Myocarditis - A silent killer in athletes: Comparative analysis on the evidence before and after COVID-19 pandemic

Jonathan Van Name, Kainuo Wu, Lei Xi

Sports Medicine and Health Science ›› 2024, Vol. 6 ›› Issue (3) : 232-239. DOI: 10.1016/j.smhs.2024.03.003
Review

Myocarditis - A silent killer in athletes: Comparative analysis on the evidence before and after COVID-19 pandemic

Author information +
History +

Abstract

Myocarditis is a rare cardiomyocyte inflammatory process, typically caused by viruses, with potentially devastating cardiac sequalae in both competitive athletes and in the general population. Investigation into myocarditis prevalence in the Coronavirus disease 2019 (COVID-19) era suggests that infection with Severe acute respiratory syndrome coronavirus (SARS-CoV-2) is an independent risk factor for myocarditis, which is confirmed mainly through cardiovascular magnetic resonance imaging. Recent studies indicated that athletes have a decreased risk of myocarditis after recent COVID-19 infection compared to the general population. However, given the unique nature of competitive athletics with their frequent participation in high-intensity exercise, athletes possess distinct factors of susceptibility for the development of myocarditis and its subsequent severe cardiac complications (e.g., sudden cardiac death, fulminant heart failure, etc.). Under this context, this review focuses on comparing myocarditis in athletes versus non-athletes, owing special attention to the distinct clinical presentations and outcomes of myocarditis caused by different viral pathogens such as cytomegalovirus, Epstein-Barr virus, human herpesvirus-6, human immunodeficiency virus, and Parvovirus B19, both before and after the COVID-19 pandemic, as compared with SARS-CoV-2. By illustrating distinct clinical presentations and outcomes of myocarditis in athletes versus non-athletes, we also highlight the critical importance of early detection, vigilant monitoring, and effective management of viral and non-viral myocarditis in athletes and the necessity for further optimization of the return-to-play guidelines for athletes in the COVID-19 era, in order to minimize the risks for the rare but devastating cardiac fatality.

Keywords

COVID-19 / Myocarditis / Cardiovascular symptomatology / Athlete susceptibility / Return-to-play / Sudden cardiac death / Viral pathogens / High-intensity exercise

Cite this article

Download citation ▾
Jonathan Van Name, Kainuo Wu, Lei Xi. Myocarditis - A silent killer in athletes: Comparative analysis on the evidence before and after COVID-19 pandemic. Sports Medicine and Health Science, 2024, 6(3): 232‒239 https://doi.org/10.1016/j.smhs.2024.03.003

