Exercise improves systemic metabolism in a monocrotaline model of pulmonary hypertension

Ganesha Poojary, Sampara Vasishta, R. Huban Thomas, Kapaettu Satyamoorthy, Ramachandran Padmakumar, Manjunath B. Joshi, Abraham Samuel Babu

Sports Medicine and Health Science ›› 2025, Vol. 7 ›› Issue (1) : 37-47. DOI: 10.1016/j.smhs.2024.03.001
Original article

Exercise improves systemic metabolism in a monocrotaline model of pulmonary hypertension

Author information +
History +

Abstract

Exercise training in pulmonary arterial hypertension (PAH) has been gaining popularity with guidelines now recommending it as an important adjunct to medical therapy. Despite improvements in function and quality of life, an understanding of metabolic changes and their mechanisms remain unexplored. The objective of this study was therefore to understand the metabolic basis of exercise in a monocrotaline model of PAH. 24 male Wistar rats (age: 8-12 weeks and mean body weight: [262.16 ​± ​24.49] gms) were assigned to one of the four groups (i.e., Control, PAH, Exercise and PAH ​+ ​Exercise). The exercise groups participated in treadmill running at 13.3 ​m/min, five days a week for five weeks. Demographic and clinical characteristics were monitored regularly. Following the intervention, LC-MS based metabolomics were performed on blood samples from all groups at the end of five weeks. Metabolite profiling, peak identification, alignment and isotope annotation were also performed. Statistical inference was carried out using dimensionality reducing techniques and analysis of variance.Partial-least-squares discrimination analysis and variable importance in the projection scores showed that the model was reliable, and not over lifting. The analysis demonstrated significant perturbations to lipid and amino acid metabolism, arginine and homocysteine pathways, sphingolipid (p ​< ​0.05), glycerophospholipid (p ​< ​0.05) and nucleotide metabolism in PAH. Exercise, however, was seen to restore arginine (p ​< ​0.05) and homocysteine(p ​< ​0.000 1) levels which were independent effects, irrespective of PAH.Dysregulated arginine and homocysteine pathways are seen in PAH. Exercise restores these dysregulated pathways and could potentially impact severity and outcome in PAH.

Keywords

Pulmonary arterial hypertension / Monocrotaline model / Metabolites / Metabolomics / Endothelial dysfunction / Exercise

Cite this article

Download citation ▾
Ganesha Poojary, Sampara Vasishta, R. Huban Thomas, Kapaettu Satyamoorthy, Ramachandran Padmakumar, Manjunath B. Joshi, Abraham Samuel Babu. Exercise improves systemic metabolism in a monocrotaline model of pulmonary hypertension. Sports Medicine and Health Science, 2025, 7(1): 37‒47 https://doi.org/10.1016/j.smhs.2024.03.001

