As Chinese megacities are experiencing a large-scale motorization and suburbanization, an ever greater number of households are relocated to suburban towns. The increasing average travel distance surely encourages car growth. China is now the world’s largest car consumer, resulting in a series of unforeseen environmental and public health issues. On the other hand, scooters, electric bikes, and motorcycles become attractive options to substitute non-motorized bicycles. The ongoing demographic changes should also be taken in account. China has a rapidly aging population and a higher birth rate following reforms to the one-child policy allowing couples to have a second child. These changes will lead to a dramatic alteration of the household composition in the near future. Under above emerging contexts, this study aims to understand what implies the ownership of motorized and non-motorized vehicles in suburban metro station areas by means of a structural equation model. The data employed in this study are based on a household survey collected from three neighborhoods in Shanghai suburban metro station areas in 2010. The major findings include: (1) Income is a decisive element in car ownership. Specifically, high-income households have higher propensity to own a car, while middle and poor income families tend to own scooters, electric bikes, motorcycles, or bicycles. (2) Workplace built environment features or mode preferences are not essential to understanding vehicle ownership in Chinese context. (3) Stem families are more likely to own cars; the presence of a child or a senior family member increases the probability of owning a car by enlarging the household. (4) The results estimated for core family and DINK (couple with no child) family are highly consistent, and these families are less likely to own cars. Therefore, transport policies may focus more on households. Providing safe, pleasant, and efficient pedestrian and bicycle paths for children and seniors may decrease the attractiveness of owning cars.
Special event traffic planning and management needs to accommodate high traffic demand volume and special distribution patterns with dramatic structural deviations from the normal conditions. To provide sufficient transportation service supply that matches non-typical demand needs, this paper explains how to systematically optimize the locations of park-and-ride stations, the number of additional parking lots, and the bus rapid transit schedules. The goal is to maximize the number of travelers who can complete their activity tours within a reasonable travel time budget. Based on a space–time network construct, this paper formulates a network design problem to maximize the system-wide transportation accessibility from different origins to activity locations at special event sites. A linear integer programing model is proposed to formulate the joint optimization of the location and capacity of parking lots associated with mega-event sites. Illustrative and real-world examples are used to examine the effectiveness and practical usefulness of the proposed modeling framework.
A magnetically levitated (MAGLEV) train is the future of rapid ground transport. They are much faster, energy efficient; require very less maintenance and pollution free. The present study outlines an approach for the modelling and simulation of MAGLEV vehicle–guideway in a block diagram environment and thereafter optimizes the suspension parameters for increased ride comfort. This has been accomplished with the help of SIMULINK which provides a graphical editor, customizable block libraries and solvers. The guideway has been modelled as a two-span continuous beam. The guideway surface roughness was defined by power spectral density function. The influence of vehicle speed and surface roughness on the vehicle–guideway response has been studied. Use of optimized suspension parameters indicated 60 % reduction in car-body vertical acceleration, whereas the guideway maximum deflection showed a fall of 25 %.
Geomagnetic storms can cause earth surface potentials (ESPs) in the ground. ESP produces geomagnetically induced current (GIC) in a loop which is made up by rails and ground. If GIC flows into intercity railway track circuit, it will threaten the normal operation of track circuit. The reason that geomagnetic storms invade the track circuit was analyzed, and then how GIC affects the characteristics of choke transformers, was found. The calculation method of GIC according to a simulation based on the GIC flow path in the track circuit was built. Electromagnetic system model of choke transformer and track relay were designed in Maxwell software to get the magnetic flux density distribution of them. The results show that GIC values of 2.4 A can bring about serious direct current bias of choke transformers and cause the terminal voltage of track relay to decrease, resulting in relay malfunction. The numerical calculation results show that geomagnetic storms will interfere with intercity railway track circuit, which is in accordance with some phenomenon happened in some rail tracks. This method proves geomagnetic storms’ influence on intercity railway track circuit and attentions should be paid to this influence.