References

[[1]]
A.L.P. Caforio, S. Pankuweit, E. Arbustini, et al.. Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J, 34 (33) ( 2013), pp. 2636-2648, DOI: 10.1093/EURHEARTJ/EHT210
[[2]]
D.L. Fairweather, D.J. Beetler, D.N. Di Florio, N. Musigk, B. Heidecker, L.T. Cooper. COVID-19, myocarditis and pericarditis. Circ Res, 132 (10) ( 2023), pp. 1302-1319, DOI: 10.1161/CIRCRESAHA.123.321878
[[3]]
M. Kang, V. Chippa, J. An. Viral Myocarditis. StatPearls Publishing ( 2024).
[[4]]
C. Huang, Y. Wang, X. Li, et al.. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 395 (10223) ( 2020), pp. 497-506, DOI: 10.1016/S0140-6736(20)30183-5
[[5]]
C. Rafaniello, M. Gaio, A. Zinzi, et al.. Disentangling a thorny issue: myocarditis and pericarditis post COVID-19 and following mRNA COVID-19 vaccines. Pharmaceuticals, 15 (5) ( 2022), p. 525, DOI: 10.3390/PH15050525
[[6]]
T.K. Boehmer, L. Kompaniyets, A.M. Lavery, et al.. Association between COVID-19 and myocarditis using hospital-based administrative data - United States, March 2020-January 2021. MMWR Morb Mortal Wkly Rep, 70 (35) ( 2021), pp. 1228-1232, DOI: 10.15585/mmwr.mm7035e5
[[7]]
K.M. Harris, S. Mackey-Bojack, M. Bennett, D. Nwaudo, E. Duncanson, B.J. Maron. Sudden unexpected death due to myocarditis in young people, including athletes. Am J Cardiol, 143 ( 2021), pp. 131-134, DOI: 10.1016/J.AMJCARD.2020.12.028
[[8]]
K.G. Harmon, I.M. Asif, J.J. Maleszewski, et al.. Incidence, cause, and comparative frequency of sudden cardiac death in National Collegiate Athletic Association athletes. Circulation, 132 (1) ( 2015), pp. 10-19, DOI: 10.1161/CIRCULATIONAHA.115.015431
[[9]]
R. Ross, L. Irvin, R. Severin, B. Ellis. Return-to-play considerations after COVID-19 infection in elite athletes. J Athl Train, 56 (10) ( 2021), pp. 1061-1063, DOI: 10.4085/1062-6050-0117.21
[[10]]
J.D. Symanski, J.V. Tso, D.M. Phelan, J.H. Kim.Myocarditis in the athlete: a focus on COVID-19 sequelae. Clin Sports Med, 41 (3) ( 2022), pp. 455-472, DOI: 10.1016/J.CSM.2022.02.007
[[11]]
G. Fung, H. Luo, Y. Qiu, D. Yang, B. McManus. Myocarditis. Circ Res, 118 (3) ( 2016), pp. 496-514, DOI: 10.1161/CIRCRESAHA.115.306573
[[12]]
P.P. Liu, J.W. Mason. Advances in the understanding of myocarditis. Circulation, 104 (9) ( 2001), pp. 1076-1082, DOI: 10.1161/HC3401.095198
[[13]]
G. Chen, H. Jiang, Y. Yao, et al.. Macrophage, a potential targeted therapeutic immune cell for cardiomyopathy. Front Cell Dev Biol, 10 ( 2022), DOI: 10.3389/fcell.2022.908790
[[14]]
I. Kindermann, C. Barth, F. Mahfoud, et al.. Update on myocarditis. J Am Coll Cardiol, 59 (9) ( 2012), pp. 779-792, DOI: 10.1016/J.JACC.2011.09.074
[[15]]
C. Kawai. From myocarditis to cardiomyopathy: mechanisms of inflammation and cell death. Circulation, 99 (8) ( 1999), pp. 1091-1100, DOI: 10.1161/01.CIR.99.8.1091
[[16]]
M.E. Mortada, M. Akhtar. Sudden cardiac death. D.L. Brown, A. Jeremias (Eds.), CardiacIntensive Care.second ed.ed. Elsevier ( 2010), pp. 293-309, DOI: 10.1016/B978-1-4160-3773-6.10025-4
[[17]]
M. Halle, L. Binzenhöfer, H. Mahrholdt, M. Johannes Schindler, K. Esefeld, C. Tschöpe. Myocarditis in athletes: a clinical perspective. Eur J Prev Cardiol, 28 (10) ( 2021), pp. 1050-1057, DOI: 10.1177/2047487320909670
