Cardiovascular abnormalities of long-COVID syndrome: Pathogenic basis and potential strategy for treatment and rehabilitation

Kainuo Wu, Jonathan Van Name, Lei Xi

Sports Medicine and Health Science ›› 2024, Vol. 6 ›› Issue (3) : 221-231. DOI: 10.1016/j.smhs.2024.03.009
Review

Cardiovascular abnormalities of long-COVID syndrome: Pathogenic basis and potential strategy for treatment and rehabilitation

Author information +
History +

Abstract

Cardiac injury and sustained cardiovascular abnormalities in long-COVID syndrome, i.e. post-acute sequelae of coronavirus disease 2019 (COVID-19) have emerged as a debilitating health burden that has posed challenges for management of pre-existing cardiovascular conditions and other associated chronic comorbidities in the most vulnerable group of patients recovered from acute COVID-19. A clear and evidence-based guideline for treating cardiac issues of long-COVID syndrome is still lacking. In this review, we have summarized the common cardiac symptoms reported in the months after acute COVID-19 illness and further evaluated the possible pathogenic factors underlying the pathophysiology process of long-COVID. The mechanistic understanding of how Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) damages the heart and vasculatures is critical in developing targeted therapy and preventive measures for limiting the viral attacks. Despite the currently available therapeutic interventions, a considerable portion of patients recovered from severe COVID-19 have reported a reduced functional reserve due to deconditioning. Therefore, a rigorous and comprehensive cardiac rehabilitation program with individualized exercise protocols would be instrumental for the patients with long-COVID to regain the physical fitness levels comparable to their pre-illness baseline.

Keywords

Long-COVID syndrome / Cardiac rehabilitation / Exercise intolerance / Inflammation / Hypoxia inducible factor 1 / SARS-CoV-2 tropism

Cite this article

Download citation ▾
Kainuo Wu, Jonathan Van Name, Lei Xi. Cardiovascular abnormalities of long-COVID syndrome: Pathogenic basis and potential strategy for treatment and rehabilitation. Sports Medicine and Health Science, 2024, 6(3): 221‒231 https://doi.org/10.1016/j.smhs.2024.03.009

