Exercise snacks and physical fitness in sedentary populations

Tutu Wang, Ismail Laher, Shunchang Li

Sports Medicine and Health Science ›› 2025, Vol. 7 ›› Issue (1) : 1-7. DOI: 10.1016/j.smhs.2024.02.006
Review

Exercise snacks and physical fitness in sedentary populations

Author information +
History +

Abstract

Physical inactivity remains a pressing global public health concern. Prolonged periods of sedentary behavior have been linked to heightened risks of non-communicable diseases such as cardiovascular diseases and type 2 diabetes, while engaging in any form of physical activity can elicit favorable effects on health. Nevertheless, epidemiological research indicates that people often struggle to meet recommended physical activity guidelines, citing time constraints, lack of exercise equipment, and environmental limitations as common barriers. Exercise snacks represents a time-efficient approach with the potential to improve physical activity levels in sedentary populations, cultivate exercise routines, and enhance the perception of the health benefits associated with physical activity. We review the existing literature on exercise snacks, and examine the effects of exercise snacks on physical function and exercise capacity, while also delving into the potential underlying mechanisms. The objective is to establish a solid theoretical foundation for the application of exercise snacks as a viable strategy for promoting physical activity and enhancing overall health, particularly in vulnerable populations who are unable to exercise routinely.

Keywords

Exercise snacks / Sedentary behavior / Physical inactivity

Cite this article

Download citation ▾
Tutu Wang, Ismail Laher, Shunchang Li. Exercise snacks and physical fitness in sedentary populations. Sports Medicine and Health Science, 2025, 7(1): 1‒7 https://doi.org/10.1016/j.smhs.2024.02.006