[[18]]
K.G. Harmon, I.M. Asif, J.J. Maleszewski, et al.. Incidence and etiology of sudden cardiac arrest and death in high school athletes in the United States. Mayo Clin Proc, 91 (11) ( 2016), pp. 1493-1502, DOI: 10.1016/J.MAYOCP.2016.07.021
[[19]]
G. Peretto, S. Sala, S. Rizzo, et al.. Arrhythmias in myocarditis: state of the art. Heart Rhythm, 16 (5) ( 2019), pp. 793-801, DOI: 10.1016/J.HRTHM.2018.11.024
[[20]]
P.B. Maffetone, P.B. Laursen. COVID-related athletic deaths: another perfect storm?. Front Sports Act Living, 4 ( 2022), Article 829093, DOI: 10.3389/FSPOR.2022.829093/BIBTEX
[[21]]
H.S. Chugh, A. Sargsyan, K. Nakamura, et al.. Sudden cardiac arrest during the COVID-19 pandemic: a two-year prospective evaluation in a North American community. Heart Rhythm, 20 (7) ( 2023), pp. 947-955, DOI: 10.1016/J.HRTHM.2023.03.025
[[22]]
C.J. Daniels, S. Rajpal, J.T. Greenshields, et al.. Prevalence of clinical and subclinical myocarditis in competitive athletes with recent SARS-CoV-2 infection: results from the Big Ten COVID-19 cardiac registry. JAMA Cardiol, 6 (9) ( 2021), pp. 1078-1087, DOI: 10.1001/JAMACARDIO.2021.2065
[[23]]
Z. Lin. More than a key—the pathological roles of SARS-CoV-2 spike protein in COVID-19 related cardiac injury. Sports Med Health Sci ( 2023), DOI: 10.1016/J.SMHS.2023.03.004. Published online March 30
[[24]]
F.A. Cadegiani. Catecholamines are the key trigger of COVID-19 mRNA vaccine-induced myocarditis: a compelling hypothesis supported by epidemiological, anatomopathological, molecular, and physiological findings. Cureus, 14 (8) ( 2022), Article e27883, DOI: 10.7759/CUREUS.27883
[[25]]
G.A. Roth, G.A. Mensah, C.O. Johnson, et al.. Global burden of cardiovascular diseases and risk factors, 1990-2019: update from the GBD 2019 study. J Am Coll Cardiol, 76 (25) ( 2020), pp. 2982-3021, DOI: 10.1016/J.JACC.2020.11.010
[[26]]
M.M. Wasfy, A.M. Hutter, R.B. Weiner.Sudden cardiac death in athletes. Methodist Debakey Cardiovasc J, 12 (2) ( 2016), p. 76, DOI: 10.14797/MDCJ-12-2-76
[[27]]
R. Thaker, J. Faraci, S. Derti, J.F. Schiavone. Myocarditis in SARS-CoV-2: a meta-analysis. Cureus, 15 (10) ( 2023), Article e48059, DOI: 10.7759/CUREUS.48059
[[28]]
B. Heidecker, N. Dagan, R. Balicer, et al.. Myocarditis following COVID-19 vaccine: incidence, presentation, diagnosis, pathophysiology, therapy, and outcomes put into perspective. A clinical consensus document supported by the Heart Failure Association of the European Society of Cardiology (ESC) and the ESC Working Group on Myocardial and Pericardial Diseases. Eur J Heart Fail, 24 (11) ( 2022), pp. 2000-2018, DOI: 10.1002/EJHF.2669
[[29]]
Vaccine Adverse Event Reporting System (VAERS) (2023).
[[30]]
O.H.I. Chou, J. Zhou, T.T.L. Lee, et al.. Comparisons of the risk of myopericarditis between COVID-19 patients and individuals receiving COVID-19 vaccines: a population-based study. Clin Res Cardiol, 111 (10) ( 2022), pp. 1098-1103, DOI: 10.1007/S00392-022-02007-0/FIGURES/4
[[31]]