References

[[1]]
J.K. Logue, N.M. Franko, D.J. McCulloch, et al.. Sequelae in adults at 6 months after COVID-19 infection. JAMA Netw Open, 4 (2) ( 2021), Article e210830, DOI: 10.1001/jamanetworkopen.2021.0830
[[2]]
D. Ayoubkhani, K. Khunti, V. Nafilyan, et al.. Post-covid syndrome in individuals admitted to hospital with covid-19: retrospective cohort study. BMJ, 372 ( 2021), Article n693, DOI: 10.1136/bmj.n693
[[3]]
N. Mumoli, G. Conte, I. Evangelista, M. Cei, A. Mazzone, A. Colombo. Post-COVID or long-COVID: two different conditions or the same?. J Infect Public Health, 14 (10) ( 2021), pp. 1349-1350, DOI: 10.1016/j.jiph.2021.08.019
[[4]]
M. Lorente-Ros, S. Das, J. Elias, W.H. Frishman, W.S. Aronow. Cardiovascular manifestations of the long COVID syndrome. Cardiol Rev ( 2023 ; April 10), DOI: 10.1097/CRD.0000000000000552
[[5]]
L. Huang, P. Zhao, D. Tang, et al.. Cardiac involvement in patients recovered from COVID-2019 identified using magnetic resonance imaging. JACC Cardiovasc Imaging, 13 (11) ( 2020), pp. 2330-2339, DOI: 10.1016/j.jcmg.2020.05.004
[[6]]
M. Letko, A. Marzi, V. Munster. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol, 5 (4) ( 2020), pp. 562-569, DOI: 10.1038/s41564-020-0688-y
[[7]]
C. Huang, L. Huang, Y. Wang, et al.. 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. Lancet, 397 (10270) ( 2021), pp. 220-232, DOI: 10.1016/S0140-6736(20)32656-8
[[8]]
J. Frija-Masson, M.P. Debray, S. Boussouar, et al.. Residual ground glass opacities three months after COVID-19 pneumonia correlate to alteration of respiratory function: the post COVID M3 study. Respir Med, 184 ( 2021), Article 106435, DOI: 10.1016/j.rmed.2021.106435
[[9]]
K.J. Myall, B. Mukherjee, A.M. Castanheira, et al.. Persistent post-COVID-19 interstitial lung disease. An observational study of corticosteroid treatment. Ann Am Thorac Soc, 18 (5) ( 2021), pp. 799-806, DOI: 10.1513/AnnalsATS.202008-1002OC
[[10]]
M. Gorecka, N. Jex, S. Thirunavukarasu, et al.. Cardiovascular magnetic resonance imaging and spectroscopy in clinical long-COVID-19 syndrome: a prospective case-control study. J Cardiovasc Magn Reson, 24 (1) ( 2022), p. 50, DOI: 10.1186/s12968-022-00887-9
[[11]]
K.L. Quinn, G.Y. Lam, J.F. Walsh, et al.. Cardiovascular considerations in the management of people with suspected long COVID. Can J Cardiol, 39 (6) ( 2023), pp. 741-753, DOI: 10.1016/j.cjca.2023.04.003
[[12]]
M. Sova, E. Sovova, J. Ozana, et al.. Post-COVID syndrome and cardiorespiratory fitness—26-month experience of single center. Life, 13 (3) ( 2023), p. 684, DOI: 10.3390/life13030684
[[13]]
I. Szoltysek-Boldys, W. Zielinska-Danch, D. Loboda, et al.. Photoplethysmographic measurement of arterial stiffness in Polish patients with Long-COVID-19 Syndrome—the results of a cross-sectional study. Diagnostics, 12 (12) ( 2022), p. 3189, DOI: 10.3390/diagnostics12123189
[[14]]
M. Pływaczewska-Jakubowska, M. Chudzik, M. Babicki, J. Kapusta, P. Jankowski. Lifestyle, course of COVID-19, and risk of long-COVID in non-hospitalized patients. Front Med, 9 ( 2022), Article 1036556, DOI: 10.3389/fmed.2022.1036556
[[15]]
M. Spinicci, L. Graziani, M. Tilli, et al.. Infection with SARS-CoV-2 variants is associated with different long COVID phenotypes. Viruses, 14 (11) ( 2022), p. 2367, DOI: 10.3390/v14112367
[[16]]
Z. Lin. More than a key—the pathological roles of SARS-CoV-2 spike protein in COVID-19 related cardiac injury. Sports Med Health Sci., 30 (2023 March), DOI: 10.1016/j.smhs.2023.03.004. Online ahead of print
