Exercise and nutrition benefit skeletal muscle: From influence factor and intervention strategy to molecular mechanism

Lili Feng, Bowen Li, Su Sean Yong, Xiaonan Wu, Zhenjun Tian

Sports Medicine and Health Science ›› 2024, Vol. 6 ›› Issue (4) : 302-314. DOI: 10.1016/j.smhs.2024.02.004
Review

Exercise and nutrition benefit skeletal muscle: From influence factor and intervention strategy to molecular mechanism

Author information +
History +

Abstract

Sarcopenia is a progressive systemic skeletal muscle disease induced by various physiological and pathological factors, including aging, malnutrition, denervation, and cardiovascular diseases, manifesting as the decline of skeletal muscle mass and function. Both exercise and nutrition produce beneficial effects on skeletal muscle growth and are viewed as feasible strategies to prevent sarcopenia. Mechanisms involve regulating blood flow, oxidative stress, inflammation, apoptosis, protein synthesis and degradation, and satellite cell activation through exerkines and gut microbiomes. In this review, we summarized and discussed the latest progress and future development of the above mechanisms for providing a theoretical basis and ideas for the prevention and treatment of sarcopenia.

Keywords

Skeletal muscle / Sarcopenia / Exercise / Diet / Exerkines / Signaling pathway / Satellite cells

Cite this article

Download citation ▾
Lili Feng, Bowen Li, Su Sean Yong, Xiaonan Wu, Zhenjun Tian. Exercise and nutrition benefit skeletal muscle: From influence factor and intervention strategy to molecular mechanism. Sports Medicine and Health Science, 2024, 6(4): 302‒314 https://doi.org/10.1016/j.smhs.2024.02.004

