Glutathione carbon dots as an intracellular reactive oxygen species scavenger for reducing cisplatin-induced ototoxicity

Yaqin Tu , Guorun Fan , Nan Wu , Bo Liu , Haiying Sun , Qiong Wang , Wenqing Zou , Hongjun Xiao , Songwei Tan

VIEW ›› 2024, Vol. 5 ›› Issue (1) : 20230056

PDF
VIEW ›› 2024, Vol. 5 ›› Issue (1) : 20230056 DOI: 10.1002/VIW.20230056
RESEARCH ARTICLE

Glutathione carbon dots as an intracellular reactive oxygen species scavenger for reducing cisplatin-induced ototoxicity

Author information +
History +
PDF

Abstract

It is widely recognized that platinum-based chemotherapy, particularly cisplatin therapy, can cause ototoxicity. At present, there are no Food and Drug Administration-approved drugs to prevent or alleviate ototoxicity. Ototoxicity is generally believed to be caused by excessive reactive oxygen species production in the inner ear. Accordingly, a variety of antioxidants have been developed to protect against ototoxicity. To improve the efficiency of drug delivery to the cochlea, here, we synthesized simple and easy-to-obtain glutathione carbon dots (GSH CDs) with ultra-small dimensions. The experimental results revealed that the GSH CDs have strong free-radical scavenging activity and can restore mitochondrial function, maintain hair cell stability, and protect hair cells from cisplatin-induced oxidative stress. Thus, GSH CDs may serve as a new therapeutic agent for preventing cisplatin-induced ototoxicity.

Keywords

Glutathione / Cisplatin / Carbon dots / Reactive oxygen species / Ototoxicity

Cite this article

Download citation ▾
Yaqin Tu, Guorun Fan, Nan Wu, Bo Liu, Haiying Sun, Qiong Wang, Wenqing Zou, Hongjun Xiao, Songwei Tan. Glutathione carbon dots as an intracellular reactive oxygen species scavenger for reducing cisplatin-induced ototoxicity. VIEW, 2024, 5(1): 20230056 DOI:10.1002/VIW.20230056

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

C. J. Kros, P. S. Steyger, Cold Spring Harb Perspect Med, 2019, 9, 033548.

[2]

Q. Tang, X. Wang, H. Jin, Y. Mi, L. Liu, M. Dong, Y. Chen, Z. Zou, Eur J Pharm Biopharm, 2021, 163, 60.

[3]

D. Mukherjea, A. Dhukhwa, A. Sapra, P. Bhandari, K. Woolford, J. Franke, V. Ramkumar, L. Rybak, Expert Opin Drug Metab Toxicol, 2020, 16, 965.

[4]

J. W. van As, H. van den Berg, E. C. van Dalen, Cochrane Database Syst Rev, 2016, 9, CD009219.

[5]

N. Santos, R. S. Ferreira, A. C. D. Santos, Food Chem Toxicol, 2020, 136, 111079.

[6]

J. Gu, Y. Chen, L. Tong, X. Wang, D. Yu, H. Wu, J Nanobiotechnology, 2020, 18, 53.

[7]

J. Gu, X. Wang, Y. Chen, K. Xu, D. Yu, H. Wu, J Nanobiotechnology, 2022, 20, 268.

[8]

Z. Zheng, Y. Wang, H. Yu, W. Li, J. Wu, C. Cai, Y. He, J Cell Mol Med, 2020, 24, 6883.

[9]

Y. Ma, A. K. Wise, R. K. Shepherd, R. T. Richardson, Pharmacol Ther, 2019, 200, 190.

[10]

E. Ajay, N. Gunewardene, R. Richardson, Expert Opin Biol Ther, 2022, 22, 689.

[11]

X. Gao, Y. Cui, R. M. Levenson, L. W. Chung, S. Nie, Nat Biotechnol, 2004, 22, 969.

[12]

X. Gao, Clin Chem, 2013, 59, 1532.

[13]

N. Tejwan, A. K. Saini, A. Sharma, T. A. Singh, N. Kumar, J. Das, J Control Release, 2021, 330, 132.

[14]

C. M. Sims, S. K. Hanna, D. A. Heller, C. P. Horoszko, M. E. Johnson, A. R. Montoro Bustos, V. Reipa, K. R. Riley, B. C. Nelson, Nanoscale, 2017, 9, 15226.

[15]

W. Zeng, M. Yu, T. Chen, Y. Liu, Y. Yi, C. Huang, J. Tang, H. Li, M. Ou, T. Wang, M. Wu, L. Mei, Adv Sci, 2022, 9, e2201703.

[16]

M. Yu, J. Yu, Y. Yi, T. Chen, L. Yu, W. Zeng, X. K. Ouyang, C. Huang, S. Sun, Y. Wang, Y. Liu, C. Lin, M. Wu, L. Mei, J Control Release, 2022, 347, 104.

[17]

Q. Li, Z. Shi, F. Zhang, W. Zeng, D. Zhu, L. Mei, Acta Pharm Sin B, 2022, 12, 107.

[18]

Y. Yang, W. Zeng, P. Huang, X. Zeng, L. Mei, VIEW, 2020, 2, 20200042.

[19]

K. Dehvari, S. H. Chiu, J. S. Lin, W. M. Girma, Y. C. Ling, J. Y. Chang, Acta Biomater, 2020, 114, 343.

[20]

L. Ansari, S. Hallaj, T. Hallaj, M. Amjadi, Colloids Surf B Biointerfaces, 2021, 203, 111743.

[21]

R. Kumar, V. B. Kumar, A. Gedanken, Ultrason Sonochem, 2020, 64, 105009.

[22]

L. Yu, X. Li, M. He, Q. Wang, C. Chen, F. Li, B. Li, L. Li, Antioxidants, 2023, 12, 583.

[23]

M. J. Molaei, RSC Adv, 2019, 9, 6460.

[24]

T. Homma, J. Fujii, Curr Drug Metab, 2015, 16, 560.

[25]

Y. Ganjkhanlou, J. J. E. Maris, J. Koek, R. Riemersma, B. M. Weckhuysen, F. Meirer, J Phys Chem C Nanomater Interfaces, 2022, 126, 2720.