[[17]]
M. Hoffmann, H. Kleine-Weber, S. Schroeder, et al.. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 181 (2) ( 2020), pp. 271-280.e8, DOI: 10.1016/j.cell.2020.02.052
[[18]]
A.C. Montezano, Dinh Nguyen, A. Cat, F.J. Rios, R.M. Touyz.Angiotensin II and vascular injury. Curr Hypertens Rep, 16 (6) ( 2014), p. 431, DOI: 10.1007/s11906-014-0431-2
[[19]]
D. Lindner, A. Fitzek, H. Bräuninger, et al.. Association of cardiac infection with SARS-CoV-2 in confirmed COVID-19 autopsy cases. JAMA Cardiol, 5 (11) ( 2020), p. 1281, DOI: 10.1001/jamacardio.2020.3551
[[20]]
C. Gemayel, A. Pelliccia, P.D. Thompson. Arrhythmogenic right ventricular cardiomyopathy. J Am Coll Cardiol, 38 (7) ( 2001), pp. 1773-1781, DOI: 10.1016/S0735-1097(01)01654-0
[[21]]
Y. Xie, E. Xu, B. Bowe, Z. Al-Aly.Long-term cardiovascular outcomes of COVID-19. Nat Med, 28 (3) ( 2022), pp. 583-590, DOI: 10.1038/s41591-022-01689-3
[[22]]
P.E. Lazzerini, P.L. Capecchi, N. El-Sherif, F. Laghi-Pasini, M. Boutjdir. Emerging arrhythmic risk of autoimmune and inflammatory cardiac channelopathies. J Am Heart Assoc, 7 (22) ( 2018), Article e010595, DOI: 10.1161/JAHA.118.010595
[[23]]
P.E. Lazzerini, F. Laghi-Pasini, M. Boutjdir, P.L. Capecchi. Cardioimmunology of arrhythmias: the role of autoimmune and inflammatory cardiac channelopathies. Nat Rev Immunol, 19 (1) ( 2019), pp. 63-64, DOI: 10.1038/s41577-018-0098-z
[[24]]
M. Gyöngyösi, P. Alcaide, F.W. Asselbergs, et al.. Long COVID and the cardiovascular system-elucidating causes and cellular mechanisms in order to develop targeted diagnostic and therapeutic strategies: a joint Scientific Statement of the ESC Working Groups on Cellular Biology of the Heart and Myocardial and Pericardial Diseases. Cardiovasc Res, 119 (2) ( 2023), pp. 336-356, DOI: 10.1093/cvr/cvac115
[[25]]
C. Edler, A.S. Schröder, M. Aepfelbacher, et al.. Dying with SARS-CoV-2 infection—an autopsy study of the first consecutive 80 cases in Hamburg, Germany. Int J Leg Med, 134 (4) ( 2020), pp. 1275-1284, DOI: 10.1007/s00414-020-02317-w
[[26]]
M.K. Halushka, R.S. Vander Heide.Myocarditis is rare in COVID-19 autopsies: cardiovascular findings across 277 postmortem examinations. Cardiovasc Pathol, 50 ( 2021), Article 107300, DOI: 10.1016/j.carpath.2020.107300
[[27]]
T. Chen, J. Song, H. Liu, H. Zheng, C. Chen.Positive Epstein-Barr virus detection in coronavirus disease 2019 (COVID-19) patients. Sci Rep, 11 (1) ( 2021), Article 10902, DOI: 10.1038/s41598-021-90351-y
[[28]]
B. Chen, B. Julg, S. Mohandas, S.B. Bradfute. Viral persistence, reactivation, and mechanisms of long COVID. Elife, 12 ( 2023), Article e86015, DOI: 10.7554/eLife.86015
[[29]]
M. Panigada, N. Bottino, P. Tagliabue, et al.. Hypercoagulability of COVID-19 patients in intensive care unit: a report of thromboelastography findings and other parameters of hemostasis. J Thromb Haemostasis, 18 (7) ( 2020), pp. 1738-1742, DOI: 10.1111/jth.14850
[[30]]
M.Y. Abou-Ismail, A. Diamond, S. Kapoor, Y. Arafah, L. Nayak. The hypercoagulable state in COVID-19: incidence, pathophysiology, and management. Thromb Res, 194 ( 2020), pp. 101-115, DOI: 10.1016/j.thromres.2020.06.029
[[31]]
Z. Varga, A.J. Flammer, P. Steiger, et al.. Endothelial cell infection and endotheliitis in COVID-19. Lancet, 395 (10234) ( 2020), pp. 1417-1418, DOI: 10.1016/S0140-6736(20)30937-5
[[32]]
