A. Mark, M. Behr, A. Bernet, H.-W. Schmidt, G. Papastavrou, Small 2017, 13, 1700962.
[59]
E. Berganza, E. Boltynjuk, G. Mathew, F. F. Vallejo, R. Gröger, T. Scherer, S. Sekula-Neuner, M. Hirtz, Small 2023, 19, 2205590.
[60]
D. Ossola, L. Dorwling-Carter, H. Dermutz, P. Behr, J. Vörös, T. Zambelli, Phys. Rev. Lett. 2015, 115, 238103.
[61]
L. Dorwling-Carter, M. Aramesh, C. Forró, R. F. Tiefenauer, I. Shorubalko, J. Vörös, T. Zambelli, J. Appl. Phys. 2018, 124, 174902.
CrossRef Google scholar
[62]
L. Hirt, A. Reiser, R. Spolenak, T. Zambelli, Adv.Mater. 2017, 29, 1604211.
[63]
J. Ko, N. B. Fredj, R. E. Adhawiyah, J. Lee, J. Mech. Sci. Technol. 2023, 37, 887.
CrossRef Google scholar
[64]
T. Zambelli, J. Aebersold, M. Behr, P. Han, H. Hirt, L. Martinez, V. Guillaume-Gentil, O. Vörös, Open-Space Microfluidics: Concepts, Implementations, Applications, Wiley-VCH Verlag, Weinheim, Germany 2018.
[65]
A. Mark, N. Helfricht, A. Rauh, J. Xue, P. Knödler, T. Schumacher, M. Karg, B. Du, M. Lippitz, G. Papastavrou, Sci. Rep. 2019, 9, 20294.
[66]
G. Goring, P.-I. Dietrich, M. Blaicher, S. Sharma, J. G. Körvink, T. Schimmel, C. Koos, H. Hölscher, Appl. Phys. Lett. 2016, 109, 063101.
[67]
A. Gaitas, R. Malhotra, K. Pienta, Appl. Phys. Lett. 2013, 103, 123702.
[68]
A. Gaitas, R. W. Hower, J. Micro/Nanoth. MEMS MOEMS 2014, 13, 030501.
CrossRef Google scholar
[69]
C.-C. Chien, J. Jiang, B. Gong, T. Li, A. Gaitas, Meas. Sci. Technol. 2022, 33, 095009.
CrossRef Google scholar
[70]
S. Deladi, N. R. Tas, J. W. Berenschot, G. J. M. Krijnen, M. J. de Boer, J. H. de Boer, M. Peter, M. C. Elwenspoek, Appl. Phys. Lett. 2004, 85, 5361.
CrossRef Google scholar
[71]
R. van Oorschot, H. H. Perez Garza, R. J. S. Derks, U. Staufer, M. K. Ghatkesar, EPJ Tech Instrum 2015, 2, 4.
CrossRef Google scholar
[72]
H. Garza, M. Ghatkesar, S. Basak, P. Löthman, U. Staufer, Micromachines 2015, 6, 600.
CrossRef Google scholar
[73]
D. Ossola, P. Dörig, J. Vörös, T. Zambelli, M. Vassalli, Nanotechnology 2016, 27, 415502.
CrossRef Google scholar
[74]
A. Gabor Nagy, N. Pap, R. Horvath, A. Bonyar, IEEE, 44th International Spring Seminar on Electronics Technology (ISSE), Bautzen, 2021.
[75]
R. R. Grüter, B. Dielacher, L. Hirt, J. Vörös, T. Zambelli, Nanotechnology 2015, 26, 175301.
CrossRef Google scholar
[76]
U. Walter, Astronautics. p. 1-35, Springer International Publishing, Cham 2018.
[77]
J.-B. Bao, D. Jed Harrison, AIChE J. 2006, 52, 75.
CrossRef Google scholar
[78]
O. Geschke, H. Klank P. Telleman, Microsystem Engineering of Lab-on-a-Chip Devices, Wiley-VCH, Weinheim 2004.
[79]
B. Hu, H. Wang, J. Liu, Y. Zhu, C. Wang, J. Ge, Y. Zhang, J.Marine Sci. Eng. 2022, 10, 228.
CrossRef Google scholar
[80]
D. Ossöla, PhD Thesis, >ETH Zürich 2014.
[81]
S. Hardt F. Schonfeld, Microfluidic Technologies for Miniaturized Analysis Systems, Springer US, Boston, MA 2007.
[82]
P. Dörig, PhD Thesis, ETH Zürich, 2013.
[83]
Z. Liu, Y. Jeong, C.-H. Menq, Rev. Sci. Instrum. 2013, 84, 023703.
[84]
J. Putnam, M. Damircheli, B. Eslami, J. Multibody Dyn. 2020, 234, 675.
CrossRef Google scholar
[85]
R. Proksch, T. E. Schaffer, J. P. Cleveland, R. C. Callahan, M. B. Viani, Nanotechnology 2004, 15, 1344.
CrossRef Google scholar

RIGHTS & PERMISSIONS

2023 2023 The Authors. View published by Shanghai Fuji Technology Consulting Co., Ltd, authorized by Professional Community of Experimental Medicine, National Association of Health Industry and Enterprise Management (PCEM) and John Wiley & Sons Australia, Ltd.
PDF

Accesses

Citations

Detail

Sections
Recommended

/