References

[[1]]
F. Curcio, G. Testa, I. Liguori, et al.. Sarcopenia and heart failure. Nutrients, 12 (1) ( 2020), p. 211, DOI: 10.3390/nu12010211
[[2]]
M. Ikemoto-Uezumi, H. Zhou, T. Kurosawa, et al.. Increased MFG-E 8 at neuromuscular junctions is an exacerbating factor for sarcopenia-associated denervation. Aging Cell, 21 (1) ( 2022), Article e13536, DOI: 10.1111/acel.13536
[[3]]
A.J. Cruz-Jentoft, G. Bahat, J. Bauer, et al.. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing, 48 (1) ( 2019), pp. 16-31, DOI: 10.1093/ageing/afy169
[[4]]
O. Le Bacquer, J. Salles, F. Piscitelli, et al.. Alterations of the endocannabinoid system and circulating and peripheral tissue levels of endocannabinoids in sarcopenic rats. J Cachexia Sarcopenia Muscle, 13 (1) ( 2022), pp. 662-676, DOI: 10.1002/jcsm.12855
[[5]]
A.J. Cruz-Jentoft, A.A. Sayer. Sarcopenia. Lancet, 393 (10191) ( 2019), pp. 2636-2646, DOI: 10.1016/s0140-6736(19)31138-9
[[6]]
J. Brzeszczyńska, F. Brzeszczyński, D.F. Hamilton, R. McGregor, A. Simpson. Role of microRNA in muscle regeneration and diseases related to muscle dysfunction in atrophy, cachexia, osteoporosis, and osteoarthritis. Bone Joint Res, 9 (11) ( 2020), pp. 798-807, DOI: 10.1302/2046-3758.911.Bjr-2020-0178.R1
[[7]]
C. Jeanmaire, B. Mazières, E. Verrouil, L. Bernard, F. Guillemin, A.C. Rat. Body composition and clinical symptoms in patients with hip or knee osteoarthritis: Results from the KHOALA cohort. Semin Arthritis Rheum, 47 (6) ( 2018), pp. 797-804, DOI: 10.1016/j.semarthrit.2017.10.012
[[8]]
T. Mochizuki, K. Yano, K. Ikari, K. Okazaki. Sarcopenia-associated factors in Japanese patients with rheumatoid arthritis: A cross-sectional study. Geriatr Gerontol Int, 19 (9) ( 2019), pp. 907-912, DOI: 10.1111/ggi.13747
[[9]]
M. Torii, M. Hashimoto, A. Hanai, et al.. Prevalence and factors associated with sarcopenia in patients with rheumatoid arthritis. Mod Rheumatol, 29 (4) ( 2019), pp. 589-595, DOI: 10.1080/14397595.2018.1510565
[[10]]
K. Kim, E.M. Anderson, S.T. Scali, T.E. Ryan. Skeletal muscle mitochondrial dysfunction and oxidative stress in peripheral arterial disease: A unifying mechanism and therapeutic target. Antioxidants, 9 (12) ( 2020), p. 1304, DOI: 10.3390/antiox9121304
[[11]]
G. Gortan Cappellari, A. Aleksova, M. Dal Ferro, et al.. Preserved skeletal muscle mitochondrial function, redox state, inflammation and mass in obese mice with chronic heart failure. Nutrients, 12 (11) ( 2020), p. 3393, DOI: 10.3390/nu12113393
[[12]]
J.H. Moon, B.K. Koo, W. Kim. Non-alcoholic fatty liver disease and sarcopenia additively increase mortality: a Korean nationwide survey. J Cachexia Sarcopenia Muscle, 12 (4) ( 2021), pp. 964-972, DOI: 10.1002/jcsm.12719
[[13]]
G. Habig, C. Smaltz, D. Halegoua-DeMarzio. Presence and implications of sarcopenia in non-alcoholic steatohepatitis. Metabolites, 11 (4) ( 2021), p. 242, DOI: 10.3390/metabo11040242
[[14]]
X. Zhang, M.B. Trevino, M. Wang, et al.. Impaired mitochondrial energetics characterize poor early recovery of muscle mass following hind limb unloading in old mice. J Gerontol A Biol Sci Med Sci, 73 (10) ( 2018), pp. 1313-1322, DOI: 10.1093/gerona/gly051
[[15]]
V.S. Armstrong, L.W. Fitzgerald, O.F. Bathe.Cancer-associated muscle wasting-candidate mechanisms and molecular pathways. Int J Mol Sci, 21 (23) ( 2020), p. 9268, DOI: 10.3390/ijms21239268
[[16]]
F. Bozzetti.Chemotherapy-induced sarcopenia. Curr Treat Options Oncol, 21 (1) ( 2020), p. 7, DOI: 10.1007/s11864-019-0691-9
[[17]]
R.J. Dhillon, S. Hasni. Pathogenesis and management of sarcopenia. Clin Geriatr Med, 33 (1) ( 2017), pp. 17-26, DOI: 10.1016/j.cger.2016.08.002
[[18]]
S.L. Lim, X. Liu, Q. Gao, et al.. Subclinical vasculopathy and skeletal muscle metrics in the singapore longitudinal ageing study. Aging, 13 (11) ( 2021), pp. 14768-14784, DOI: 10.18632/aging.203142
[[19]]
T. Mizuno, Y. Matsui, M. Tomida, et al.. Differences in the mass and quality of the quadriceps with age and sex and their relationships with knee extension strength. J Cachexia Sarcopenia Muscle, 12 (4) ( 2021), pp. 900-912, DOI: 10.1002/jcsm.12715
[[20]]
A. Bagheri, R. Hashemi, R. Heshmat, A.D. Motlagh, A. Esmaillzadeh. Patterns of nutrient intake in relation to sarcopenia and its components. Front Nutr, 8 ( 2021), Article 645072, DOI: 10.3389/fnut.2021.645072
[[21]]
M.H. Alhussain, S. Alkahtani, O. Aljuhani, S.S. Habib. Effects of nutrient intake on diagnostic measures of sarcopenia among arab men: a cross-sectional study. Nutrients, 13 (1) ( 2020), p. 114, DOI: 10.3390/nu13010114
[[22]]
J. Nikolov, K. Norman, N. Buchmann, et al.. Association between meal-specific daily protein intake and lean mass in older adults: results of the cross-sectional BASE-II study. Am J Clin Nutr, 114 (3) ( 2021), pp. 1141-1147, DOI: 10.1093/ajcn/nqab144
[[23]]
E. Akehurst, D. Scott, J.P. Rodriguez, et al.. Associations of sarcopenia components with physical activity and nutrition in Australian older adults performing exercise training. BMC Geriatr, 21 (1) ( 2021), p. 276, DOI: 10.1186/s12877-021-02212-y
[[24]]