References

[[1]]
F.C. Bull, S.S. Al-Ansari, S. Biddle, et al.. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br J Sports Med, 54 (24) ( 2020), pp. 1451-1462, DOI: 10.1136/bjsports-2020-102955
[[2]]
Y. Liu, Y. Ke, Y. Liang, et al.. Results from the China 2022 report card on physical activity for children and adolescents. J Exerc Sci Fit, 21 (1) ( 2023), pp. 1-5, DOI: 10.1016/j.jesf.2022.10.004
[[3]]
M.M. Atakan, Y. Li, N. Koşar Ş, H.H. Turnagöl, X. Yan.Evidence-based effects of high-intensity interval training on exercise capacity and health: a review with historical perspective. Int J Environ Res Publ Health, 18 (13) ( 2021), p. 7201, DOI: 10.3390/ijerph18137201
[[4]]
H.G. Caldwell, G.B. Coombs, H. Rafiei, P.N. Ainslie, J.P. Little. Hourly staircase sprinting exercise "snacks" improve femoral artery shear patterns but not flow-mediated dilation or cerebrovascular regulation: a pilot study. Appl Physiol Nutr Metabol, 46 (5) ( 2021), pp. 521-529, DOI: 10.1139/apnm-2020-0562
[[5]]
H. Islam, M.J. Gibala, J.P. Little. Exercise snacks: a novel strategy to improve cardiometabolic health. Exerc Sport Sci Rev, 50 (1) ( 2022), pp. 31-37, DOI: 10.1249/jes.0000000000000275
[[6]]
H. Rafiei, K. Omidian, Myette-Côté É, J.P. Little. Metabolic effect of breaking up prolonged sitting with stair climbing exercise snacks. Med Sci Sports Exerc, 53 (1) ( 2021), pp. 150-158, DOI: 10.1249/mss.0000000000002431
[[7]]
H. Hartley, I.M. Lee, N. Ferrari. An 'exercise snack' plan. Newsweek, 149 (13) ( 2007), pp. 60-63. https://PMID:19130829
[[8]]
M.E. Francois, J.C. Baldi, P.J. Manning, et al.. 'Exercise snacks' before meals: a novel strategy to improve glycaemic control in individuals with insulin resistance. Diabetologia, 57 (7) ( 2014), pp. 1437-1445, DOI: 10.1007/s00125-014-3244-6
[[9]]
M.H. Murphy, I. Lahart, A. Carlin, E. Murtagh. The effects of continuous compared to accumulated exercise on health: a meta-analytic review. Sports Med, 49 (10) ( 2019), pp. 1585-1607, DOI: 10.1007/s40279-019-01145-2
[[10]]
C.H. Huang, M. Yen. Applying an exercise snack-based health promotion strategy. Hu Li Za Zhi, 70 (2) ( 2023), pp. 78-83, DOI: 10.6224/jn.202304_70(2).10
[[11]]
E.M. Jenkins, L.N. Nairn, L.E. Skelly, J.P. Little, M.J. Gibala. Do stair climbing exercise "snacks" improve cardiorespiratory fitness?. Appl Physiol Nutr Metabol, 44 (6) ( 2019), pp. 681-684, DOI: 10.1139/apnm-2018-0675
[[12]]
M.J. Gibala, J.P. Little. Physiological basis of brief vigorous exercise to improve health. J Physiol, 598 (1) ( 2020), pp. 61-69, DOI: 10.1113/jp276849
[[13]]
O.J. Perkin, P.M. McGuigan, K.A. Stokes. Exercise snacking to improve muscle function in healthy older adults: a pilot study. J Aging Res, 2019 ( 2019), Article 7516939, DOI: 10.1155/2019/7516939
[[14]]
J.P. Little, J. Langley, M. Lee, et al.. Sprint exercise snacks: a novel approach to increase aerobic fitness. Eur J Appl Physiol, 119 (5) ( 2019), pp. 1203-1212, DOI: 10.1007/s00421-019-04110-z
[[15]]
Y. Minakata, Y. Azuma, S. Sasaki, Y. Murakami.Objective measurement of physical activity and sedentary behavior in patients with chronic obstructive pulmonary disease: points to keep in mind during evaluations. J Clin Med, 12 (9) ( 2023), p. 3254, DOI: 10.3390/jcm12093254
[[16]]
C. Fazzi, D.H. Saunders, K. Linton, J.E. Norman, R.M. Reynolds.Sedentary behaviours during pregnancy: a systematic review. Int J Behav Nutr Phys Activ, 14 (1) ( 2017), p. 32, DOI: 10.1186/s12966-017-0485-z
[[17]]
C. Paterson, S. Higgins, M. Sikk, et al.. Acute sedentary behavior and cardiovascular disease research: standardizing the methodological posture. Am J Physiol Heart Circ Physiol, 324 (1) ( 2023), pp. H122-H125, DOI: 10.1152/ajpheart.00492.2022
[[18]]
B.R. Stephens, K. Granados, T.W. Zderic, M.T. Hamilton, B. Braun. Effects of 1 day of inactivity on insulin action in healthy men and women: interaction with energy intake. Metabolism, 60 (7) ( 2011), pp. 941-949, DOI: 10.1016/j.metabol.2010.08.014