[26]

Z. T. Rosenkrans, T. Sun, D. Jiang, W. Chen, T. E. Barnhart, Z. Zhang, C. A. Ferreira, X. Wang, J. W. Engle, P. Huang, W. Cai, Adv Sci, 2020, 7, 2000420.

[27]

C. Zhou, J. Hu, H. Ma, A. E. Yagoub, X. Yu, J. Owusu, X. Qin, Food Chem, 2015, 187, 270.

[28]

M. N. Rivolta, M. C. Holley, J Neurobiol, 2002, 53, 306.

[29]

Y. Zheng, M. Rayner, L. Feng, X. Hu, X. Zheng, E. Bearth, J. Lin, Open Neurosci J, 2008, 2, 9.

[30]

J. Chen, X. Zhou, T. Zou, B. Wang, Y. Yu, F. Lin, K. Chen, Y. Lai, K. Sun, Audiol Neurootol, 2018, 23, 173.

[31]

M. Ozeki, L. Duan, Y. Hamajima, W. Obritch, D. Edson-Herzovi, J. Lin, Hear Res, 2003, 179, 43.

[32]

M. Ozeki, Y. Hamajima, L. Feng, F. G. Ondrey, E. Schlentz, J. Lin, J Neurosci Res, 2007, 85, 515.

[33]

Y. He, W. Li, Z. Zheng, L. Zhao, Y. Wang, H. Li, Theranostics, 2020, 10, 133.

[34]

Z. H. He, S. Y. Zou, M. Li, F. L. Liao, X. Wu, H. Y. Sun, X. Y. Zhao, Y. J. Hu, D. Li, X. X. Xu, S. Chen, Y. Sun, R. J. Chai, W. J. Kong, Redox Biol, 2020, 28, 101364.

[35]

J. Wang, D. Liu, E. Tian, Z. Q. Guo, J. Y. Chen, W. J. Kong, S. L. Zhang, Front Aging Neurosci, 2022, 14, 865821.

[36]

V. Krajka-Kuzniak, J. Paluszczak, W. Baer-Dubowska, Pharmacol Rep, 2017, 69, 393.

[37]

M. M. Silva, C. R. R. Rocha, G. S. Kinker, A. L. Pelegrini, C. F. M. Menck, Sci Rep, 2019, 9, 17639.

[38]

L. Kennedy, J. K. Sandhu, M. E. Harper, M. Cuperlovic-Culf, Biomolecules, 2020, 10, 1429.

[39]

Y. He, H. Yu, C. Cai, S. Sun, R. Chai, H. Li, Mol Neurobiol, 2015, 52, 196.

[40]

Y. Liu, Q. Chen, Y. Li, L. Bi, S. Lin, H. Ji, D. Sun, L. Jin, R. Peng, Ecotoxicol Environ Saf, 2022, 239, 113666.

[41]

W. Yu, X. Zhang, W. Zhang, M. Xiong, Y. Lin, M. Chang, L. Xu, Y. Lu, Y. Liu, J. Zhang, Exp Hematol Oncol, 2021, 10, 48.

[42]

D. H. Lee, C. S. Kim, Y. J. Lee, Food Chem Toxicol, 2011, 49, 271.

[43]

M. Mizuta, S. Hirano, N. Hiwatashi, I. Tateya, S. Kanemaru, T. Nakamura, J. Ito, Laryngoscope, 2014, 124, E1.

[44]

J. Dose, S. Matsugo, H. Yokokawa, Y. Koshida, S. Okazaki, U. Seidel, M. Eggersdorfer, G. Rimbach, T. Esatbeyoglu, Int J Mol Sci, 2016, 17, 10282973.

[45]

C. Lanvers-Kaminsky, G. Ciarimboli, Pharmacogenomics, 2017, 18, 1683.

[46]

E. Yaghini, E. Tacconi, A. Pilling, P. Rahman, J. Broughton, I. Naasani, M. R. S. Keshtgar, A. J. MacRobert, O. Della Pasqua, Eur J Pharm Sci, 2021, 157, 105639.

[47]

Z. Chen, H. Chen, H. Meng, G. Xing, X. Gao, B. Sun, X. Shi, H. Yuan, C. Zhang, R. Liu, F. Zhao, Y. Zhao, X. Fang, Toxicol Appl Pharmacol, 2008, 230, 364.

[48]

M. Vibin, R. Vinayakan, A. John, V. Raji, C. S. Rejiya, A. Abraham, Biol Trace Elem Res, 2011, 142, 213.

[49]

Y. Tang, S. Han, H. Liu, X. Chen, L. Huang, X. Li, J. Zhang, Biomaterials, 2013, 34, 8741.

[50]

Y. W. Wang, K. Yang, H. Tang, D. Chen, Y. L. Bai, Int J Nanomedicine, 2014, 9, 4809.

RIGHTS & PERMISSIONS

2023 The Authors. View published by Shanghai Fuji Technology Consulting Co., Ltd, authorized by Professional Community of Experimental Medicine, National Association of Health Industry and Enterprise Management (PCEM) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

253

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/