Contactless calibration of microchanneled AFM cantilevers for fluidic forcemicroscopy

Sebastian Sittl , Nicolas Helfricht , Georg Papastavrou

VIEW ›› 2024, Vol. 5 ›› Issue (1) : 20230063

PDF
VIEW ›› 2024, Vol. 5 ›› Issue (1) : 20230063 DOI: 10.1002/VIW.20230063
RESEARCH ARTICLE

Contactless calibration of microchanneled AFM cantilevers for fluidic forcemicroscopy

Author information +
History +
PDF

Abstract

Atomic force microscopy (AFM) is an analytical technique that is increasingly utilized to determine interaction forces on the colloidal and cellular level. Fluidic force microscopy, also called FluidFM, became a vital tool for biomedical applications. FluidFM combines AFM and nanofluidics by means of a microchanneled cantilever that bears an aperture instead of a tip at its end. Thereby, single colloids or cells can be aspirated and immobilized to the cantilever, for example, to determine adhesion forces. To allow for quantitative measurements, the socalled (inverse) optical lever sensitivity (OLS and InvOLS, respectively) must be determined, which is typically done in a separate set of measurements on a hard, non-deformable substrate. Here, we present a different approach that is entirely based on hydrodynamic principles and does make use of the internal microfluidic channel of a FluidFM-cantilever and an external pressure control. Thereby, a contact-free calibration of the (inverse) optical lever sensitivity (InvOLS) becomes possible in under a minute. A quantitative model based on the thrust equation, which is well-known in avionics, and finite element simulations, is provided to describe the deflection of the cantilever as a function of the externally applied pressure. A comparison between the classical and the here-presented hydrodynamic method demonstrates equal accuracy.

Keywords

atomic force microscopy / bio(adhesion) / fluidic force microscopy / instrumentation / method development / nanomanipulation

Cite this article

Download citation ▾
Sebastian Sittl, Nicolas Helfricht, Georg Papastavrou. Contactless calibration of microchanneled AFM cantilevers for fluidic forcemicroscopy. VIEW, 2024, 5(1): 20230063 DOI:10.1002/VIW.20230063

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

G. Binnig, C. F. Quate, C. Gerber, Phys. Rev. Lett. 1986, 56, 930.

[2]

H.-J. Butt, B. Cappella, M. Kappl, Surf. Sci. Rep. 2005, 59, 1.

[3]

H.-J. Butt, R. Berger, E. Bonaccurso, Y. Chen, J. Wang, Adv. Colloid Interface Sci. 2007, 133, 91.

[4]

M. Krieg, G. Fläschner, D. Alsteens, B. M. Gaub, W. H. Roos, G. J. L. Wuite, H. E. Gaub, C. Gerber, Y. F. Dufrêne, D. J. Muller, Nat. Rev. Phys. 2019, 1, 41.

[5]

D. Alsteens, H. E. Gaub, R. Newton, M. Pfreundschuh, C. Gerber, D. J. Müller, Nat Rev. Mater. 2017, 2, 1.

[6]

Y. F. Dufrêne, T. Ando, R. Garcia, D. Alsteens, D. Martinez-Martin, A. Engel, C. Gerber, D. J. Muller, Nat. Nanotechnol. 2017, 12, 295.

[7]

K. Bian, C. Gerber, A. J. Heinrich, D. J. Muller, S. Scheuring, Y. Jiang, Nat. Rev. Methods Primers 2021, 1, 36.

[8]

A. L. Weisenhorn, P. K. Hansma, T. R. Albrecht, C. F. Quate, Appl. Phys. Lett. 1989, 54, 2651.

[9]

W. A. Ducker, T. J. Senden, R. M. Pashley, Nature 1991, 353, 239.

[10]

H.-J. Butt, Biophys. J. 1991, 60, 1438.

[11]

S. Rentsch, R. Pericet-Camara, G. Papastavrou, M. Borkovec, Phys. Chem. Chem. Phys. 2006, 8, 2531.

[12]

J. Helenius, C.-P. Heisenberg, H. E. Gaub, D. J. Muller, J. Cell Sci. 2008, 121, 1785.

[13]

J. Friedrichs, J. Helenius, D. J. Muller, Nat. Protocols 2010, 5, 1353.

[14]

N. Helfricht, E. Doblhofer, V. Bieber, P. Lommes, V. Sieber, T. Scheibel, G. Papastavrou, Soft Matter 2017, 13, 578.

[15]

A. Meister, M. Gabi, P. Behr, P. Studer, J. Voeroes, P. Niedermann, J. Bitterli, J. Polesel-Maris, M. Liley, H. Heinzelmann, T. Zambelli, Nano Lett. 2009, 9, 2501.