[[19]]
R. Loh, E. Stamatakis, D. Folkerts, J.E. Allgrove, H.J. Moir. Effects of interrupting prolonged sitting with physical activity breaks on blood glucose, insulin and triacylglycerol measures: a systematic review and meta-analysis. Sports Med, 50 (2) ( 2020), pp. 295-330, DOI: 10.1007/s40279-019-01183-w
[[20]]
A.S. Wolfe, H.M. Burton, E. Vardarli, E.F. Coyle. Hourly 4-s sprints prevent impairment of postprandial fat metabolism from inactivity. Med Sci Sports Exerc, 52 (10) ( 2020), pp. 2262-2269, DOI: 10.1249/mss.0000000000002367
[[21]]
J.D. Akins, C.K. Crawford, H.M. Burton, et al.. Inactivity induces resistance to the metabolic benefits following acute exercise. J Appl Physiol ( 1985), 126 (4) ( 2019), pp. 1088-1094, DOI: 10.1152/japplphysiol.00968.2018
[[22]]
E.F. Coyle, H.M. Burton, R. Satiroglu. Inactivity causes resistance to improvements in metabolism after exercise. Exerc Sport Sci Rev, 50 (2) ( 2022), pp. 81-88, DOI: 10.1249/jes.0000000000000280
[[23]]
F.W. Booth, C.K. Roberts, M.J. Laye. Lack of exercise is a major cause of chronic diseases. Compr Physiol, 2 (2) ( 2012), pp. 1143-1211, DOI: 10.1002/cphy.c110025
[[24]]
M. Quan, P. Xun, H. Wu, et al.. Effects of interrupting prolonged sitting on postprandial glycemia and insulin responses: a network meta-analysis. J Sport Health Sci, 10 (4) ( 2021), pp. 419-429, DOI: 10.1016/j.jshs.2020.12.006
[[25]]
R.M. Pulsford, J. Blackwell, M. Hillsdon, K. Kos. Intermittent walking, but not standing, improves postprandial insulin and glucose relative to sustained sitting: a randomised cross-over study in inactive middle-aged men. J Sci Med Sport, 20 (3) ( 2017), pp. 278-283, DOI: 10.1016/j.jsams.2016.08.012
[[26]]
C.B. Petersen, A. Bauman, J.S. Tolstrup. Total sitting time and the risk of incident diabetes in Danish adults (the DANHES cohort) over 5 years: a prospective study. Br J Sports Med, 50 (22) ( 2016), pp. 1382-1387, DOI: 10.1136/bjsports-2015-095648
[[27]]
P. Gentil, L. Silva, D.E. Antunes, et al.. The effects of three different low-volume aerobic training protocols on cardiometabolic parameters of type 2 diabetes patients: a randomized clinical trial. Front Endocrinol, 14 ( 2023), Article 985404, DOI: 10.3389/fendo.2023.985404
[[28]]
R. Hasan, D. Perez-Santiago, J.R. Churilla, et al.. Can short bouts of exercise ("Exercise snacks") improve body composition in adolescents with type 1 diabetes? A feasibility study. Horm Res Paediatr, 92 (4) ( 2019), pp. 245-253, DOI: 10.1159/000505328
[[29]]
P. Patel, N. Abate. Body fat distribution and insulin resistance. Nutrients, 5 (6) ( 2013), pp. 2019-2027, DOI: 10.3390/nu5062019
[[30]]
D. Thiebaud, E. Jacot, R.A. DeFronzo, et al.. The effect of graded doses of insulin on total glucose uptake, glucose oxidation, and glucose storage in man. Diabetes, 31 (11) ( 1982), pp. 957-963, DOI: 10.2337/diacare.31.11.957
[[31]]
I. Reddy, Y. Yadav, C.S. Dey. Cellular and molecular regulation of exercise-A neuronal perspective. Cell Mol Neurobiol, 43 (4) ( 2023), pp. 1551-1571, DOI: 10.1007/s10571-022-01272-x
[[32]]
A.J. Cochran, M.E. Percival, S. Tricarico, et al.. Intermittent and continuous high-intensity exercise training induce similar acute but different chronic muscle adaptations. Exp Physiol, 99 (5) ( 2014), pp. 782-791, DOI: 10.1113/expphysiol.2013.077453
[[33]]
J. Jensen, P.I. Rustad, A.J. Kolnes, Y.C. Lai.The role of skeletal muscle glycogen breakdown for regulation of insulin sensitivity by exercise. Front Physiol, 2 ( 2011), p. 112, DOI: 10.3389/fphys.2011.00112
[[34]]
H. Islam, J.B. Gillen. Skeletal muscle mechanisms contributing to improved glycemic control following intense interval exercise and training. Sports Med Health Sci, 5 (1) ( 2023), pp. 20-28, DOI: 10.1016/j.smhs.2023.01.002
[[35]]
M. Ross, C.K. Kargl, R. Ferguson, T.P. Gavin, Y. Hellsten. Exercise-induced skeletal muscle angiogenesis: impact of age, sex, angiocrines and cellular mediators. Eur J Appl Physiol, 123 (7) ( 2023), pp. 1415-1432, DOI: 10.1007/s00421-022-05128-6