C. Li, B. Kang, T. Zhang, et al.. Dietary pattern and dietary energy from fat associated with sarcopenia in community-dwelling older Chinese people: a cross-sectional study in three regions of China. Nutrients, 12 (12) ( 2020), p. 3689, DOI: 10.3390/nu12123689
[[25]]
K. Prokopidis, O.C. Witard. Understanding the role of smoking and chronic excess alcohol consumption on reduced caloric intake and the development of sarcopenia. Nutr Res Rev, 35 (2) ( 2022), pp. 197-206, DOI: 10.1017/s0954422421000135
[[26]]
S. Aoyama, Y. Nakahata, K. Shinohara. Chrono-nutrition has potential in preventing age-related muscle loss and dysfunction. Front Neurosci, 15 ( 2021), Article 659883, DOI: 10.3389/fnins.2021.659883
[[27]]
Z. Chen, W.Y. Li, M. Ho, P.H. Chau. The prevalence of sarcopenia in Chinese older adults: meta-analysis and meta-regression. Nutrients, 13 (5) ( 2021), p. 1441, DOI: 10.3390/nu13051441
[[28]]
C. Welch, Z. Majid, C. Greig, J. Gladman, T. Masud, T. Jackson. Interventions to ameliorate reductions in muscle quantity and function in hospitalised older adults: a systematic review towards acute sarcopenia treatment. Age Ageing, 50 (2) ( 2021), pp. 394-404, DOI: 10.1093/ageing/afaa209
[[29]]
A. De Spiegeleer, D. Beckwée, I. Bautmans, M. Petrovic. Pharmacological interventions to improve muscle mass, muscle strength and physical performance in older people: an umbrella review of systematic reviews and meta-analyses. Drugs Aging, 35 (8) ( 2018), pp. 719-734, DOI: 10.1007/s40266-018-0566-y
[[30]]
N.K. Gkekas, P. Anagnostis, V. Paraschou, et al.. The effect of vitamin D plus protein supplementation on sarcopenia: a systematic review and meta-analysis of randomized controlled trials. Maturitas, 145 ( 2021), pp. 56-63, DOI: 10.1016/j.maturitas.2021.01.002
[[31]]
S.M. Parahiba, C.T. Ribeiro É, C. Corrêa, P. Bieger, I.S. Perry, G.C. Souza. Effect of testosterone supplementation on sarcopenic components in middle-aged and elderly men: a systematic review and meta-analysis. Exp Gerontol, 142 ( 2020), Article 111106, DOI: 10.1016/j.exger.2020.111106
[[32]]
M.M. Markofski, K. Jennings, K.L. Timmerman, et al.. Effect of aerobic exercise training and essential amino acid supplementation for 24 Weeks on physical function, body composition, and muscle metabolism in healthy, independent older adults: a randomized clinical trial. J Gerontol A Biol Sci Med Sci, 74 (10) ( 2019), pp. 1598-1604, DOI: 10.1093/gerona/gly109
[[33]]
D.T. Thomas, D.M. Schnell, M. Redzic, et al.. Local in vivo measures of muscle lipid and oxygen consumption change in response to combined vitamin D repletion and aerobic training in older adults. Nutrients, 11 (4) ( 2019), p. 930, DOI: 10.3390/nu11040930
[[34]]
T.L. MacDonald, P. Pattamaprapanont, E.M. Cooney, et al.. Canagliflozin prevents hyperglycemia-associated muscle extracellular matrix accumulation and improves the adaptive response to aerobic exercise. Diabetes, 71 (5) ( 2022), pp. 881-893, DOI: 10.2337/db21-0934
[[35]]
S. Dvoretskiy, J.C. Lieblein-Boff, S. Jonnalagadda, P.J. Atherton, B.E. Phillips, S.L. Pereira. Exploring the association between vascular dysfunction and skeletal muscle mass, strength and function in healthy adults: a systematic review. Nutrients, 12 (3) ( 2020), p. 715, DOI: 10.3390/nu12030715
[[36]]
C. Zizola, P.J. Kennel, H. Akashi, et al.. Activation of PPARδ signaling improves skeletal muscle oxidative metabolism and endurance function in an animal model of ischemic left ventricular dysfunction. Am J Physiol Heart Circ Physiol, 308 (9) ( 2015), pp. H1078-H1085, DOI: 10.1152/ajpheart.00679.2014
[[37]]
D. Cui, J.C. Drake, R.J. Wilson, et al.. A novel voluntary weightlifting model in mice promotes muscle adaptation and insulin sensitivity with simultaneous enhancement of autophagy and mTOR pathway. FASEB J, 34 (6) ( 2020), pp. 7330-7344, DOI: 10.1096/fj.201903055R
[[38]]
M. Koeppel, K. Mathis, K.H. Schmitz, J. Wiskemann. Muscle hypertrophy in cancer patients and survivors via strength training. A meta-analysis and meta-regression. Crit Rev Oncol Hematol, 163 ( 2021), Article 103371, DOI: 10.1016/j.critrevonc.2021.103371
[[39]]
Y. Yuan, P. Xu, Q. Jiang, et al.. Exercise-induced α-ketoglutaric acid stimulates muscle hypertrophy and fat loss through OXGR1-dependent adrenal activation. EMBO J, 40 (14) ( 2021), Article e108434, DOI: 10.15252/embj.2021108434
[[40]]
T. Snijders, A.M. Holwerda, L.J.C. van Loon, L.B. Verdijk. Myonuclear content and domain size in small versus larger muscle fibres in response to 12 weeks of resistance exercise training in older adults. Acta Physiol, 231 (4) ( 2021), Article e13599, DOI: 10.1111/apha.13599
[[41]]
C. van de Bool, E.P.A. Rutten, A. van Helvoort, F.M.E. Franssen, E.F.M. Wouters, A.M.W.J. Schols. A randomized clinical trial investigating the efficacy of targeted nutrition as adjunct to exercise training in COPD. J Cachexia Sarcopenia Muscle, 8 (5) ( 2017), pp. 748-758, DOI: 10.1002/jcsm.12219
[[42]]
M. Ghasemikaram, K. Engelke, M. Kohl, S. von Stengel, W. Kemmler. Detraining effects on muscle quality in older men with osteosarcopenia. Follow-up of the randomized controlled franconian osteopenia and sarcopenia trial (FrOST). Nutrients, 13 (5) ( 2021), p. 1528, DOI: 10.3390/nu13051528