B. Hurwitz, O. Issa. Management and treatment of myocarditis in athletes. Curr Treat Options Cardiovasc Med, 22 (12) ( 2020), pp. 1-11, DOI: 10.1007/S11936-020-00875-1/FIGURES/1
[[32]]
V.M. Ferreira, J. Schulz-Menger, G. Holmvang, et al.. Cardiovascular magnetic resonance in nonischemic myocardial inflammation: expert recommendations. J Am Coll Cardiol, 72 (24) ( 2018), pp. 3158-3176, DOI: 10.1016/J.JACC.2018.09.072
[[33]]
S. Rajpal, M.S. Tong, J. Borchers, et al.. Cardiovascular magnetic resonance findings in competitive athletes recovering from COVID-19 infection. JAMA Cardiol, 6 (1) ( 2021), pp. 116-118, DOI: 10.1001/JAMACARDIO.2020.4916
[[34]]
J. Starekova, D.A. Bluemke, W.S. Bradham, et al.. Evaluation for myocarditis in competitive student athletes recovering from Coronavirus Disease 2019 with cardiac magnetic resonance imaging. JAMA Cardiol, 6 (8) ( 2021), pp. 945-950, DOI: 10.1001/JAMACARDIO.2020.7444
[[35]]
D.E. Clark, A. Parikh, J.M. Dendy, et al.. COVID-19 myocardial pathology evaluation in athletes with cardiac magnetic resonance (COMPETE CMR). Circulation, 143 (6) ( 2021), pp. 609-612, DOI: 10.1161/CIRCULATIONAHA.120.052573
[[36]]
D. Brito, S. Meester, N. Yanamala, et al.. High prevalence of pericardial involvement in college student athletes recovering from COVID-19. JACC Cardiovasc Imaging, 14 (3) ( 2021), pp. 541-555, DOI: 10.1016/J.JCMG.2020.10.023
[[37]]
B.S. Hendrickson, R.E. Stephens, J.V. Chang, et al.. Cardiovascular evaluation after COVID-19 in 137 collegiate athletes: results of an algorithm-guided screening. Circulation, 143 (19) ( 2021), pp. 1926-1928, DOI: 10.1161/CIRCULATIONAHA.121.053982
[[38]]
C.E. Hwang, A. Kussman, J.W. Christle, V. Froelicher, M.T. Wheeler, K.J. Moneghetti. Findings from cardiovascular evaluation of National Collegiate Athletic Association Division I collegiate student-athletes after asymptomatic or mildly symptomatic SARS-CoV-2 infection. Clin J Sport Med, 32 (2) ( 2022), pp. 103-107, DOI: 10.1097/JSM.0000000000000954
[[39]]
N. Moulson, B.J. Petek, J.A. Drezner, et al.. SARS-CoV-2 cardiac involvement in young competitive athletes. Circulation, 144 (4) ( 2021), pp. 256-266, DOI: 10.1161/CIRCULATIONAHA.121.054824
[[40]]
D.C. Nieman. Immune response to heavy exertion. J Appl Physiol, 82 (5) ( 1997), pp. 1385-1394, DOI: 10.1152/jappl.1997.82.5.1385
[[41]]
R.J. Kiel, F.E. Smith, J. Chason, R. Khatib, M.P. Reyes. Coxsackievirus B3 myocarditis in C3H/HeJ mice: description of an inbred model and the effect of exercise on virulence. Eur J Epidemiol, 5 (3) ( 1989), pp. 348-350, DOI: 10.1007/BF00144836/METRICS
[[42]]
D.C. Nieman. Marathon training and immune function. Sports Med, 37 (4-5) ( 2007), pp. 412-415, DOI: 10.2165/00007256-200737040-00036/FIGURES/1
[[43]]
W.P. Deneen, A.B. Jones. Cortisol and alpha-amylase changes during an ultra-running event. Int J Exerc Sci, 10 (4) ( 2017), pp. 531-540.
[[44]]
B.J. Petek, T.W. Churchill, N. Moulson, et al.. Sudden cardiac death in national collegiate athletic association athletes: a 20-year study. Circulation, 149 ( 2024), pp. 80-90, DOI: 10.1161/CIRCULATIONAHA.123.065908
[[45]]