References

[[1]]
N.W. Morrell, S. Adnot, S.L. Archer, et al.. Cellular and molecular basis of pulmonary arterial hypertension. J Am Coll Cardiol, 54 (1 suppl) ( 2009), pp. S20-S31, DOI: 10.1016/j. jacc.2009.04.018
[[2]]
2.G. Simonneau I.M. Robbins M. Beghetti, et al.. Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol, 54 (1 suppl) ( 2009), pp. S43-S54, DOI: 10.1016/j. jacc.2009.04.012
[[3]]
H.W. Farber, D.P. Miller, M.D. McGoon, A.E. Frost, W.W. Benton, R.L. Benza. Predicting outcomes in pulmonary arterial hypertension based on the 6-minute walk distance. J Heart Lung Transplant, 34 (3) ( 2015), pp. 362-368, DOI: 10.1016/j.healun.2014.08.020
[[4]]
R. Paulin, E.D. Michelakis. The metabolic theory of pulmonary arterial hypertension. Circ Res, 115 (1) ( 2014), pp. 148-164, DOI: 10.1161/CIRCRESAHA.115.301130
[[5]]
M.K. Ball, G.B. Waypa, P.T. Mungai, et al.. Regulation of hypoxia-induced pulmonary hypertension by vascular smooth muscle hypoxia-inducible factor-1α. Am J Respir Crit Care Med, 189 (3) ( 2014), pp. 314-324, DOI: 10.1164/rccm.201302-0302OC
[[6]]
A.Y. Yu, L.A. Shimoda, N.V. Iyer, et al.. Impaired physiological responses to chronic hypoxia in mice partially deficient for hypoxia-inducible factor 1α. J Clin Invest, 103 (5) ( 1999), pp. 691-696, DOI: 10.1172/JCI5912
[[7]]
M.G.V. Heiden, L.C. Cantley, C.B. Thompson. Understanding the warburg effect: the metabolic requirements of cell proliferation. Science, 324 (5930) ( 2009), pp. 1029-1033, DOI: 10.1126/science.1160809
[[8]]
S. Bonnet, E.D. Michelakis, C.J. Porter, et al.. An Abnormal mitochondrial-hypoxia inducible factor-1α-Kv channel pathway disrupts oxygen sensing and triggers pulmonary arterial hypertension in fawn hooded rats: Similarities to human pulmonary arterial hypertension. Circulation, 113 (22) ( 2006), pp. 2630-2641, DOI: 10.1161/CIRCULATIONAHA.105.609008
[[9]]
V. Mainguy, F. Maltais, D. Saey, et al.. Peripheral muscle dysfunction in idiopathic pulmonary arterial hypertension. Thorax, 65 (2) ( 2010), pp. 113-117, DOI: 10.1136/thx.2009.117168
[[10]]
R.M. Tuder, M. Chacon, L. Alger, et al.. Expression of angiogenesis-related molecules in plexiform lesions in severe pulmonary hypertension: evidence for a process of disordered angiogenesis. J Pathol, 195 (3) ( 2001), pp. 367-374, DOI: 10.1002/path.953
[[11]]
I. Fijalkowska, W. Xu, S.A.A. Comhair, et al.. Hypoxia inducible-factor1α regulates the metabolic shift of pulmonary hypertensive endothelial cells. Am J Pathol, 176 (3) ( 2010), pp. 1130-1138, DOI: 10.2353/ajpath.2010.090832
[[12]]
M. Li, S. Riddle, H. Zhang, et al.. Metabolic reprogramming regulates the proliferative and inflammatory phenotype of adventitial fibroblasts in pulmonary hypertension through the transcriptional corepressor C-terminal binding protein-1. Circulation, 134 (15) ( 2016), pp. 1105-1121, DOI: 10.1161/CIRCULATIONAHA.116.023171
[[13]]
J.I. Drake, H.J. Bogaard, S. Mizuno, et al.. Molecular signature of a right heart failure program in chronic severe pulmonary hypertension. Am J Respir Cell Mol Biol, 45 (6) ( 2011), pp. 1239-1247, DOI: 10.1165/rcmb.2010-0412OC
[[14]]
S. Malenfant, F. Potus, F. Fournier, et al.. Skeletal muscle proteomic signature and metabolic impairment in pulmonary hypertension. J Mol Med, 93 (5) ( 2015), pp. 573-584, DOI: 10.1007/s00109-014-1244-0
[[15]]