[[36]]
M.C. Peddie, J.L. Bone, N.J. Rehrer, et al.. Breaking prolonged sitting reduces postprandial glycemia in healthy, normal-weight adults: a randomized crossover trial. Am J Clin Nutr, 98 (2) ( 2013), pp. 358-366, DOI: 10.3945/ajcn.112.051763
[[37]]
M.I. Maraki, L.S. Sidossis. The latest on the effect of prior exercise on postprandial lipaemia. Sports Med, 43 (6) ( 2013), pp. 463-481, DOI: 10.1007/s40279-013-0046-9
[[38]]
L. Bey, M.T. Hamilton. Suppression of skeletal muscle lipoprotein lipase activity during physical inactivity: a molecular reason to maintain daily low-intensity activity. J Physiol, 551 (Pt 2) ( 2003), pp. 673-682, DOI: 10.1113/jphysiol.2003.045591
[[39]]
Y.E. Tsekouras, F. Magkos, Y. Kellas, et al.. High-intensity interval aerobic training reduces hepatic very low-density lipoprotein-triglyceride secretion rate in men. Am J Physiol Endocrinol Metab, 295 (4) ( 2008), pp. E851-E858, DOI: 10.1152/ajpendo.90545.2008
[[40]]
F. Magkos, D.C. Wright, B.W. Patterson, B.S. Mohammed, B. Mittendorfer. Lipid metabolism response to a single, prolonged bout of endurance exercise in healthy young men. Am J Physiol Endocrinol Metab, 290 (2) ( 2006), pp. E355-E362, DOI: 10.1152/ajpendo.00259.2005
[[41]]
Y. Yin, Z. Yu, J. Wang, J. Sun. Effects of the different Tai Chi exercise cycles on patients with essential hypertension: a systematic review and meta-analysis. Front Cardiovasc Med, 10 ( 2023), Article 1016629, DOI: 10.3389/fcvm.2023.1016629
[[42]]
B.M. Gabriel, J. Pugh, V. Pruneta-Deloche, et al.. The effect of high intensity interval exercise on postprandial triacylglycerol and leukocyte activation--monitored for 48 h post exercise. PLoS One, 8 (12) ( 2013), Article e82669, DOI: 10.1371/journal.pone.0082669
[[43]]
M.G. Del Buono, R. Arena, B.A. Borlaug, et al.. Exercise intolerance in patients with heart failure: JACC state-of-the-art review. J Am Coll Cardiol, 73 (17) ( 2019), pp. 2209-2225, DOI: 10.1016/j.jacc.2019.01.072
[[44]]
L. Cai, T. Gonzales, E. Wheeler, et al.. Causal associations between cardiorespiratory fitness and type 2 diabetes. Nat Commun, 14 (1) ( 2023), p. 3904, DOI: 10.1038/s41467-023-38234-w
[[45]]
J.S. Ramos, L.C. Dalleck, A.E. Tjonna, K.S. Beetham, J.S. Coombes. The impact of high-intensity interval training versus moderate-intensity continuous training on vascular function: a systematic review and meta-analysis. Sports Med, 45 (5) ( 2015), pp. 679-692, DOI: 10.1007/s40279-015-0321-z
[[46]]
K.S. Weston, U. Wisløff, J.S. Coombes. High-intensity interval training in patients with lifestyle-induced cardiometabolic disease: a systematic review and meta-analysis. Br J Sports Med, 48 (16) ( 2014), pp. 1227-1234, DOI: 10.1136/bjsports-2013-092576
[[47]]
R. Ross, L. de Lannoy, P.J. Stotz. Separate effects of intensity and amount of exercise on interindividual cardiorespiratory fitness response. Mayo Clin Proc, 90 (11) ( 2015), pp. 1506-1514, DOI: 10.1016/j.mayocp.2015.07.024
[[48]]
M. Sloth, D. Sloth, K. Overgaard, U. Dalgas. Effects of sprint interval training on VO2max and aerobic exercise performance: a systematic review and meta-analysis. Scand J Med Sci Sports, 23 (6) ( 2013), pp. E341-E352, DOI: 10.1111/sms.12092
[[49]]
E.J. Pekas, M.F. Allen, S.Y. Park. Prolonged sitting and peripheral vascular function: potential mechanisms and methodological considerations. J Appl Physiol ( 1985), 134 (4) ( 2023), pp. 810-822, DOI: 10.1152/japplphysiol.00730.2022
[[50]]
L. Fuertes-Kenneally, A. Manresa-Rocamora, C. Blasco-Peris, et al.. Effects and optimal dose of exercise on endothelial function in patients with heart failure: a systematic review and meta-analysis. Sports Med Open, 9 (1) ( 2023), p. 8, DOI: 10.1186/s40798-023-00553-z
[[51]]
J.P. Raleigh, M.D. Giles, H. Islam, et al.. Contribution of central and peripheral adaptations to changes in maximal oxygen uptake following 4 weeks of sprint interval training. Appl Physiol Nutr Metabol, 43 (10) ( 2018), pp. 1059-1068, DOI: 10.1139/apnm-2017-0864