S. Nagashima, M.C. Mendes, A.P. Camargo Martins, et al.. Endothelial dysfunction and thrombosis in patients with COVID-19—brief report. Arterioscler Thromb Vasc Biol, 40 (10) ( 2020), pp. 2404-2407, DOI: 10.1161/ATVBAHA.120.314860
[[33]]
Y.J. Lai, S.H. Liu, S. Manachevakul, T.A. Lee, C.T. Kuo, D. Bello. Biomarkers in long COVID-19: a systematic review. Front Med, 10 ( 2023), Article 1085988, DOI: 10.3389/fmed.2023.1085988
[[34]]
A.C. Montezano, L.L. Camargo, S. Mary, et al.. SARS-CoV-2 spike protein induces endothelial inflammation via ACE 2 independently of viral replication. Sci Rep, 13 (1) ( 2023), Article 14086, DOI: 10.1038/s41598-023-41115-3
[[35]]
L.A. Cosimi, C. Kelly, S. Esposito, et al.. Duration of symptoms and association with positive home rapid antigen test results after infection with SARS-CoV-2. JAMA Netw Open, 5 (8) ( 2022), Article e2225331, DOI: 10.1001/jamanetworkopen.2022.25331
[[36]]
C. Cervia-Hasler, S.C. Brüningk, T. Hoch, et al.. Persistent complement dysregulation with signs of thromboinflammation in active long COVID. Science, 383 (6680) ( 2024), p. eadg7942, DOI: 10.1126/science.adg7942
[[37]]
F. Bossi, L. Rizzi, R. Bulla, et al.. C 7 is expressed on endothelial cells as a trap for the assembling terminal complement complex and may exert anti-inflammatory function. Blood, 113 (15) ( 2009), pp. 3640-3648, DOI: 10.1182/blood-2008-03-146472
[[38]]
Y. Su, D. Yuan, D.G. Chen, et al.. Multiple early factors anticipate post-acute COVID-19 sequelae. Cell, 185 (5) ( 2022), pp. 881-895.e20, DOI: 10.1016/j.cell.2022.01.014
[[39]]
A. Gupta, M.V. Madhavan, K. Sehgal, et al.. Extrapulmonary manifestations of COVID-19. Nat Med, 26 (7) ( 2020), pp. 1017-1032, DOI: 10.1038/s41591-020-0968-3
[[40]]
W. Wang, C.Y. Wang, S.I. Wang, J.C.C. Wei. Long-term cardiovascular outcomes in COVID-19 survivors among non-vaccinated population: a retrospective cohort study from the TriNetX US collaborative networks. eClinicalMedicine, 53 ( 2022), Article 101619, DOI: 10.1016/j.eclinm.2022.101619
[[41]]
N. Tang, D. Li, X. Wang, Z. Sun. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemostasis, 18 (4) ( 2020), pp. 844-847, DOI: 10.1111/jth.14768
[[42]]
Z. Al-Aly, Y. Xie, B. Bowe.High-dimensional characterization of post-acute sequelae of COVID-19. Nature, 594 (7862) ( 2021), pp. 259-264, DOI: 10.1038/s41586-021-03553-9
[[43]]
D.C. de Menezes, P.D.L. de Lima, I.C. de Lima, et al.. Metabolic profile of patients with long COVID: a cross-sectional study. Nutrients, 15 (5) ( 2023), p. 1197, DOI: 10.3390/nu15051197
[[44]]
J.J. Frere, B.R. tenOever. Cardiometabolic syndrome — an emergent feature of Long COVID?. Nat Rev Immunol, 22 (7) ( 2022), pp. 399-400, DOI: 10.1038/s41577-022-00739-8
[[45]]
X. Tang, S. Uhl, T. Zhang, et al.. SARS-CoV-2 infection induces beta cell transdifferentiation. Cell Metabol, 33 (8) ( 2021), pp. 1577-1591.e7, DOI: 10.1016/j.cmet.2021.05.015
[[46]]
M. Reiterer, M. Rajan, N. Gómez-Banoy, et al.. Hyperglycemia in acute COVID-19 is characterized by insulin resistance and adipose tissue infectivity by SARS-CoV-2. Cell Metabol, 33 (11) ( 2021), pp. 2174-2188.e5, DOI: 10.1016/j.cmet.2021.09.009
[[47]]
H. Yanai, H. Yoshida.Beneficial effects of adiponectin on glucose and lipid metabolism and atherosclerotic progression: mechanisms and perspectives. Int J Mol Sci, 20 (5) ( 2019), p. 1190, DOI: 10.3390/ijms20051190
[[48]]
C. Sharma, J. Bayry.High risk of autoimmune diseases after COVID-19. Nat Rev Rheumatol, 19 (7) ( 2023), pp. 399-400, DOI: 10.1038/s41584-023-00964-y
[[49]]