[16]

P. Dorig, D. Ossola, A. M. Truong, M. Graf, F. Stauffer, J. Voros, T. Zambelli, Biophys. J. 2013, 105, 463.

[17]

N. Helfricht, A. Mark, L. Dorwling-Carter, L. Dorwling-Carter, T. Zambelli, G. Papastavrou, Nanoscale 2017, 9, 9491.

[18]

A. Mark, N. Helfricht, A. Rauh, M. Karg, G. Papastavrou, Small 2019, 15, 1902976.

[19]

P. Dörig, P. Stiefel, P. Behr, E. Sarajlic, D. Bijl, M. Gabi, J. Voeroes, J. A. Vorholt, T. Zambelli, Appl. Phys. Lett. 2010, 97, 023701.

[20]

C. G. Gäbelein, Q. Feng, E. Sarajlic, T. Zambelli, O. Guillaume-Gentil, B. Kornmann, J. A. Vorholt, PLoS Biol. 2022, 20, e3001576.

[21]

M. Sztilkovics, T. Gerecsei, B. Peter, A. Saftics, S. Kurunczi, I. Szekacs, B. Szabo, R. Horvath, Sci. Rep. 2020, 10, 61.

[22]

A. Sancho, I. Vandersmissen, S. Craps, A. Luttun, J. Groll, Sci. Rep. 2017, 7, 461.

[23]

A. Sancho, M. B. Taskin, L. Wistlich, P. Stahlhut, K. Wittmann, A. Rossi, J. Groll, ACS Biomater. Sci. Eng. 2022, 8, 649.

[24]

O. Guillaume-Gentil, C. G. Gäbelein, S. Schmieder, V. Martinez, T. Zambelli, M. Kunzler, J. A. Vorholt, Commun. Biol. 2022, 5, 180.

[25]

O. Guillaume-Gentil, R. V. Grindberg, R. Kooger, L. Dorwling-Carter, V. Martinez, D. Ossola, M. Pilhofer, T. Zambelli, J. A. Vorholt, Cell 2016, 166, 506.

[26]

J. L. Hutter, J. Bechhoefer, Rev. Sci. Instrum. 1993, 64, 1868.

[27]

J. P. Cleveland, S. Manne, D. Bocek, P. K. Hansma, Rev. Sci. Instrum. 1993, 64, 403.

[28]

J. E. Sader, I. Larson, P. Mulvaney, L. R. White, Rev. Sci. Instrum. 1995, 66, 3789.

[29]

J. E. Sader, J. W. M. Chon, P. Mulvaney, Rev. Sci. Instrum. 1999, 70, 3967.

[30]

G. A. Matei, E. J. Thoreson, J. R. Pratt, D. B. Newell, N. A. Burnham, Rev. Sci. Instrum. 2006, 77, 083703.

[31]

J. te Riet, A. J. Katan, C. Rankl, S. W. Stahl, A. M. van Buul, I. Y. Phang, A. Gomez-Casado, P. Schon, J. W. Gerritsen, A. Cambi, A. E. Rowan, G. J. Vancso, P. Jonkheijm, J. Huskens, T. H. Oosterkamp, H. Gaub, P. Hinterdorfer, C. G. Figdor, S. Speller, Ultramicroscopy 2011, 111, 1659.

[32]

Á. G. Nagy, J. Kámán, R. Horváth, A. Bonyár, Sci. Rep. 2019, 9, 10287.

[33]

M. J. Higgins, R. Proksch, J. E. Sader, M. Polcik, S. Mc Endoo, J. P. Cleveland, S. P. Jarvis, Rev. Sci. Instrum. 2006, 77, 013701.