J.P. Fessel, R. Hamid, B.M. Wittmann, et al.. Metabolomic analysis of bone morphogenetic protein receptor type 2 mutations in human pulmonary endothelium reveals widespread metabolic reprogramming. Pulm Circ, 2 (2) ( 2012), pp. 201-213, DOI: 10.4103/2045-8932.97606
[[16]]
H. Zhang, D. Wang, M. Li, et al.. Metabolic and proliferative state of vascular adventitial fibroblasts in pulmonary hypertension is regulated through a MicroRNA-124/PTBP 1 (Polypyrimidine tract binding protein 1)/Pyruvate kinase muscle axis. Circulation, 136 (25) ( 2017), pp. 2468-2485, DOI: 10.1161/CIRCULATIONAHA.117.028069
[[17]]
S.L. Archer, M. Gomberg-Maitland, M.L. Maitland, S. Rich, J.G.N. Garcia, E. Kenneth Weir. Mitochondrial metabolism, redox signaling, and fusion: a mitochondria-ROS-HIF-1-Kv1.5 O 2-sensing pathway at the intersection of pulmonary hypertension and cancer. Am J Physiol Heart Circ Physiol, 294(2) ( 2008), pp. 570-578, DOI: 10.1152/ajpheart.01324.2007
[[18]]
H. Pi, L. Xia, D.D. Ralph, et al.. Metabolomic signatures associated with pulmonary arterial hypertension outcomes. Circ Res, 132 (3) ( 2023), pp. 254-266, DOI: 10.1161/CIRCRESAHA.122.321923
[[19]]
C. Chen, F. Luo, P. Wu, et al.. Metabolomics reveals metabolite changes of patients with pulmonary arterial hypertension in China. J Cell Mol Med, 24 (4) ( 2020), pp. 2484-2496, DOI: 10.1111/jcmm.14937
[[20]]
Y.Y. He, Y. Yan, X. Jiang, et al.. Spermine promotes pulmonary vascular remodelling and its synthase is a therapeutic target for pulmonary arterial hypertension. Eur Respir J, 56 (5) ( 2020), Article 2000522, DOI: 10.1183/13993003.00522-2020
[[21]]
A.S. Babu, R. Arena, J. Myers, et al.. Exercise intolerance in pulmonary hypertension: mechanism, evaluation and clinical implications. Expert Rev Respir Med, 10 (9) ( 2016), pp. 979-990, DOI: 10.1080/17476348.2016.1191353
[[22]]
A. Satyamurthy, G. Poojary, G. Dibben, et al.. Exercise Training in Pulmonary Hypertension - an updated systematic review with meta-analysis. J Cardiopulm Rehabil Prev, 43 (4) ( 2023), pp. 237-244, DOI: 10.1097/HCR.0000000000000765
[[23]]
N.R. Morris, F.D. Kermeen, A.E. Holland. Exercise-based rehabilitation programmes for pulmonary hypertension. Cochrane Database Syst Rev, 2017 (1) ( 2017), Article CD011285, DOI: 10.1002/14651858.CD011285.pub2
[[24]]
N.P. du Sert, A. Ahluwalia, S. Alam, et al.. Reporting animal research: Explanation and elaboration for the arrive guidelines 2.0. PLoS Biol, 18 (7) ( 2020), Article e3000411, DOI: 10.1371/journal.pbio.3000411
[[25]]
M.L. Handoko, F.S. de Man, C.M. Happé, et al.. Opposite effects of training in rats with stable and progressive pulmonary hypertension. Circulation, 120 (1) ( 2009), pp. 42-49, DOI: 10.1161/CIRCULATIONAHA.108.829713
[[26]]
M.B. Joshi, S. Pai, A. Balakrishnan, et al.. Evidence for perturbed metabolic patterns in bipolar disorder subjects associated with lithium responsiveness. Psychiatry Res, 273 ( 2019), pp. 252-259, DOI: 10.1016/j.psychres.2019.01.031
[[27]]
R. Tautenhahn, G.J. Patti, D. Rinehart, G. Siuzdak. XCMS online: a web-based platform to process untargeted metabolomic data. Anal Chem, 84 (11) ( 2012), pp. 5035-5039, DOI: 10.1021/ac300698c
[[28]]
M.C. Chambers, B. MacLean, R. Burke, et al.. A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotechnol, 30 (10) ( 2012), pp. 918-920, DOI: 10.1038/nbt.2377
[[29]]
J. Ivanisevic, Z.J. Zhu, L. Plate, et al.. Toward ’Omic scale metabolite profiling: a dual separation-mass spectrometry approach for coverage of lipid and central carbon metabolism. Anal Chem, 85 (14) ( 2013), pp. 6876-6884, DOI: 10.1021/ac401140h