[[43]]
J.E.M. Blackwell, N. Gharahdaghi, M.S. Brook, et al.. The physiological impact of high-intensity interval training in octogenarians with comorbidities. 12 (4) ( 2021), pp. 866-879, DOI: 10.1002/jcsm.12724
[[44]]
L. Feng, B. Li, Z. Tian.Exerkines: opening the way to protecting ischemic heart. Curr Opin Physiol, 31 ( 2023), p. 100615, DOI: 10.1016/j.cophys.2022.100615
[[45]]
G.N. Marzuca-Nassr, M. Artigas-Arias, M.A. Olea, et al.. High-intensity interval training on body composition, functional capacity and biochemical markers in healthy young versus older people. Exp Gerontol, 141 ( 2020), Article 111096, DOI: 10.1016/j.exger.2020.111096
[[46]]
G. Batitucci, E.V. Faria Junior, J.E. Nogueira, et al.. Impact of intermittent fasting combined with high-intensity interval training on body composition, metabolic biomarkers, and physical fitness in women with obesity. Front Nutr, 9 ( 2022), p. 884305, DOI: 10.3389/fnut.2022.884305
[[47]]
G.O. França, E.D.C. Frantz, D.C. Magliano, et al.. Effects of short-term high-intensity interval and continuous exercise training on body composition and cardiac function in obese sarcopenic rats. Life Sci, 256 ( 2020), Article 117920, DOI: 10.1016/j.lfs.2020.117920
[[48]]
D. Wadsworth, S. Lark. Effects of whole-body vibration training on the physical function of the frail elderly: an open, randomized controlled trial. Arch Phys Med Rehabil, 101 (7) ( 2020), pp. 1111-1119, DOI: 10.1016/j.apmr.2020.02.009
[[49]]
N. Wei, G.Y.F. Ng.The effect of whole body vibration training on quadriceps voluntary activation level of people with age-related muscle loss (sarcopenia): a randomized pilot study. BMC Geriatr, 18 (1) ( 2018), p. 240, DOI: 10.1186/s12877-018-0923-z
[[50]]
S.F. Chang, P.C. Lin, R.S. Yang, R.J. Yang.The preliminary effect of whole-body vibration intervention on improving the skeletal muscle mass index, physical fitness, and quality of life among older people with sarcopenia. BMC Geriatr, 18 (1) ( 2018), p. 17, DOI: 10.1186/s12877-018-0712-8
[[51]]
A. Machado, D. Garcia-Lopez, J. Gonzalez-Gallego, N. Garatachea. Whole-body vibration training increases muscle strength and mass in older women: a randomized-controlled trial. Scand J Med Sci Sports, 20 (2) ( 2010), pp. 200-207, DOI: 10.1111/j.1600-0838.2009.00919.x
[[52]]
M. Teschler, M. Heimer, B. Schmitz, W. Kemmler, F.C. Mooren. Four weeks of electromyostimulation improves muscle function and strength in sarcopenic patients: a three-arm parallel randomized trial. J Cachexia Sarcopenia Muscle, 12 (4) ( 2021), pp. 843-854, DOI: 10.1002/jcsm.12717
[[53]]
W. Kemmler, S. von Stengel. Whole-body electromyostimulation as a means to impact muscle mass and abdominal body fat in lean, sedentary, older female adults: subanalysis of the TEST-III trial. Clin Interv Aging, 8 ( 2013), pp. 1353-1364, DOI: 10.2147/cia.S52337
[[54]]
K. Wittmann, C. Sieber, S. von Stengel, et al.. Impact of whole body electromyostimulation on cardiometabolic risk factors in older women with sarcopenic obesity: the randomized controlled FORMOsA-sarcopenic obesity study. Clin Interv Aging, 11 ( 2016), pp. 1697-1706, DOI: 10.2147/cia.S116430
[[55]]
J.A. Davis, M. Mohebbi, F. Collier, et al.. The role of diet quality and dietary patterns in predicting muscle mass and function in men over a 15-year period. Osteoporos Int, 32 (11) ( 2021), pp. 2193-2203, DOI: 10.1007/s00198-021-06012-3
[[56]]
Y. Otsuka, T. Iidaka, C. Horii, et al.. Dietary intake of vitamin E and fats associated with sarcopenia in community-dwelling older Japanese people: a cross-sectional study from the fifth survey of the road study. Nutrients, 13 (5) ( 2021), p. 1730, DOI: 10.3390/nu13051730
[[57]]
S. Park, M. Chae, H. Park, K. Park. Higher branched-chain amino acid intake is associated with handgrip strength among Korean older adults. Nutrients, 13 (5) ( 2021), p. 1522, DOI: 10.3390/nu13051522
[[58]]
G.R. Amirato, J.O. Borges, D.L. Marques, et al.. L-glutamine supplementation enhances strength and power of knee muscles and improves glycemia control and plasma redox balance in exercising elderly women. Nutrients, 13 (3) ( 2021), p. 1025, DOI: 10.3390/nu13031025
[[59]]
D. Beckwee, A. Delaere, S. Aelbrecht, et al.. Exercise interventions for the prevention and treatment of sarcopenia. A systematic umbrella review. J Nutr Health Aging, 23 (6) ( 2019), pp. 494-502, DOI: 10.1007/s12603-019-1196-8
[[60]]
L. da Silva Goncalves, L. Santos Lopes da Silva, C.J. Rodrigues Benjamim, et al.. The effects of different exercise training types on body composition and physical performance in older adults with sarcopenic obesity: a systematic review and meta-analysis. J Nutr Health Aging, 27 (11) ( 2023), pp. 1076-1090, DOI: 10.1007/s12603-023-2018-6
[[61]]
C.C. Lai, Y.K. Tu, T.G. Wang, Y.T. Huang, K.L. Chien. Effects of resistance training, endurance training and whole-body vibration on lean body mass, muscle strength and physical performance in older people: a systematic review and network meta-analysis. Age Ageing, 47 (3) ( 2018), pp. 367-373, DOI: 10.1093/ageing/afy009
[[62]]