M. Suzui, T. Kawai, H. Kimura, et al.. Natural killer cell lytic activity and CD56(dim) and CD56(bright) cell distributions during and after intensive training. J Appl Physiol, 96 (6) ( 2004), pp. 2167-2173, DOI: 10.1152/JAPPLPHYSIOL.00513.2003
[[46]]
A. Prieto-Hinojosa, A. Knight, C. Compton, M. Gleeson, P.J. Travers. Reduced thymic output in elite athletes. Brain Behav Immun, 39 ( 2014), pp. 75-79, DOI: 10.1016/J.BBI.2014.01.004
[[47]]
G. Massoullie, B. Boyer, V. Sapin, et al.. Sudden cardiac death risk in contact sports increased by myocarditis: a case series. Eur Heart J Case Rep, 5 (3) ( 2021), p. ytab054, DOI: 10.1093/EHJCR/YTAB054
[[48]]
N.L. Altman, A.A. Berning, S.C. Mann, et al.. Vaccination-associated myocarditis and myocardial injury. Circ Res, 132 (10) ( 2023), pp. 1338-1357, DOI: 10.1161/CIRCRESAHA.122.321881
[[49]]
H. Miljoen, Y. Bekhuis, J. Roeykens, et al.. Effect of BNT162b 2 mRNA booster vaccination on VO2max in recreational athletes: a prospective cohort study. Health Sci Rep, 5 (6) ( 2022), Article e929, DOI: 10.1002/HSR2.929
[[50]]
J.J.N. Daems, J.C. van Hattum, S.M. Verwijs, et al.. Cardiac sequelae in athletes following COVID-19 vaccination: evidence and misinformation
[[51]]
[published correction appears in Br J Sports Med. 2024 Feb 7;58(3):e3]. Br J Sports Med, 57 (21) ( 2023), pp. 1400-1402, DOI: 10.1136/bjsports-2023-106847
[[52]]
J.H. Hull, M. Wootten, C. Ranson. Tolerability and impact of SARS-CoV-2 vaccination in elite athletes. Lancet Respir Med, 10 (1) ( 2022), pp. e5-e6, DOI: 10.1016/S2213-2600(21)00548-8
[[53]]
M. Patone, X.W. Mei, L. Handunnetthi, et al.. Risks of myocarditis, pericarditis, and cardiac arrhythmias associated with COVID-19 vaccination or SARS-CoV-2 infection. Nat Med, 28 (2) ( 2021), pp. 410-422, DOI: 10.1038/s41591-021-01630-0
[[54]]
F.B. Sozzi, E. Gherbesi, A. Faggiano, et al.. Viral myocarditis: classification, diagnosis, and clinical implications. Front Cardiovasc Med, 9 ( 2022), Article 908663, DOI: 10.3389/FCVM.2022.908663/BIBTEX
[[55]]
B.D. Bültmann, K. Klingel, K. Sotlar, et al.. Fatal parvovirus B19-associated myocarditis clinically mimicking ischemic heart disease: an endothelial cell-mediated disease. Hum Pathol, 34 (1) ( 2003), pp. 92-95, DOI: 10.1053/HUPA.2003.48
[[56]]
A. Caruso, A. Rotola, M. Comar, et al.. HHV-6 infects human aortic and heart microvascular endothelial cells, increasing their ability to secrete proinflammatory chemokines. J Med Virol, 67 (4) ( 2002), pp. 528-533, DOI: 10.1002/JMV.10133
[[57]]
V. Kytö, T. Vuorinen, P. Saukko, et al.. Cytomegalovirus infection of the heart is common in patients with fatal myocarditis. Clin Infect Dis, 40 (5) ( 2005), pp. 683-688, DOI: 10.1086/427804
[[58]]
A.M. Cioc, G.J. Nuovo. Histologic and in situ viral findings in the myocardium in cases of sudden, unexpected death. Mod Pathol, 15 (9) ( 2002), pp. 914-922, DOI: 10.1097/01.mp.0000024291.37651.cd
[[59]]
G. Veronese, E. Ammirati, M. Cipriani, M. Frigerio. Fulminant myocarditis: characteristics, treatment, and outcomes. Anatol J Cardiol, 19 (4) ( 2018), pp. 279-286, DOI: 10.14744/ANATOLJCARDIOL.2017.8170
[[60]]