[34]

G. Meyer, N. M. Amer, Appl. Phys. Lett. 1988, 53, 1045.

[35]

D. T. Edwards, T. T. Perkins, J. Struct. Biol. 2017, 197, 13.

[36]

T. J. Senden, Curr. Opin. Colloid Interface Sci. 2001, 6, 95.

[37]

M. Allegrini, C. Ascoli, P. Baschieri, F. Dinelli, C. Frediani, A. Lio, T. Mariani, Ultramicroscopy 1992, 42, 371.

[38]

J. Kámán, R. Huszánk, A. Bonyár, Micron 2019, 125, 102717.

[39]

C. T. Gibson, B. L. Weeks, J. R. I. Lee, C. Abell, T. Rayment, Rev. Sci. Instrum. 2001, 72, 2340.

[40]

T. Witko, Z. Baster, Z. Rajfur, K. Sofińska, J. Barbasz, Sci. Rep. 2021, 11, 209.

[41]

V. S. J Craig, C. Neto, Langmuir 2001, 17, 6018.

[42]

A. Saftics, B. Türk, A. Sulyok, N. Nagy, T. Gerecsei, I. Szekacs, S. Kurunczi, R. Horvath, Langmuir 2019, 35, 2412.

[43]

Á. G. Nagy, N. Kanyó, A. Vörös, I. Székács, A. Bonyár, R. Horvath, Sci. Rep. 2022, 12, 7747.

[44]

N. P. D’Costa, J. H. Hoh, Rev. Sci. Instrum. 1995, 66, 5096.

[45]

L. Y. Beaulieu, M. Godin, O. Laroche, V. Tabard-Cossa, P. Grütter, Ultramicroscopy 2007, 107, 422.

[46]

A. Weber, B. Zbiral, J. Iturri, R. Benitez, J. L Toca-Herrera, Microsc. Res. Tech. 2021, 84, 1078.

[47]

A. Weber, J. Iturri, R. Benitez, J. L Toca-Herrera, Microsc. Res. Tech. 2019, 82, 1392.

[48]

J. Domke, M. Radmacher, Langmuir 1998, 14, 3320.

[49]

H. Schillers, C. Rianna, J. Schäpe, T. Luque, H. Doschke, M. Wälte, J. J. Uriarte, N. Campillo, G. P. A. Michanetzis, J. Bobrowska, A. Dumitru, E. T. Herruzo, S. Bovio, P. Parot, M. Galluzzi, A. Podestà, L. Puricelli, S. Scheuring, Y. Missirlis, R. Garcia, M. Odorico, J.-M. Teulon, F. Lafont, M. Lekka, F. Rico, A. Rigato, J.-L. Pellequer, H. Oberleithner, D. Navajas, M. Radmacher, Sci. Rep. 2017, 7, 265.

[50]

C. T. Gibson, G. S. Watson, S. Myhra, Scanning 2006, 19, 564.

[51]

J. P. Best, J. Cui, M. Mullner, F. Caruso, Langmuir 2013, 29, 9824.

[52]

R. Buzio, A. Bosca, S. Krol, D. Marchetto, S. Valeri, U. Valbusa, Langmuir 2007, 23, 9293.

[53]

O. Guillaume-Gentil, E. Potthoff, D. Ossola, C. M. Franz, T. Zambelli, J. A. Vorholt, Trends Biotechnol. 2014, 32, 381.

[54]

M. Li, L. Liu, T. Zambelli, Nano Res. 2022, 15, 773.

[55]

P. Saha, T. Duanis-Assaf, M. Reches, Adv. Mat. Interfaces 2020, 7, 2001115.

[56]

L. Angeloni, B. Popa, M. Nouri-Goushki, M. Minneboo, A. A. Zadpoor, M. K. Ghatkesar, L. E Fratila-Apachitei, Small 2023, 19, 2204662.

[57]

P. Actis, Small Methods 2018, 2, 1700300.

[58]

N. Helfricht, A. Mark, M. Behr, A. Bernet, H.-W. Schmidt, G. Papastavrou, Small 2017, 13, 1700962.

[59]

E. Berganza, E. Boltynjuk, G. Mathew, F. F. Vallejo, R. Gröger, T. Scherer, S. Sekula-Neuner, M. Hirtz, Small 2023, 19, 2205590.

[60]

D. Ossola, L. Dorwling-Carter, H. Dermutz, P. Behr, J. Vörös, T. Zambelli, Phys. Rev. Lett. 2015, 115, 238103.

[61]

L. Dorwling-Carter, M. Aramesh, C. Forró, R. F. Tiefenauer, I. Shorubalko, J. Vörös, T. Zambelli, J. Appl. Phys. 2018, 124, 174902.