[[30]]
M.H.M. Hessel, P. Steendijk, B. Den Adel, C.I. Schutte, A. Van Der Laarse. Characterization of right ventricular function after monocrotaline-induced pulmonary hypertension in the intact rat. Am J Physiol Heart Circ Physiol, 291 (5) ( 2006), pp. 2424-2430, DOI: 10.1152/ajpheart.00369.2006
[[31]]
T. Lin, J. Gu, C. Huang, et al.. (1) H NMR-based analysis of serum metabolites in monocrotaline-induced pulmonary arterial hypertensive rats. Dis Markers, 2016 ( 2016), Article 5803031, DOI: 10.1155/2016/5803031
[[32]]
X. Qin, C. Lei, L. Yan, et al.. Proteomic and metabolomic analyses of right ventricular failure due to pulmonary arterial hypertension. Front Mol Biosci, 9 ( 2022), Article 834179, DOI: 10.3389/fmolb.2022.834179
[[33]]
R. Nogueira-Ferreira, R. Vitorino, R. Ferreira, T. Henriques-Coelho. Exploring the monocrotaline animal model for the study of pulmonary arterial hypertension: a network approach. Pulm Pharmacol Ther, 35 ( 2015), pp. 8-16, DOI: 10.1016/j.pupt.2015.09.007
[[34]]
D. Liu, S. Qin, D. Su, et al.. Metabolic reprogramming of the right ventricle and pulmonary arteries in a flow-associated pulmonary arterial hypertension rat model. ACS Omega, 7 (1) ( 2022), pp. 1273-1287, DOI: 10.1021/acsomega.1c05895
[[35]]
T. Watanabe, K. Abe, K. Horimoto, K. Hosokawa, K. Ohtani, H. Tsutsui. Subcutaneous treprostinil was effective and tolerable in a patient with severe pulmonary hypertension associated with chronic kidney disease on hemodialysis. Heart Lung, 46 (2) ( 2017), pp. 129-130, DOI: 10.1016/j.hrtlng.2017.01.004
[[36]]
G.D. Lewis, D. Ngo, A.R. Hemnes, et al.. Metabolic profiling of right ventricular-pulmonary vascular function reveals circulating biomarkers of pulmonary hypertension. J Am Coll Cardiol, 67 (2) ( 2016), pp. 174-189, DOI: 10.1016/j.jacc.2015.10.072
[[37]]
T. Morville, R.E. Sahl, T. Moritz, J.W. Helge, C. Clemmensen. Plasma metabolome profiling of resistance exercise and endurance exercise in humans. Cell Rep, 33 (13) ( 2020), Article 108554, DOI: 10.1016/j.celrep.2020.108554
[[38]]
G.D. Lewis, L. Farrell, M.J. Wood, et al.. Metabolic signatures of exercise in human plasma. Sci Transl Med, 2 (33) ( 2010), Article 33ra37, DOI: 10.1126/scitranslmed.3001006
[[39]]
M.R. Belhaj, N.G. Lawler, J.A. Hawley, D.I. Broadhurst, N.J. Hoffman, S.N. Reinke. Metabolomics reveals mouse plasma metabolite responses to acute exercise and effects of disrupting AMPK-glycogen interactions. Front Mol Biosci, 9 ( 2022), Article 957549, DOI: 10.3389/fmolb.2022.957549
[[40]]
X. Liu, Y. Han, S. Zhou, et al.. Serum metabolomic responses to aerobic exercise in rats under chronic unpredictable mild stress. Sci Rep, 12 (1) ( 2022), p. 4888, DOI: 10.1038/s41598-022-09102-2
[[41]]
H. Liu, X. Chen, X. Hu, et al.. Alterations in the gut microbiome and metabolism with coronary artery disease severity. Microbiome, 7 (1) ( 2019), p. 68, DOI: 10.1186/s40168-019-0683-9
[[42]]
A.S. Havulinna, M. Sysi-Aho, M. Hilvo, et al.. Circulating ceramides predict cardiovascular outcomes in the population-based FINRISK 2002 Cohort. Arterioscler Thromb Vasc Biol, 36 (12) ( 2016), pp. 2424-2430, DOI: 10.1161/ATVBAHA.116.307497
[[43]]
W. Tian, X. Jiang, Y.K. Sung, J. Qian, K. Yuan, M.R. Nicolls. Leukotrienes in pulmonary arterial hypertension. Immunol Res, 58 (2-3) ( 2014), pp. 387-393, DOI: 10.1007/s12026-014-8492-5
[[44]]