O. Blagova, N. Varionchik, V. Zaidenov, P. Savina, N. Sarkisova.Anti-heart antibodies levels and their correlation with clinical symptoms and outcomes in patients with confirmed or suspected diagnosis COVID-19. Eur J Immunol, 51 (4) ( 2021), pp. 893-902, DOI: 10.1002/eji.202048930
[[50]]
B. Raman, D.A. Bluemke, T.F. Lüscher, S. Neubauer. Long COVID: post-acute sequelae of COVID-19 with a cardiovascular focus. Eur Heart J, 43 (11) ( 2022), pp. 1157-1172, DOI: 10.1093/eurheartj/ehac031
[[51]]
E.Y. Wang, T. Mao, J. Klein, et al.. Diverse functional autoantibodies in patients with COVID-19. Nature, 595 (7866) ( 2021), pp. 283-288, DOI: 10.1038/s41586-021-03631-y
[[52]]
A. Utrero-Rico, M. Ruiz-Ruigómez, R. Laguna-Goya, et al.. A short corticosteroid course reduces symptoms and immunological alterations underlying long-COVID. Biomedicines, 9 (11) ( 2021), p. 1540, DOI: 10.3390/biomedicines9111540
[[53]]
D. Radovanovic, M. Rizzi, S. Pini, M. Saad, D.A. Chiumello, P. Santus.Helmet CPAP to treat acute hypoxemic respiratory failure in patients with COVID-19: a management strategy proposal. J Clin Med, 9 (4) ( 2020), p. 1191, DOI: 10.3390/jcm9041191
[[54]]
M. Jahani, S. Dokaneheifard, K. Mansouri.Hypoxia: a key feature of COVID-19 launching activation of HIF-1 and cytokine storm. J Inflamm, 17 (1) ( 2020), p. 33, DOI: 10.1186/s12950-020-00263-3
[[55]]
N. Vassilaki, E. Frakolaki. Virus-host interactions under hypoxia. Microb Infect, 19 (3) ( 2017), pp. 193-203, DOI: 10.1016/j.micinf.2016.10.004
[[56]]
R. Zhang, H. Su, X. Ma, et al.. miRNA let-7b promotes the development of hypoxic pulmonary hypertension by targeting ACE2. Am J Physiol Lung Cell Mol Physiol, 316 (3) ( 2019), pp. L547-L557, DOI: 10.1152/ajplung.00387.2018
[[57]]
E.V. Fernandez, K.M. Reece, A.M. Ley, et al.. Dual targeting of the androgen receptor and hypoxia-inducible factor 1α pathways synergistically inhibits castration-resistant prostate cancer cells. Mol Pharmacol, 87 (6) ( 2015), pp. 1006-1012, DOI: 10.1124/mol.114.097477
[[58]]
K. Nishi, T. Oda, S. Takabuchi, et al.. LPS induces hypoxia-inducible factor 1 activation in macrophage-differentiated cells in a reactive oxygen species-dependent manner. Antioxidants Redox Signal, 10 (5) ( 2008), pp. 983-996, DOI: 10.1089/ars.2007.1825
[[59]]
E.M. Palsson-McDermott, L.A.J. O'Neill. The Warburg effect then and now: from cancer to inflammatory diseases. Bioessays, 35 (11) ( 2013), pp. 965-973, DOI: 10.1002/bies.201300084
[[60]]
S. Rajasundaram.Adenosine A2A receptor signaling in the immunopathogenesis of experimental autoimmune encephalomyelitis. Front Immunol, 9 ( 2018), p. 402, DOI: 10.3389/fimmu.2018.00402
[[61]]
S.A. dos Santos, D.R. de Andrade Júnior.HIF-1alpha and infectious diseases: a new frontier for the development of new therapies. Rev Inst Med Trop Sao Paulo, 59 ( 2017), p. e92, DOI: 10.1590/s1678-9946201759092
[[62]]
G. Li, L. He, E. Zhang, et al.. Overexpression of human papillomavirus (HPV) type 16 oncoproteins promotes angiogenesis via enhancing HIF-1α and VEGF expression in non-small cell lung cancer cells. Cancer Lett, 311 (2) ( 2011), pp. 160-170, DOI: 10.1016/j.canlet.2011.07.012
[[63]]
A.S. Menezes, S.M. Botelho, L.R. Santos, A.L. Rezende. Acute COVID-19 syndrome predicts severe long COVID-19: an observational study. Cureus, 14 (10) ( 2022), Article e29826, DOI: 10.7759/cureus.29826
[[64]]
C.M. Terzic, B.J. Medina-Inojosa.Cardiovascular complications of coronavirus disease-2019. Phys Med Rehabil Clin, 34 (3) ( 2023), pp. 551-561, DOI: 10.1016/j.pmr.2023.03.003