[62]

L. Hirt, A. Reiser, R. Spolenak, T. Zambelli, Adv.Mater. 2017, 29, 1604211.

[63]

J. Ko, N. B. Fredj, R. E. Adhawiyah, J. Lee, J. Mech. Sci. Technol. 2023, 37, 887.

[64]

T. Zambelli, J. Aebersold, M. Behr, P. Han, H. Hirt, L. Martinez, V. Guillaume-Gentil, O. Vörös, Open-Space Microfluidics: Concepts, Implementations, Applications, Wiley-VCH Verlag, Weinheim, Germany 2018.

[65]

A. Mark, N. Helfricht, A. Rauh, J. Xue, P. Knödler, T. Schumacher, M. Karg, B. Du, M. Lippitz, G. Papastavrou, Sci. Rep. 2019, 9, 20294.

[66]

G. Goring, P.-I. Dietrich, M. Blaicher, S. Sharma, J. G. Körvink, T. Schimmel, C. Koos, H. Hölscher, Appl. Phys. Lett. 2016, 109, 063101.

[67]

A. Gaitas, R. Malhotra, K. Pienta, Appl. Phys. Lett. 2013, 103, 123702.

[68]

A. Gaitas, R. W. Hower, J. Micro/Nanoth. MEMS MOEMS 2014, 13, 030501.

[69]

C.-C. Chien, J. Jiang, B. Gong, T. Li, A. Gaitas, Meas. Sci. Technol. 2022, 33, 095009.

[70]

S. Deladi, N. R. Tas, J. W. Berenschot, G. J. M. Krijnen, M. J. de Boer, J. H. de Boer, M. Peter, M. C. Elwenspoek, Appl. Phys. Lett. 2004, 85, 5361.

[71]

R. van Oorschot, H. H. Perez Garza, R. J. S. Derks, U. Staufer, M. K. Ghatkesar, EPJ Tech Instrum 2015, 2, 4.

[72]

H. Garza, M. Ghatkesar, S. Basak, P. Löthman, U. Staufer, Micromachines 2015, 6, 600.

[73]

D. Ossola, P. Dörig, J. Vörös, T. Zambelli, M. Vassalli, Nanotechnology 2016, 27, 415502.

[74]

A. Gabor Nagy, N. Pap, R. Horvath, A. Bonyar, IEEE, 44th International Spring Seminar on Electronics Technology (ISSE), Bautzen, 2021.

[75]

R. R. Grüter, B. Dielacher, L. Hirt, J. Vörös, T. Zambelli, Nanotechnology 2015, 26, 175301.

[76]

U. Walter, Astronautics. p. 1-35, Springer International Publishing, Cham 2018.

[77]

J.-B. Bao, D. Jed Harrison, AIChE J. 2006, 52, 75.

[78]

O. Geschke, H. Klank P. Telleman, Microsystem Engineering of Lab-on-a-Chip Devices, Wiley-VCH, Weinheim 2004.

[79]

B. Hu, H. Wang, J. Liu, Y. Zhu, C. Wang, J. Ge, Y. Zhang, J.Marine Sci. Eng. 2022, 10, 228.

[80]

D. Ossöla, PhD Thesis, >ETH Zürich 2014.

[81]

S. Hardt F. Schonfeld, Microfluidic Technologies for Miniaturized Analysis Systems, Springer US, Boston, MA 2007.

[82]

P. Dörig, PhD Thesis, ETH Zürich, 2013.

[83]

Z. Liu, Y. Jeong, C.-H. Menq, Rev. Sci. Instrum. 2013, 84, 023703.

[84]

J. Putnam, M. Damircheli, B. Eslami, J. Multibody Dyn. 2020, 234, 675.

[85]

R. Proksch, T. E. Schaffer, J. P. Cleveland, R. C. Callahan, M. B. Viani, Nanotechnology 2004, 15, 1344.

RIGHTS & PERMISSIONS

2023 The Authors. View published by Shanghai Fuji Technology Consulting Co., Ltd, authorized by Professional Community of Experimental Medicine, National Association of Health Industry and Enterprise Management (PCEM) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

142

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/