A. Mamazhakypov, A. Weiß, S. Zukunft, et al.. Effects of macitentan and tadalafil monotherapy or their combination on the right ventricle and plasma metabolites in pulmonary hypertensive rats. Pulm Circ, 10 (4) ( 2020), Article 2045894020947283, DOI: 10.1177/2045894020947283
[[45]]
T. Duflot, L. Tu, M. Leuillier, et al.. Preventing the increase in lysophosphatidic acids: a new therapeutic target in pulmonary hypertension?. Metabolites, 11 (11) ( 2021), pp. 1-18, DOI: 10.3390/metabo11110784
[[46]]
B. Fuchs, M. Rupp, H.A. Ghofrani, et al.. Diacylglycerol regulates acute hypoxic pulmonary vasoconstriction via TRPC6. Respir Res, 12 ( 2011), pp. 1-10, DOI: 10.1186/1465-9921-12-20
[[47]]
A.R. Hemnes, E.L. Brittain, A.W. Trammell, et al.. Evidence for right ventricular lipotoxicity in heritable pulmonary arterial hypertension. Am J Respir Crit Care Med, 189 (3) ( 2014), pp. 325-334, DOI: 10.1164/rccm.201306-1086OC
[[48]]
L. Noureddine, R. Azzam, G. Nemer, et al.. Modulation of total ceramide and constituent ceramide species in the acutely and chronically hypoxic mouse heart at different ages. Prostaglandins Other Lipid Mediat, 86 (1-4) ( 2008), pp. 49-55, DOI: 10.1016/j.prostaglandins.2008.02.003
[[49]]
D.M. Ouwens, C. Boer, M. Fodor, et al.. Cardiac dysfunction induced by high-fat diet is associated with altered myocardial insulin signalling in rats. Diabetologia, 48 (6) ( 2005), pp. 1229-1237, DOI: 10.1007/s00125-005-1755-x
[[50]]
G.A. Heresi, M. Aytekin, J. Newman, J. DiDonato, R.A. Dweik. Plasma levels of high-density lipoprotein cholesterol and outcomes in pulmonary arterial hypertension. Am J Respir Crit Care Med, 182 (5) ( 2010), pp. 661-668, DOI: 10.1164/rccm.201001-0007OC
[[51]]
V.T. Dang, L.H. Zhong, A. Huang, A. Deng, G.H. Werstuck. Glycosphingolipids promote pro-atherogenic pathways in the pathogenesis of hyperglycemia-induced accelerated atherosclerosis. Metabolomics, 14 (7) ( 2018), p. 92, DOI: 10.1007/S11306-018-1392-2
[[52]]
Y. Cui, S. Liu, X. Zhang, et al.. Metabolomic analysis of the effects of adipose-derived mesenchymal stem cell treatment on rats with sepsis-induced acute lung injury. Front Pharmacol, 11 ( 2020), p. 902, DOI: 10.3389/fphar.2020.00902
[[53]]
T. Zhu, S. Li, J. Wang, et al.. Induced sputum metabolomic profiles and oxidative stress are associated with chronic obstructive pulmonary disease (COPD) severity: potential use for predictive, preventive, and personalized medicine. EPMA J, 11 ( 2020), pp. 645-659, DOI: 10.1007/s13167-020-00227-w
[[54]]
S.J. Park, H.Y. Yoo, Y.E. Earm, S.J. Kim, J.K. Kim, S.D. Kim. Role of arachidonic acid-derived metabolites in the control of pulmonary arterial pressure and hypoxic pulmonary vasoconstriction in rats. Br J Anaesth, 106 (1) ( 2011), pp. 31-37, DOI: 10.1093/bja/aeq268
[[55]]
A.A. Alqarni.Increased thromboxane a 2 levels in pulmonary artery smooth muscle cells isolated from patients with chronic obstructive pulmonary disease. Medicina (Lithuania), 59 (1) ( 2023), p. 165, DOI: 10.3390/medicina59010165
[[56]]
Y. Zhou, H. Khan, J. Xiao, W.S. Cheang. Effects of arachidonic acid metabolites on cardiovascular health and disease. Int J Mol Sci, 22 (21) (2021), Article 12029, DOI: 10.3390/ijms222112029
[[57]]
E. Ricciotti, G.A. Fitzgerald. Prostaglandins and inflammation. Arterioscler Thromb Vasc Biol, 31 (5) ( 2011), pp. 986-1000, DOI: 10.1161/ATVBAHA.110.207449
[[58]]