X. Liu, Y. Gao, J. Lu, et al.. Effects of different resistance exercise forms on body composition and muscle strength in overweight and/or obese individuals: a systematic review and meta-analysis. Front. Physiol, 12 ( 2022), p. 791999, DOI: 10.3389/fphys.2021.791999
[[63]]
A.J. Cruz-Jentoft, F. Landi, S.M. Schneider, et al.. Prevalence of and interventions for sarcopenia in ageing adults: a systematic review. Report of the International Sarcopenia Initiative (EWGSOP and IWGS). Age Ageing, 43 (6) ( 2014), pp. 748-759, DOI: 10.1093/ageing/afu115
[[64]]
E. Gielen, D. Beckwee, A. Delaere, et al.. Nutritional interventions to improve muscle mass, muscle strength, and physical performance in older people: an umbrella review of systematic reviews and meta-analyses. Nutr Rev, 79 (2) ( 2021), pp. 121-147, DOI: 10.1093/nutrit/nuaa011
[[65]]
E.A. Nunes, L. Colenso-Semple, S.R. McKellar, et al.. Systematic review and meta-analysis of protein intake to support muscle mass and function in healthy adults. submitted for publication. J Cachexia Sarcopenia Muscle, 13 (2) ( 2022), pp. 795-810, DOI: 10.1002/jcsm.12922
[[66]]
A. Figueroa, S.J. Jaime, M. Morita, Gonzales Ju, C. Moinard. L-citrulline supports vascular and muscular benefits of exercise training in older adults. Exerc Sport Sci Rev, 48 (3) ( 2020), pp. 133-139, DOI: 10.1249/jes.0000000000000223
[[67]]
P.G. Tickle, P.W. Hendrickse, A. Weightman, M.H. Nazir, H. Degens, S. Egginton. Impaired skeletal muscle fatigue resistance during cardiac hypertrophy is prevented by functional overload- or exercise-induced functional capillarity. J Physiol, 599 (15) ( 2021), pp. 3715-3733, DOI: 10.1113/jp281377
[[68]]
A. Tryfonos, G. Tzanis, T. Pitsolis, et al.. Exercise training enhances angiogenesis-related gene responses in skeletal muscle of patients with chronic heart failure. Cells, 10 (8) ( 2021), p. 1915, DOI: 10.3390/cells10081915
[[69]]
A.B. Leuchtmann, S.M. Mueller, D. Aguayo, et al.. Resistance training preserves high-intensity interval training induced improvements in skeletal muscle capillarization of healthy old men: a randomized controlled trial. Sci Rep, 10 (1) ( 2020), p. 6578, DOI: 10.1038/s41598-020-63490-x
[[70]]
J.P. Nederveen, M.W. Betz, T. Snijders, G. Parise. The importance of muscle capillarization for optimizing satellite cell plasticity. Exerc Sport Sci Rev, 49 (4) ( 2021), pp. 284-290, DOI: 10.1249/jes.0000000000000270
[[71]]
J.P. Nederveen, S. Joanisse, T. Snijders, et al.. Skeletal muscle satellite cells are located at a closer proximity to capillaries in healthy young compared with older men. J Cachexia Sarcopenia Muscle, 7 (5) ( 2016), pp. 547-554, DOI: 10.1002/jcsm.12105
[[72]]
T. Moro, C.R. Brightwell, E. Volpi, B.B. Rasmussen, C.S. Fry. Resistance exercise training promotes fiber type-specific myonuclear adaptations in older adults. J Appl Physiol, 128 (4) ( 2020), pp. 795-804, DOI: 10.1152/japplphysiol.00723.2019
[[73]]
L.S. Chow, R.E. Gerszten, J.M. Taylor, et al.. Exerkines in health, resilience and disease. Nat Rev Endocrinol, 18 (5) ( 2022), pp. 273-289, DOI: 10.1038/s41574-022-00641-2
[[74]]
J. Heo, E.E. Noble, J.A. Call. The role of exerkines on brain mitochondria: a mini-review. J Appl Physiol ( 1985), 134 (1) ( 2023), pp. 28-35, DOI: 10.1152/japplphysiol.00565.2022
[[75]]
H. Kim, K.M. Kim, M.J. Kang, S. Lim.Growth differentiation factor-15 as a biomarker for sarcopenia in aging humans and mice. Exp Gerontol, 142 ( 2020), Article 111115, DOI: 10.1016/j.exger.2020.111115
[[76]]
L. Feng, B. Li, Y. Xi, M. Cai, Z. Tian. Aerobic exercise and resistance exercise alleviate skeletal muscle atrophy through IGF-1/IGF-1R-PI3K/Akt pathway in mice with myocardial infarction. Am J Physiol Cell Physiol, 322 (2) ( 2022), pp. C164-C176, DOI: 10.1152/ajpcell.00344.2021
[[77]]
W. Ren, Z. Xu, S. Pan, et al.. Irisin and ALCAT 1 mediated aerobic exercise-alleviated oxidative stress and apoptosis in skeletal muscle of mice with myocardial infarction. Free Radic Biol Med, 193(Pt 2) ( 2022), pp. 526-537, DOI: 10.1016/j.freeradbiomed.2022.10.321
[[78]]
H. Shirvani, S. Rahmati-Ahmadabad, E. Kowsari, H. Fry, M. Kazemi, M. Kaviani. Effects of 2-week HMB-FA supplementation with or without eccentric resistance exercise on expression of some genes related to muscle protein turnover and serum irisin and IGF-1 concentrations. Gene, 760 ( 2020), Article 145018, DOI: 10.1016/j.gene.2020.145018
[[79]]
J. Ahn, H.J. Son, H.D. Seo, et al.. γ-Oryzanol improves exercise endurance and muscle strength by upregulating PPARδ and ERRγ activity in aged mice. Mol Nutr Food Res, 65 (14) ( 2021), Article e2000652, DOI: 10.1002/mnfr.202000652
[[80]]
B. Wang, C. Zhang, A. Zhang, H. Cai, S.R. Price, X.H. Wang. MicroRNA-23a and MicroRNA-27a mimic exercise by ameliorating CKD-induced muscle atrophy. J Am Soc Nephrol, 28 (9) ( 2017), pp. 2631-2640, DOI: 10.1681/asn.2016111213
[[81]]
Q. Liu, L. Chen, X. Liang, et al.. Exercise attenuates angiotensinⅡ-induced muscle atrophy by targeting PPARγ/miR-29b. J Sport Health Sci, 11 (6) ( 2022), pp. 696-707, DOI: 10.1016/j.jshs.2021.06.002
[[82]]