E. Ammirati, M. Cipriani, C. Moro, et al.. Clinical presentation and outcome in a contemporary cohort of patients with acute myocarditis. Circulation, 138 (11) ( 2018), pp. 1088-1099, DOI: 10.1161/CIRCULATIONAHA.118.035319
[[61]]
S. Sagar, P.P. Liu, L.T. Cooper. Myocarditis. Lancet, 379 (9817) ( 2012), pp. 738-747, DOI: 10.1016/S0140-6736(11)60648-X
[[62]]
H. Mahrholdt, A. Wagner, C.C. Deluigi, et al.. Presentation, patterns of myocardial damage, and clinical course of viral myocarditis. Circulation, 114 (15) ( 2006), pp. 1581-1590, DOI: 10.1161/CIRCULATIONAHA.105.606509
[[63]]
J. Mllei, D. Grana, G.F. Alonso, L. Matturri. Cardiac involvement in acquired immunodeficiency syndrome—a review to push action. Clin Cardiol, 21 (7) ( 1998), pp. 465-472, DOI: 10.1002/CLC.4960210704
[[64]]
I.C. Kim, J.Y. Kim, H.A. Kim, S. Han.COVID-19-related myocarditis in a 21-year-old female patient. Eur Heart J, 41 (19) ( 2020), p. 1859, DOI: 10.1093/EURHEARTJ/EHAA288
[[65]]
B.B. Das. SARS-CoV-2 myocarditis in a high school athlete after COVID-19 and its implications for clearance for sports. Children, 8 (6) ( 2021), p. 427, DOI: 10.3390/CHILDREN8060427
[[66]]
J.A. Fried, K. Ramasubbu, R. Bhatt, et al.. The variety of cardiovascular presentations of COVID-19. Circulation, 141 (23) ( 2020), pp. 1930-1936, DOI: 10.1161/CIRCULATIONAHA.120.047164
[[67]]
M.K. Shotwell, B. Alyami, K. Sankaramangalam, V. Atti, Y.S. Hamirani. Longitudinal follow-up of asymptomatic COVID-19 myocarditis with cardiac magnetic resonance imaging. Am J Case Rep, 23 ( 2022), Article e935492, DOI: 10.12659/AJCR.935492
[[68]]
T. Lampejo, S.M. Durkin, N. Bhatt, O. Guttmann. Acute myocarditis: aetiology, diagnosis and management. Clin Med, 21 (5) ( 2021), pp. e505-e510, DOI: 10.7861/CLINMED.2021-0121
[[69]]
C.L. Polte, E. Bobbio, E. Bollano, et al.. Cardiovascular magnetic resonance in myocarditis. Diagnostics, 12 (2) ( 2022), p. 399, DOI: 10.3390/DIAGNOSTICS12020399
[[70]]
J. Lagan, C. Fortune, D. Hutchings, et al.. The diagnostic and prognostic utility of contemporary cardiac magnetic resonance in suspected acute myocarditis. Diagnostics, 12 (1) ( 2022), p. 156, DOI: 10.3390/DIAGNOSTICS12010156/S1
[[71]]
G.D. Aquaro, M. Perfetti, G. Camastra, et al.. Cardiac MR with late gadolinium enhancement in acute myocarditis with preserved systolic function: ITAMY Study. J Am Coll Cardiol, 70 (16) ( 2017), pp. 1977-1987, DOI: 10.1016/J.JACC.2017.08.044
[[72]]
R. Esmel-Vilomara, P. Dolader, G. Giralt, Q. Ferrer, F. Gran. Coxsackievirus-induced myocarditis. An Pediatr, 97 (5) ( 2022), pp. 354-356, DOI: 10.1016/J.ANPEDE.2022.01.006
[[73]]
A. Mehta, K. Larson, B.S. Ganapathineedi, et al.. An out-of-season case of coxsackie B myocarditis with severe rhabdomyolysis. Case Rep Infect Dis, 2018 ( 2018), pp. 1-4, DOI: 10.1155/2018/4258296
[[74]]
A. Jain, R.P. Rane, M. Mumtaz, et al.. Fulminant coxsackievirus myocarditis in an immunocompetent adult: a case report and literature analysis. Cureus, 14 (6) ( 2022), Article e25787, DOI: 10.7759/CUREUS.25787
[[75]]
L. Xu, F. Zhang, Y. Liang, T. Fan, C. Zhou, W. Yuan. Left ventricular end-diastolic pressure index predicts outcomes in patients with left ventricular diastolic dysfunction. Pol Arch Intern Med, 133 (5) ( 2023), Article 16473, DOI: 10.20452/PAMW.16473