[[65]]
T.J. Gluckman, N.M. Bhave, L.A. Allen, et al.. ACC expert consensus decision pathway on cardiovascular sequelae of COVID-19 in adults: myocarditis and other myocardial involvement, post-acute sequelae of SARS-CoV-2 infection, and return to play. J Am Coll Cardiol, 79 (17) ( 2022), pp. 1717-1756, DOI: 10.1016/j.jacc.2022.02.003. 2022
[[66]]
K. Bieksiene, J. Zaveckiene, K. Malakauskas, N. Vaguliene, M. Zemaitis, S. Miliauskas. Post COVID-19 organizing pneumonia: the right time to interfere. Medicina, 57 (3) ( 2021), p. 283, DOI: 10.3390/medicina57030283
[[67]]
P. Mehta, I.O. Rosas, M. Singer. Understanding post-COVID-19 interstitial lung disease (ILD): a new fibroinflammatory disease entity. Intensive Care Med, 48 (12) ( 2022), pp. 1803-1806, DOI: 10.1007/s00134-022-06877-w
[[68]]
G.M.C. Rosano, C. Vitale, M. Adamo, M. Metra. Roadmap for the management of heart failure patients during the vulnerable phase after heart failure hospitalizations: how to implement excellence in clinical practice. J Cardiovasc Med, 23 (3) ( 2022), pp. 149-156, DOI: 10.2459/JCM.0000000000001221
[[69]]
A. Nalbandian, K. Sehgal, A. Gupta, et al.. Post-acute COVID-19 syndrome. Nat Med, 27 (4) ( 2021), pp. 601-615, DOI: 10.1038/s41591-021-01283-z
[[70]]
B. Bozkurt, R. Kovacs, B. Harrington.Joint HFSA/ACC/AHA Statement addresses concerns Re: using RAAS antagonists in COVID-19. J Card Fail, 26 (5) ( 2020), p. 370, DOI: 10.1016/j.cardfail.2020.04.013
[[71]]
R.D. Lopes, A.V.S. Macedo, P.G.M. de Barros E Silva, et al.. Effect of discontinuing vs continuing angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers on days alive and out of the hospital in patients admitted with COVID-19. JAMA, 325 (3) ( 2021), p. 254, DOI: 10.1001/jama.2020.25864
[[72]]
J.R. Rey, J. Caro-Codón, S.O. Rosillo, et al.. Heart failure in COVID-19 patients: prevalence, incidence and prognostic implications. Eur J Heart Fail, 22 (12) ( 2020), pp. 2205-2215, DOI: 10.1002/ejhf.1990
[[73]]
M. Zuin, G. Rigatelli, V. Battisti, G. Costola, L. Roncon, C. Bilato. Increased risk of acute myocardial infarction after COVID-19 recovery: a systematic review and meta-analysis. Int J Cardiol, 372 ( 2023), pp. 138-143, DOI: 10.1016/j.ijcard.2022.12.032
[[74]]
R.F. Rinaldo, M. Mondoni, E.M. Parazzini, et al.. Deconditioning as main mechanism of impaired exercise response in COVID-19 survivors. Eur Respir J, 58 (2) ( 2021), Article 2100870, DOI: 10.1183/13993003.00870-2021
[[75]]
F.A. Gaffney, J.V. Nixon, E.S. Karlsson, W. Campbell, A.B.C. Dowdey, C.G. Blomqvist.Cardiovascular deconditioning produced by 20 hours of bedrest with head-down tilt (-5°) in middle-aged healthy men. Am J Cardiol, 56 (10) ( 1985), pp. 634-638, DOI: 10.1016/0002-9149(85)91025-2
[[76]]
E.W. Rudofker, H. Parker, W.K. Cornwell. An exercise prescription as a novel management strategy for treatment of long COVID. JACC Case Rep, 4 (20) ( 2022), pp. 1344-1347, DOI: 10.1016/j.jaccas.2022.06.026
[[77]]
A. Pelliccia, B.J. Maron, A. Spataro, M.A. Proschan, P. Spirito. The upper limit of physiologic cardiac hypertrophy in highly trained elite athletes. N Engl J Med, 324 (5) ( 1991), pp. 295-301, DOI: 10.1056/NEJM199101313240504
[[78]]
C. Serviente, S.T. Decker, G. Layec. From heart to muscle: pathophysiological mechanisms underlying long-term physical sequelae from SARS-CoV-2 infection. J Appl Physiol, 132 (3) ( 2022), pp. 581-592, DOI: 10.1152/japplphysiol.00734.2021
[[79]]