L.M. Margolis, C.T. Carrigan, N.E. Murphy, et al.. Carbohydrate intake in recovery from aerobic exercise differentiates skeletal muscle microRNA expression. Am J Physiol Endocrinol Metab, 323 (5) ( 2022), pp. E435-E447, DOI: 10.1152/ajpendo.00110.2022
[[83]]
M. Giron, M. Thomas, D. Dardevet, C. Chassard, I. Savary-Auzeloux. Gut microbes and muscle function: can probiotics make our muscles stronger?. J Cachexia Sarcopenia Muscle, 13 (3) ( 2022), pp. 1460-1476, DOI: 10.1002/jcsm.12964
[[84]]
T. Sakakida, T. Ishikawa, T. Doi, et al.. Water-soluble dietary fiber alleviates cancer-induced muscle wasting through changes in gut microenvironment in mice. Cancer Sci, 113 (5) ( 2022), pp. 1789-1800, DOI: 10.1111/cas.15306
[[85]]
D.A. Hood, J.M. Memme, A.N. Oliveira, M. Triolo. Maintenance of Skeletal Muscle Mitochondria in Health, Exercise, and Aging. Annu Rev Physiol, 81 ( 2019), pp. 19-41, DOI: 10.1146/annurev-physiol-020518-114310
[[86]]
A. Sahm, M. Bens, M. Platzer, A. Cellerino. Parallel evolution of genes controlling mitonuclear balance in short-lived annual fishes. Aging Cell, 16 (3) ( 2017), pp. 488-496, DOI: 10.1111/acel.12577
[[87]]
D. Jia, Z. Tian,R. Wang. Exercise mitigates age-related metabolic diseases by improving mitochondrial dysfunction. Ageing Res Rev, 91 ( 2023), p. 102087, DOI: 10.1016/j.arr.2023.102087
[[88]]
B. Sen, A. Rastogi, R. Nath, et al.. Senescent hepatocytes in decompensated liver show reduced UPRMT and its key player, CLPP, attenuates senescence in vitro. Cell Mol Gastroenterol Hepatol, 8 (1) ( 2019), pp. 73-94, DOI: 10.1016/j.jcmgh.2019.03.001
[[89]]
J. Li, D. Yu, S. Chen, et al.. Sirt 6 opposes glycochenodeoxycholate-induced apoptosis of biliary epithelial cells through the AMPK/PGC-1α pathway. Cell Biosci, 10 (1) ( 2020), p. 43, DOI: 10.1186/s13578-020-00402-6
[[90]]
J.R. Hingst, R. Kjobsted, J.B. Birk, et al.. Inducible deletion of skeletal muscle AMPKα reveals that AMPK is required for nucleotide balance but dispensable for muscle glucose uptake and fat oxidation during exercise. Mol Metabol, 40 ( 2020), p. 101028, DOI: 10.1016/j.molmet.2020.101028
[[91]]
S.A. Head, W. Shi, L. Zhao, et al.. Antifungal drug itraconazole targets VDAC 1 to modulate the AMPK/mTOR signaling axis in endothelial cells. Proc Natl Acad Sci U S A, 112 (52) ( 2015), pp. E7276-E7285, DOI: 10.1073/pnas.1512867112
[[92]]
D.Q. Xu, C.J. Li, Z.Z. Jiang, et al.. The hypoglycemic mechanism of catalpol involves increased AMPK-mediated mitochondrial biogenesis. Acta Pharmacol Sin, 41 (6) ( 2020), pp. 791-799, DOI: 10.1038/s41401-019-0345-2
[[93]]
R. Kjobsted, J.R. Hingst, J. Fentz, et al.. AMPK in skeletal muscle function and metabolism. FASEB J, 32 (4) ( 2018), pp. 1741-1777, DOI: 10.1096/fj.201700442R
[[94]]
Z.J. Fu, Z.Y. Wang, L. Xu, et al.. HIF-1α-BNIP3-mediated mitophagy in tubular cells protects against renal ischemia/reperfusion injury. Redox Biol, 36 ( 2020), p. 101671, DOI: 10.1016/j.redox.2020.101671
[[95]]
A. Parousis, H.N. Carter, C. Tran, et al.. Contractile activity attenuates autophagy suppression and reverses mitochondrial defects in skeletal muscle cells. Autophagy, 14 (11) ( 2018), pp. 1886-1897, DOI: 10.1080/15548627.2018.1491488
[[96]]
T. Mader, T. Chaillou, E.S. Alves, et al.. Exercise reduces intramuscular stress and counteracts muscle weakness in mice with breast cancer. J Cachexia Sarcopenia Muscle, 13 (2) ( 2022), pp. 1151-1163, DOI: 10.1002/jcsm.12944
[[97]]
W. Wei, G. Ruvkun. Lysosomal activity regulates Caenorhabditis elegans mitochondrial dynamics through vitamin B12 metabolism. Proc Natl Acad Sci U S A, 117 (33) ( 2020), pp. 19970-19981, DOI: 10.1073/pnas.2008021117
[[98]]
Y. Wang, J. Li, Z. Zhang, R. Wang, H. Bo, Y. Zhang.Exercise improves the coordination of the mitochondrial unfolded protein response and mitophagy in aging skeletal muscle. Life (Basel), 13 (4) ( 2023), p. 1006, DOI: 10.3390/life13041006
[[99]]
J.M. Memme, A.T. Erlich, D.A. Hood, G. Phukan. Exercise and mitochondrial health. J Physiol, 599 (3) ( 2021), pp. 803-817, DOI: 10.1113/jp278853
[[100]]
M.J. Gomes, L.U. Pagan, A.R.R. Lima, et al.. Effects of aerobic and resistance exercise on cardiac remodelling and skeletal muscle oxidative stress of infarcted rats. J Cell Mol Med, 24 (9) ( 2020), pp. 5352-5362, DOI: 10.1111/jcmm.15191
[[101]]
J. Liang, H. Zhang, Z. Zeng, et al.. Lifelong aerobic exercise alleviates sarcopenia by activating autophagy and inhibiting protein degradation via the AMPK/PGC-1α signaling pathway. Metabolites, 11 (5) ( 2021), p. 323, DOI: 10.3390/metabo11050323
[[102]]
M.M. Cesare, F. Felice, V. Santini, R. Di Stefano. Antioxidants in sport sarcopenia. Nutrients, 12 (9) ( 2020), p. 2869, DOI: 10.3390/nu12092869
[[103]]
G. Aquila, A.D. Re Cecconi, J.J. Brault, O. Corli, R. Piccirillo. Nutraceuticals and exercise against muscle wasting during cancer cachexia. Cells, 9 (12) ( 2020), p. 2536, DOI: 10.3390/cells9122536
[[104]]
S. Liu, F. Meng, D. Zhang, et al.. Lonicera caerulea berry polyphenols extract alleviates exercise fatigue in mice by reducing oxidative stress, inflammation, skeletal muscle cell apoptosis, and by increasing cell proliferation. Front Nutr, 9 ( 2022), Article 853225, DOI: 10.3389/fnut.2022.853225
[[105]]