Y.D. Zhao, L. Chu, K. Lin, et al.. A biochemical approach to understand the pathogenesis of advanced pulmonary arterial hypertension: metabolomic profiles of arginine, sphingosine-1-phosphate, and heme of human lung. PLoS One, 10 (8) ( 2015), pp. 1-13, DOI: 10.1371/journal.pone.0134958
[[59]]
J. Chen, H. Tang, J.R. Sysol, et al.. The sphingosine kinase 1/sphingosine-1-phosphate pathway in pulmonary arterial hypertension. Am J Respir Crit Care Med, 190 (9) ( 2014), pp. 1032-1043, DOI: 10.1164/rccm.201401-0121OC
[[60]]
A.B. Karger, B.T. Steffen, S.O. Nomura, et al.. Association between homocysteine and vascular calcification incidence, Prevalence, and progression in the MESA cohort. J Am Heart Assoc, 9 (3) ( 2020), Article e013934, DOI: 10.1161/JAHA.119.013934
[[61]]
J. Gambardella, W. Khondkar, M.B. Morelli, X. Wang, G. Santulli, V. Trimarco. Arginine and endothelial function. Biomedicines, 8 (8) ( 2020), p. 277, DOI: 10.3390/BIOMEDICINES8080277
[[62]]
G. Warwick, P.S. Thomas, D.H. Yates. Biomarkers in pulmonary hypertension. Eur Respir J, 32 (2) ( 2008), pp. 503-512, DOI: 10.1183/09031936.00160307
[[63]]
R.H. Böger. Asymmetric dimethylarginine (ADMA): a novel risk marker in cardiovascular medicine and beyond. Ann Med, 38 (2) ( 2006), pp. 126-136, DOI: 10.1080/0785389050047215
[[64]]
A. Chatterjee, J.D. Catravas. Endothelial nitric oxide (NO) and its pathophysiologic regulation. Vascul Pharmacol, 49 (4-6) ( 2008), pp. 134-140, DOI: 10.1016/j.vph.2008.06.008
[[65]]
A. Giaid. Nitric oxide and endothelin-1 in pulmonary hypertension. Chest, 114 (3 Suppl) ( 1998), pp. 208S-212S, DOI: 10.1378/chest.114.3_Supplement.208S
[[66]]
L.J. Millatt, G.S.J. Whitley, D. Li, et al.. Evidence for dysregulation of dimethylarginine dimethylaminohydrolase I in chronic hypoxia-induced pulmonary hypertension. Circulation, 108 (12) ( 2003), pp. 1493-1498, DOI: 10.1161/01.CIR.0000089087.25930.FF
[[67]]
T. Okura, T. Rankinen, J. Gagnon, et al.. Effect of regular exercise on homocysteine concentrations: the HERITAGE Family Study. Eur J Appl Physiol, 98 (4) ( 2006), pp. 394-401, DOI: 10.1007/s00421-006-0294-6
[[68]]
J.R. Klinger, S.H. Abman, M.T. Gladwin. Nitric oxide deficiency and endothelial dysfunction in pulmonary arterial hypertension. Am J Respir Crit Care Med, 188 (6) ( 2013), pp. 639-646, DOI: 10.1164/rccm.201304-0686PP
[[69]]
H. Maarsingh, T. Pera, H. Meurs. Arginase and pulmonary diseases. Naunyn-Schmiedeberg’s Arch Pharmacol, 378 (2) ( 2008), pp. 171-184, DOI: 10.1007/s00210-008-0286-7
[[70]]
W. Xu, A.J. Janocha, S.C. Erzurum. Metabolism in pulmonary hypertension. Annu Rev Physiol, 83 ( 2021), pp. 551-576, DOI: 10.1146/annurev-physiol-031620-123956
[[71]]
L. Goret, S. Tanguy, I. Guiraud, M. Dauzat, P. Obert. Acute administration of l-arginine restores nitric oxide-mediated relaxation in isolated pulmonary arteries from pulmonary hypertensive exercise trained rats. Eur J Pharmacol, 581 (1-2) ( 2008), pp. 148-156, DOI: 10.1016/j.ejphar.2007.11.037
[[72]]
M.B. Brown, A. Kempf, C.M. Collins, et al.. A prescribed walking regimen plus arginine supplementation improves function and quality of life for patients with pulmonary arterial hypertension: a pilot study. Pulm Circ, 8 (1) ( 2018), Article 2045893217743966, DOI: 10.1177/2045893217743966

The authors acknowledge the support from the Manipal Academy of Higher Education and the Manipal School of Lifesciences for the infrastructure.

Accesses

Citations

Detail

Sections
Recommended

/