T. Fukuda, M. Kurano, K. Fukumura, et al.. Cardiac rehabilitation increases exercise capacity with a reduction of oxidative stress. Korean Circ J, 43 (7) ( 2013), p. 481, DOI: 10.4070/kcj.2013.43.7.481
[[80]]
J.J. Manson, C. Crooks, M. Naja, et al.. COVID-19-associated hyperinflammation and escalation of patient care: a retrospective longitudinal cohort study. Lancet Rheumatol, 2 (10) ( 2020), pp. e594-e602, DOI: 10.1016/S2665-9913(20)30275-7
[[81]]
L. Cavigli, C. Fusi, M. Focardi, et al.. Post-acute sequelae of COVID-19: the potential role of exercise therapy in treating patients and athletes returning to play. J Clin Med, 12 (1) ( 2022), p. 288, DOI: 10.3390/jcm12010288
[[82]]
F. D'Ascenzi, S. Castelletti, P.E. Adami, et al.. Cardiac screening prior to return to play after SARS-CoV-2 infection: focus on the child and adolescent athlete: a clinical consensus statement of the task force for childhood health of the European association of preventive Cardiology. Eur J Prev Cardiol, 29 (16) ( 2022), pp. 2120-2124, DOI: 10.1093/eurjpc/zwac180
[[83]]
A. Mohr, L. Dannerbeck, T.J. Lange, et al.. Cardiopulmonary exercise pattern in patients with persistent dyspnoea after recovery from COVID-19. Multidiscip Respir Med, 16 (1) ( 2021), p. 732, DOI: 10.4081/mrm.2021.732
[[84]]
Y. Gao, R. Chen, Q. Geng, et al.. Cardiopulmonary exercise testing might be helpful for interpretation of impaired pulmonary function in recovered COVID-19 patients. Eur Respir J, 57 (1) ( 2021), Article 2004265, DOI: 10.1183/13993003.04265-2020
[[85]]
I. Singh, P. Joseph, P.M. Heerdt, et al.. Persistent exertional intolerance after COVID-19. Chest, 161 (1) ( 2022), pp. 54-63, DOI: 10.1016/j.chest.2021.08.010
[[86]]
H.E. Davis, L. McCorkell, J.M. Vogel, E.J. Topol.Author Correction: long COVID: major findings, mechanisms and recommendations. Nat Rev Microbiol, 21 (6) ( 2023), p. 408, DOI: 10.1038/s41579-023-00896-0
[[87]]
M. Parotto, S.N. Myatra, D. Munblit, A. Elhazmi, O.T. Ranzani, M.S. Herridge.Recovery after prolonged ICU treatment in patients with COVID-19. Lancet Respir Med, 9 (8) ( 2021), pp. 812-814, DOI: 10.1016/S2213-2600(21)00318-0
[[88]]
F. Besnier, B. Bérubé, J. Malo, et al.. Cardiopulmonary rehabilitation in long-COVID-19 patients with persistent breathlessness and fatigue: the COVID-Rehab Study. Int J Environ Res Publ Health, 19 (7) ( 2022), p. 4133, DOI: 10.3390/ijerph19074133
[[89]]
J.C. Sánchez-García, A. Reinoso-Cobo, B. Piqueras-Sola, et al.. Long COVID and physical therapy: a systematic review. Diseases, 11 (4) ( 2023), p. 163, DOI: 10.3390/diseases11040163
[[90]]
D.V. Pouliopoulou, J.C. Macdermid, E. Saunders, et al.. Rehabilitation interventions for physical capacity and quality of life in adults with post-COVID-19 condition. JAMA Netw Open, 6 (9) ( 2023), Article e2333838, DOI: 10.1001/jamanetworkopen.2023.33838
[[91]]
T. del Corral, R. Fabero-Garrido, G. Plaza-Manzano, C. Fernández-de-las-Peñas, M. Navarro-Santana, I. López-de-Uralde-Villanueva.Home-based respiratory muscle training on quality of life and exercise tolerance in long-term post-COVID-19: randomized controlled trial. Ann Phys Rehabil Med, 66 (1) ( 2023), Article 101709, DOI: 10.1016/j.rehab.2022.101709
[[92]]
J. Shang, G. Ye, K. Shi, et al.. Structural basis of receptor recognition by SARS-CoV-2. Nature, 581 (7807) ( 2020), pp. 221-224, DOI: 10.1038/s41586-020-2179-y
[[93]]
S. Yokota, T. Miyamae, Y. Kuroiwa, K. Nishioka.Novel Coronavirus Disease 2019 (COVID-19) and cytokine storms for more effective treatments from an inflammatory pathophysiology. J Clin Med, 10 (4) ( 2021), p. 801, DOI: 10.3390/jcm10040801