C. Bose, I. Alves, P. Singh, et al.. Sulforaphane prevents age-associated cardiac and muscular dysfunction through Nrf2 signaling. Aging Cell, 19 (11) ( 2020), Article e13261, DOI: 10.1111/acel.13261
[[106]]
J.H. Kim, Y. Lee, H.B. Kwak, J.M. Lawler. Lifelong wheel running exercise and mild caloric restriction attenuate nuclear EndoG in the aging plantaris muscle. Exp Gerontol, 69 ( 2015), pp. 122-128, DOI: 10.1016/j.exger.2015.06.007
[[107]]
J. Ahn, M.J. Kim, A. Yoo, et al.. Identifying Codium fragile extract components and their effects on muscle weight and exercise endurance. Food Chem, 353 ( 2021), Article 129463, DOI: 10.1016/j.foodchem.2021.129463
[[108]]
R. Nikooie, S. Jafari-Sardoie, V. Sheibani, A. Nejadvaziri Chatroudi. Resistance training-induced muscle hypertrophy is mediated by TGF-β1-Smad signaling pathway in male Wistar rats. J Cell Physiol, 235 (7-8) ( 2020), pp. 5649-5665, DOI: 10.1002/jcp.29497
[[109]]
Z. Chen, L. Li, W. Wu, et al.. Exercise protects proliferative muscle satellite cells against exhaustion via the Igfbp7-Akt-mTOR axis. Theranostics, 10 (14) ( 2020), pp. 6448-6466, DOI: 10.7150/thno.43577
[[110]]
W.B. Hsu, S.J. Lin, J.S. Hung, et al.. Effect of resistance training on satellite cells in old mice - a transcriptome study : implications for sarcopenia. Bone Joint Res, 11 (2) ( 2022), pp. 121-133, DOI: 10.1302/2046-3758.112.Bjr-2021-0079.R2
[[111]]
S. Fu, X. Lin, L. Yin, X. Wang.Androgen receptor regulates the proliferation of myoblasts under appropriate or excessive stretch through IGF-1 receptor mediated p38 and ERK1/2 pathways. Nutr Metab, 18 (1) ( 2021), p. 85, DOI: 10.1186/s12986-021-00610-y
[[112]]
B. Li, L. Feng, X. Wu, M. Cai, J.J. Yu, Z. Tian.Effects of different modes of exercise on skeletal muscle mass and function and IGF-1 signaling during early aging in mice. J Exp Biol, 225 (21) ( 2022), p. jeb244650, DOI: 10.1242/jeb.244650
[[113]]
S. Fujimaki, R. Hidaka, M. Asashima, T. Takemasa, T. Kuwabara. Wnt protein-mediated satellite cell conversion in adult and aged mice following voluntary wheel running. J Biol Chem, 289 (11) ( 2014), pp. 7399-7412, DOI: 10.1074/jbc.M113.539247
[[114]]
M.J. Brooks, A. Hajira, J.S. Mohamed, S.E. Alway. Voluntary wheel running increases satellite cell abundance and improves recovery from disuse in gastrocnemius muscles from mice. J Appl Physiol ( 1985), 124 (6) ( 2018), pp. 1616-1628, DOI: 10.1152/japplphysiol.00451.2017
[[115]]
P.J. Steyn, K. Dzobo, R.I. Smith, K.H. Myburgh.Interleukin-6 induces myogenic differentiation via JAK2-STAT3 signaling in mouse C2C 12 myoblast cell line and primary human myoblasts. Int J Mol Sci, 20 (21) ( 2019), p. 5273, DOI: 10.3390/ijms20215273
[[116]]
D.W. Gould, I. Lahart, A.R. Carmichael, Y. Koutedakis, G.S. Metsios. Cancer cachexia prevention via physical exercise: molecular mechanisms. J Cachexia Sarcopenia Muscle, 4 (2) ( 2013), pp. 111-124, DOI: 10.1007/s13539-012-0096-0
[[117]]
J.L. Viana, G.C. Kosmadakis, E.L. Watson, et al.. Evidence for anti-inflammatory effects of exercise in CKD. J Am Soc Nephrol, 25 (9) ( 2014), pp. 2121-2130, DOI: 10.1681/asn.2013070702
[[118]]
E. Fabersani, M. Claudia Abeijon-Mukdsi, R. Ross, R. Medina, S. Gonzalez, P. Gauffin-Cano. Specific strains of lactic acid bacteria differentially modulate the profile of adipokines in vitro. Front. Immunol, 8 ( 2017), p. 266, DOI: 10.3389/fimmu.2017.00266
[[119]]
J. Wolf, S. Rose-John, C. Garbers. Interleukin-6 and its receptors: a highly regulated and dynamic system. Cytokine, 70 (1) ( 2014), pp. 11-20, DOI: 10.1016/j.cyto.2014.05.024
[[120]]
X.L. Cao, X.Y. Zhou, N.X. Xu, S.C. Chen, C.M. Xu.Association of IL-4 and IL-10 polymorphisms with preterm birth susceptibility: a systematic review and meta-analysis. Front Immunol, 13 ( 2022), p. 917383, DOI: 10.3389/fimmu.2022.917383
[[121]]
P. Fernandes, LdM. Oliveira, T.R. Bruggemann, M.N. Sato, C.R. Olivo, F.M. Arantes-Costa.Physical exercise induces immunoregulation of TREG, M2, and pDCs in a lung allergic inflammation model. Front Immunol, 10 ( 2019), p. 854, DOI: 10.3389/fimmu.2019.00854
[[122]]
G.A. Belo, B.F. Cordeiro, E.R. Oliveira, et al.. SlpB protein enhances the probiotic potential of L. lactis NCDO 2118 in colitis mice model. Front Pharmacol, 12 ( 2021), p. 755825, DOI: 10.3389/fphar.2021.755825
[[123]]
S. Rai, E. Grockowiak, N. Hansen, et al.. Inhibition of interleukin-1β reduces myelofibrosis and osteosclerosis in mice with JAK2-V617F driven myeloproliferative neoplasm. Nat Commun, 13 (1) ( 2022), p. 5346, DOI: 10.1038/s41467-022-32927-4
[[124]]
R. Shivakoti, M.L. Biggs, L. Djousse, et al.. Intake and sources of dietary fiber, inflammation, and cardiovascular disease in older US adults. JAMA Netw Open, 5 (3) ( 2022), Article e225012, DOI: 10.1001/jamanetworkopen.2022.5012
[[125]]
D. Chen, J. Li, Y. Huang, et al.. Interleukin 13 promotes long-term recovery after ischemic stroke by inhibiting the activation of STAT3. J Neuroinflammation, 19 (1) ( 2022), p. 112, DOI: 10.1186/s12974-022-02471-5
[[126]]
S. Dhital, C.D. Rice, N.R. Vyavahare.Reversal of elastase-induced abdominal aortic aneurysm following the delivery of nanoparticle-based pentagalloyl glucose (PGG) is associated with reduced inflammatory and immune markers. Eur J Pharmacol, 910 ( 2021), p. 174487, DOI: 10.1016/j.ejphar.2021.174487