[[76]]
U. Kühl, M. Pauschinger, M. Noutsias, et al.. High prevalence of viral genomes and multiple viral infections in the myocardium of adults with “idiopathic” left ventricular dysfunction. Circulation, 111 (7) ( 2005), pp. 887-893, DOI: 10.1161/01.CIR.0000155616.07901.35
[[77]]
U. Kühl, D. Lassner, N. Wallaschek, et al.. Chromosomally integrated human herpesvirus 6 in heart failure: prevalence and treatment. Eur J Heart Fail, 17 (1) ( 2015), pp. 9-19, DOI: 10.1002/EJHF.194
[[78]]
M.G. Davis, A. Bobba, P. Chourasia, et al.. COVID-19 associated myocarditis clinical outcomes among hospitalized patients in the United States: a propensity matched analysis of national inpatient sample. Viruses, 14 (12) ( 2022), p. 2791, DOI: 10.3390/V14122791
[[79]]
B.J. Petek, N. Moulson, J.A. Drezner, et al.. Cardiovascular outcomes in collegiate athletes after SARS-CoV-2 infection: 1-year follow-up from the outcomes registry for cardiac conditions in athletes. Circulation, 145 (22) ( 2022), pp. 1690-1692, DOI: 10.1161/CIRCULATIONAHA.121.058272
[[80]]
J.Y. Kim, K. Han, Y.J. Suh. Prevalence of abnormal cardiovascular magnetic resonance findings in recovered patients from COVID-19: a systematic review and meta-analysis. J Cardiovasc Magn Reson, 23 (1) ( 2021), pp. 1-22, DOI: 10.1186/S12968-021-00792-7/TABLES/4
[[81]]
G. Modica, M. Bianco, F. Sollazzo, et al.. Myocarditis in athletes recovering from COVID-19: a systematic review and meta-analysis. Int J Environ Res Publ Health, 19 (7) ( 2022), p. 4279, DOI: 10.3390/IJERPH19074279/S1
[[82]]
A.M.A. Shafi, S.A. Shaikh, M.M. Shirke, S. Iddawela, A. Harky. Cardiac manifestations in COVID-19 patients—a systematic review. J Card Surg, 35 (8) ( 2020), pp. 1988-2008, DOI: 10.1111/JOCS.14808
[[83]]
V. Juhász, L. Szabó, A. Pavlik, et al.. Short and mid-term characteristics of COVID-19 disease course in athletes: a high-volume, single-center study. Scand J Med Sci Sports, 33 (3) ( 2023), pp. 341-352, DOI: 10.1111/SMS.14265
[[84]]
J. McKinney, K.A. Connelly, P. Dorian, et al.. COVID-19-Myocarditis and return to play: reflections and recommendations from a Canadian Working Group. Can J Cardiol, 37 (8) ( 2021), pp. 1165-1174, DOI: 10.1016/J.CJCA.2020.11.007
[[85]]
B.J. Maron, J.E. Udelson, R.O. Bonow, et al.. Eligibility and disqualification recommendations for competitive athletes with cardiovascular abnormalities: task Force 3: hypertrophic cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy and other cardiomyopathies, and myocarditis: a scientific statement from the American Heart Association and American College of Cardiology. Circulation, 132 (22) ( 2015), pp. 273-280, DOI: 10.1161/CIR.0000000000000239
[[86]]
P. Schellhorn, K. Klingel, C. Burgstahler. Return to sports after COVID-19 infection. Eur Heart J, 41 (46) ( 2020), pp. 4382-4384, DOI: 10.1093/EURHEARTJ/EHAA448
[[87]]
G. Claessen, A. La Gerche, R. De Bosscher. Return to play after myocarditis: time to abandon the one-size-fits-all approach?. Br J Sports Med, 57 (20) ( 2023), pp. 1282-1283, DOI: 10.1136/BJSPORTS-2022-106447

Accesses

Citations

Detail

Sections
Recommended

/