[[94]]
RECOVERY Collaborative Group. Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. Lancet, 397 (10285) ( 2021), pp. 1637-1645, DOI: 10.1016/S0140-6736(21)00676-0
[[95]]
G.N. Masoud, W. Li. HIF-1α pathway: role, regulation and intervention for cancer therapy. Acta Pharm Sin B, 5 (5) ( 2015), pp. 378-389, DOI: 10.1016/j.apsb.2015.05.007
[[96]]
D. Tekin, A.D. Dursun, L. Xi. Hypoxia inducible factor 1 (HIF-1) and cardioprotection. Acta Pharmacol Sin, 31 (9) ( 2010), pp. 1085-1094, DOI: 10.1038/aps.2010.132
[[97]]
Z.O. Serebrovska, E.Y. Chong, T.V. Serebrovska, L.V. Tumanovska, L. Xi. Hypoxia, HIF-1α and COVID-19: from pathogenic factors to potential therapeutic targets. Acta Pharmacol Sin, 41 (12) ( 2020), pp. 1539-1546, DOI: 10.1038/s41401-020-00554-8
[[98]]
T.V. Serebrovskaya, L. Xi. Intermittent hypoxia training as non-pharmacologic therapy for cardiovascular diseases: practical analysis on methods and equipment. Exp Biol Med, 241 (15) ( 2016), pp. 1708-1723, DOI: 10.1177/1535370216657614
[[99]]
Y. Wang, H. Kang, X. Liu, Z. Tong. Combination of RT-qPCR testing and clinical features for diagnosis of COVID-19 facilitates management of SARS-CoV-2 outbreak. J Med Virol, 92 (6) ( 2020), pp. 538-539, DOI: 10.1002/jmv.25721
[[100]]
I. Gostimskaya. CRISPR-Cas9: a history of its discovery and ethical considerations of its use in genome editing. Biochemistry, 87 (8) ( 2022), pp. 777-788, DOI: 10.1134/S0006297922080090
[[101]]
C.A. Freije, C. Myhrvold, C.K. Boehm, et al.. Programmable inhibition and detection of RNA viruses using Cas13. Mol Cell, 76 (5) ( 2019), pp. 826-837.e11, DOI: 10.1016/j.molcel.2019.09.013
[[102]]
B. Berber, C. Aydin, F. Kocabas, et al.. Gene editing and RNAi approaches for COVID-19 diagnostics and therapeutics. Gene Ther, 28 (6) ( 2021), pp. 290-305, DOI: 10.1038/s41434-020-00209-7
[[103]]
D.H. Kim, J.J. Rossi. RNAi mechanisms and applications. Biotechniques, 44 (5) ( 2008), pp. 613-616, DOI: 10.2144/000112792
[[104]]
E. Olmastroni, F. Galimberti, E. Tragni, A.L. Catapano, M. Casula.Impact of COVID-19 pandemic on adherence to chronic therapies: a systematic review. Int J Environ Res Publ Health, 20 (5) ( 2023), p. 3825, DOI: 10.3390/ijerph20053825
[[105]]
C. Roche, A. Fisher, D. Fancourt, A. Burton.Exploring barriers and facilitators to physical activity during the COVID-19 pandemic: a qualitative study. Int J Environ Res Publ Health, 19 (15) ( 2022), p. 9169, DOI: 10.3390/ijerph19159169
[[106]]
K. Bouabida, B. Lebouché, M.P. Pomey. Telehealth and COVID-19 pandemic: an overview of the telehealth use, advantages, challenges, and opportunities during COVID-19 pandemic. Healthcare, 10 (11) ( 2022), p. 2293, DOI: 10.3390/healthcare10112293
[[107]]
B. Mandal, N. Porto, D.E. Kiss, S.H. Cho, L.S. Head. Health insurance coverage during the COVID-19 pandemic: the role of Medicaid expansion. J Consum Aff, 57 (1) ( 2023), pp. 296-319, DOI: 10.1111/joca.12500
[[108]]
D.M. Resurrección, E. Motrico, M. Rubio-Valera, J.A. Mora-Pardo, P. Moreno-Peral. Reasons for dropout from cardiac rehabilitation programs in women: a qualitative study. PLoS One, 13 (7) ( 2018), Article e0200636, DOI: 10.1371/journal.pone.0200636
[[109]]
H.J. Chuang, C.W. Lin, M.Y. Hsiao, T.G. Wang, H.W. Liang.Long COVID and rehabilitation. J Formos Med Assoc, 123 ( 2024), pp. S61-S69, DOI: 10.1016/j. jfma.2023.03.022

Accesses

Citations

Detail

Sections
Recommended

/