[[127]]
J.S. Uzeloto, A.C. de Toledo-Arruda, B.S.A. Silva, et al.. Effect of physical training on cytokine expression in CD4+T lymphocytes in subjects with stable COPD. Ther Adv Respir Dis, 16 ( 2022), DOI: 10.1177/17534666221091179
[[128]]
D.R. Lacerda, A. Nunes-Silva, A.L.M. Silveira, et al.. Acute exercise modulates the inflammatory response in adipose tissue in both lean and obese mice. Nutrition, 115 ( 2023), p. 112092, DOI: 10.1016/j.nut.2023.112092
[[129]]
Y. Cao, Y. Li, W. Han, et al.. Sodium butyrate ameliorates type 2 diabetes-related sarcopenia through IL-33-independent ILC2s/IL-13/STAT3 signaling pathway. J Inflamm Res, 16 ( 2023), pp. 343-358, DOI: 10.2147/jir.S392350
[[130]]
J. Cho, Y. Choi, P. Sajgalik, et al.. Exercise as a therapeutic strategy for sarcopenia in heart failure: insights into underlying mechanisms. Cells, 9 (10) ( 2020), p. 2284, DOI: 10.3390/cells9102284
[[131]]
H.E. Gao, D.S. Wu, L. Sun, et al.. Effects of lifelong exercise on age-related body composition, oxidative stress, inflammatory cytokines, and skeletal muscle proteome in rats. Mech Ageing Dev, 189 ( 2020), Article 111262, DOI: 10.1016/j.mad.2020.111262
[[132]]
B. Morawin, A. Tylutka, J. Chmielowiec, A. Zembron-Lacny.Circulating mediators of apoptosis and inflammation in aging; physical exercise intervention. Int J Environ Res Public Health, 18 (6) ( 2021), p. 3165, DOI: 10.3390/ijerph18063165
[[133]]
Z. Zhang, D. Cui, T. Zhang, Y. Sun, S. Ding.Swimming differentially affects t2dm-induced skeletal muscle ER stress and mitochondrial dysfunction related to MAM. Diabetes Metab Syndr Obes, 13 ( 2020), pp. 1417-1428, DOI: 10.2147/dmso.S243024
[[134]]
B. Smeuninx, Y.S. Elhassan, K.N. Manolopoulos, et al.. The effect of short-term exercise prehabilitation on skeletal muscle protein synthesis and atrophy during bed rest in older men. J Cachexia Sarcopenia Muscle, 12 (1) ( 2021), pp. 52-69, DOI: 10.1002/jcsm.12661
[[135]]
G. Colleluori, L. Aguirre, U. Phadnis, et al.. Aerobic plus resistance exercise in obese older adults improves muscle protein synthesis and preserves myocellular quality despite weight loss. Cell Metabol, 30 (2) ( 2019), pp. 261-273.e6, DOI: 10.1016/j.cmet.2019.06.008
[[136]]
A.J. Cruz-Jentoft, B. Dawson Hughes, D. Scott, K.M. Sanders, R. Rizzoli. Nutritional strategies for maintaining muscle mass and strength from middle age to later life: a narrative review. Maturitas, 132 ( 2020), pp. 57-64, DOI: 10.1016/j.maturitas.2019.11.007
[[137]]
A.M. Holwerda, K.J.M. Paulussen, M. Overkamp, et al.. Leucine coingestion augments the muscle protein synthetic response to the ingestion of 15 g of protein following resistance exercise in older men. Am J Physiol Endocrinol Metab, 317 (3) ( 2019), pp. E473-E482, DOI: 10.1152/ajpendo.00073.2019
[[138]]
A. Sahebkar, A.F.G. Cicero, P. Di Giosia, et al.. Pathophysiological mechanisms of statin-associated myopathies: possible role of the ubiquitin-proteasome system. Journal of cachexia, sarcopenia and muscle, 11 (5) ( 2020), pp. 1177-1186, DOI: 10.1002/jcsm.12579
[[139]]
G. Pallafacchina, B. Blaauw, S. Schiaffino.Role of satellite cells in muscle growth and maintenance of muscle mass. Nutr Metab Cardiovasc Dis, 23 (Suppl 1) ( 2013), pp. S12-S18, DOI: 10.1016/j. numecd.2012.02.002
[[140]]
J.P. Nederveen, S. Joanisse, T. Snijders, A.C.Q. Thomas, D. Kumbhare, G. Parise. The influence of capillarization on satellite cell pool expansion and activation following exercise-induced muscle damage in healthy young men. J Physiol, 596 (6) ( 2018), pp. 1063-1078, DOI: 10.1113/jp275155
[[141]]
E. Masschelein, G. D’Hulst, J. Zvick, et al.. Exercise promotes satellite cell contribution to myofibers in a load-dependent manner. Skeletal Muscle, 10 (1) ( 2020), p. 21, DOI: 10.1186/s13395-020-00237-2
[[142]]
T. Snijders, J.P. Nederveen, K.E. Bell, et al.. Prolonged exercise training improves the acute type II muscle fibre satellite cell response in healthy older men. J Physiol, 597 (1) ( 2019), pp. 105-119, DOI: 10.1113/jp276260
[[143]]
S. Gil, J.P. Kirwan, I.H. Murai, et al.. A randomized clinical trial on the effects of exercise on muscle remodelling following bariatric surgery. J Cachexia Sarcopenia Muscle, 12 (6) ( 2021), pp. 1440-1455, DOI: 10.1002/jcsm.12815
[[144]]
P. Abreu, A.J. Kowaltowski. Satellite cell self-renewal in endurance exercise is mediated by inhibition of mitochondrial oxygen consumption. J Cachexia Sarcopenia Muscle, 11 (6) ( 2020), pp. 1661-1676, DOI: 10.1002/jcsm.12601
[[145]]
A. Yamamoto, S. Honda, M. Ogura, et al.. Lemon myrtle (backhousia citriodora) extract and its active compound, casuarinin, activate skeletal muscle satellite cells in vitro and in vivo. Nutrients, 14 (5) ( 2022), p. 1078, DOI: 10.3390/nu14051078

We thank the editors and reviewers of Sports Medicine and Health Science for supporting open science and hard work. We also thank the National Natural Science Foundation of China Grants (32171128 to Z.J., Tian).

Accesses

Citations

Detail

Sections
Recommended

/