[[52]]
C. Lundby, D. Montero, M. Joyner. Biology of VO(2) max: looking under the physiology lamp. Acta Physiol, 220 (2) ( 2017), pp. 218-228, DOI: 10.1111/apha.12827
[[53]]
M.J. MacInnis, M.J. Gibala. Physiological adaptations to interval training and the role of exercise intensity. J Physiol, 595 (9) ( 2017), pp. 2915-2930, DOI: 10.1113/jp273196
[[54]]
Y.Y. Wen, Y.T. Wang. Analyst of the characteristics of body composition and the influence of physical exercise in people with different sitting time. Sport Sci Technol, 41 (5) ( 2020), pp. 19-21, DOI: 10.14038/j.cnki.tykj.2020.05.007
[[55]]
J.J. Fyfe, D.L. Hamilton, R.M. Daly. Minimal-dose resistance training for improving muscle mass, strength, and function: a narrative review of current evidence and practical considerations. Sports Med, 52 (3) ( 2022), pp. 463-479, DOI: 10.1007/s40279-021-01605-8
[[56]]
J.J. Fyfe, J. Dalla Via, P. Jansons, D. Scott, R.M. Daly.Feasibility and acceptability of a remotely delivered, home-based, pragmatic resistance 'exercise snacking' intervention in community-dwelling older adults: a pilot randomised controlled trial. BMC Geriatr, 22 (1) ( 2022), p. 521, DOI: 10.1186/s12877-022-03207-z
[[57]]
C. McGlory, M.C. Devries, S.M. Phillips. Skeletal muscle and resistance exercise training; the role of protein synthesis in recovery and remodeling. J Appl Physiol ( 1985), 122 (3) ( 2017), pp. 541-548, DOI: 10.1152/japplphysiol.00613.2016
[[58]]
E. Martinez-Valdes, D. Farina, F. Negro, A. Del Vecchio, D. Falla. Early motor unit conduction velocity changes to high-intensity interval training versus continuous training. Med Sci Sports Exerc, 50 (11) ( 2018), pp. 2339-2350, DOI: 10.1249/mss.0000000000001705
[[59]]
B.A. Edgett, W.S. Foster, P.B. Hankinson, et al.. Dissociation of increases in PGC-1α and its regulators from exercise intensity and muscle activation following acute exercise. PLoS One, 8 (8) ( 2013), Article e71623, DOI: 10.1371/journal.pone.0071623
[[60]]
J.P. Folland, A.G. Williams. The adaptations to strength training : morphological and neurological contributions to increased strength. Sports Med, 37 (2) ( 2007), pp. 145-168, DOI: 10.2165/00007256-200737020-00004
[[61]]
S.J. Dankel, K.T. Mattocks, M.B. Jessee, et al.. Frequency: the overlooked resistance training variable for inducing muscle hypertrophy?. Sports Med, 47 (5) ( 2017), pp. 799-805, DOI: 10.1007/s40279-016-0640-8
[[62]]
N.A. Burd, D.W. West, D.R. Moore, et al.. Enhanced amino acid sensitivity of myofibrillar protein synthesis persists for up to 24 h after resistance exercise in young men. J Nutr, 141 (4) ( 2011), pp. 568-573, DOI: 10.3945/jn.110.135038
[[63]]
M.J. Gibala, S.L. McGee, A.P. Garnham, et al.. Brief intense interval exercise activates AMPK and p 38 MAPK signaling and increases the expression of PGC-1alpha in human skeletal muscle. J Appl Physiol ( 1985), 106 (3) ( 2009), pp. 929-934, DOI: 10.1152/japplphysiol.90880.2008
[[64]]
D.J. Bannell, M. France-Ratcliffe, B.J.R. Buckley, et al.. Adherence to unsupervised exercise in sedentary individuals: a randomised feasibility trial of two mobile health interventions. Digit Health, 9 ( 2023), Article 20552076231183552, DOI: 10.1177/20552076231183552
[[65]]
M. Okamura, M. Shimizu, S. Yamamoto, K. Nishie, M. Konishi. High-intensity interval training versus moderate-intensity continuous training in patients with heart failure: a systematic review and meta-analysis. Heart Fail Rev, 28 (5) ( 2023), pp. 1113-1128, DOI: 10.1007/s10741-023-10316-3
[[66]]
P. Jansons, J.J. Fyfe, J. Dalla Via, R.M. Daly, D. Scott. Barriers and enablers associated with participation in a home-based pragmatic exercise snacking program in older adults delivered and monitored by Amazon Alexa: a qualitative study. Aging Clin Exp Res, 35 (3) ( 2023), pp. 561-569, DOI: 10.1007/s40520-022-02327-1

Accesses

Citations

Detail

Sections
Recommended

/