Cardiovascular abnormalities of long-COVID syndrome: Pathogenic basis and potential strategy for treatment and rehabilitation
Kainuo Wu , Jonathan Van Name , Lei Xi
Sports Medicine and Health Science ›› 2024, Vol. 6 ›› Issue (3) : 221 -231.
Cardiovascular abnormalities of long-COVID syndrome: Pathogenic basis and potential strategy for treatment and rehabilitation
Cardiac injury and sustained cardiovascular abnormalities in long-COVID syndrome, i.e. post-acute sequelae of coronavirus disease 2019 (COVID-19) have emerged as a debilitating health burden that has posed challenges for management of pre-existing cardiovascular conditions and other associated chronic comorbidities in the most vulnerable group of patients recovered from acute COVID-19. A clear and evidence-based guideline for treating cardiac issues of long-COVID syndrome is still lacking. In this review, we have summarized the common cardiac symptoms reported in the months after acute COVID-19 illness and further evaluated the possible pathogenic factors underlying the pathophysiology process of long-COVID. The mechanistic understanding of how Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) damages the heart and vasculatures is critical in developing targeted therapy and preventive measures for limiting the viral attacks. Despite the currently available therapeutic interventions, a considerable portion of patients recovered from severe COVID-19 have reported a reduced functional reserve due to deconditioning. Therefore, a rigorous and comprehensive cardiac rehabilitation program with individualized exercise protocols would be instrumental for the patients with long-COVID to regain the physical fitness levels comparable to their pre-illness baseline.
Long-COVID syndrome / Cardiac rehabilitation / Exercise intolerance / Inflammation / Hypoxia inducible factor 1 / SARS-CoV-2 tropism
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
Z. Lin. More than a key—the pathological roles of SARS-CoV-2 spike protein in COVID-19 related cardiac injury. Sports Med Health Sci., 30 (2023 March), DOI: 10.1016/j.smhs.2023.03.004. Online ahead of print |
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
|
| [79] |
|
| [80] |
|
| [81] |
|
| [82] |
|
| [83] |
|
| [84] |
|
| [85] |
|
| [86] |
|
| [87] |
|
| [88] |
|
| [89] |
|
| [90] |
|
| [91] |
|
| [92] |
|
| [93] |
|
| [94] |
RECOVERY Collaborative Group. Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. Lancet, 397 (10285) ( 2021), pp. 1637-1645, DOI: 10.1016/S0140-6736(21)00676-0 |
| [95] |
|
| [96] |
|
| [97] |
|
| [98] |
|
| [99] |
|
| [100] |
|
| [101] |
|
| [102] |
|
| [103] |
|
| [104] |
|
| [105] |
|
| [106] |
|
| [107] |
|
| [108] |
|
| [109] |
|
/
| 〈 |
|
〉 |