Increases in the incremental exercise mean response time across the steady state domain: Implications for exercise testing & prescription

Bridgette G.J. O'Malley, Robert A. Robergs, Todd A. Astorino

Sports Medicine and Health Science ›› 2024, Vol. 6 ›› Issue (4) : 315-323. DOI: 10.1016/j.smhs.2024.02.002
Original article

Increases in the incremental exercise mean response time across the steady state domain: Implications for exercise testing & prescription

Author information +
History +

Abstract

We hypothesized that slowed oxygen uptake (V˙O2) kinetics for exercise transitions to higher power outputs (PO) within the steady state (SS) domain would increase the mean response time (MRT) with increasing exercise intensity during incremental exercise. Fourteen highly trained cyclists (mean ± standard deviation [SD]; age (39 ± 6) years [yr]; and V˙O2 peak = (61 ± 9) mL/kg/min performed a maximal, ramp incremental cycling test and on separate days, four 6-min bouts of cycling at 30%, 45%, 65% & 75% of their incremental peak PO (Wpeak). SS trial data were used to calculate the MRT and verified by mono-exponential and linear curve fitting. When the ramp protocol attained the value from SS, the PO, in Watts (W), was converted to time (min) based on the ramp function W to quantify the incremental MRT (iMRT). Slope analyses for the V˙O2 responses of the SS versus incremental exercise data below the gas exchange threshold (GET) revealed a significant difference (p = 0.003; [0.437 ± 0.08] vs. [0.382 ± 0.05] L⋅min−1). There was a significant difference between the 45% Wpeak steady state V˙O2 (ss V˙O2) ([3.08 ± 0.30] L⋅min−1, respectively), and 30% Wpeak ss V˙O2 (2.26 ± 0.24) (p < 0.0001; [3.61 ± 0.80] vs. [2.20 ± 0.39] L⋅min−1) and between the iMRT for 45% and 30% Wpeak ss V˙O2 values ([50.58 ± 36.85] s vs. [32.20 ± 43.28] s). These data indicate there is no single iMRT, which is consistent with slowed V˙O2 kinetics and an increasing V˙O2 deficit for higher exercise intensities within the SS domain.

Keywords

Mean response time (MRT) / Incremental exercise / Steady state (SS) / Exercise testing / Exercise prescription

Cite this article

Download citation ▾
Bridgette G.J. O'Malley, Robert A. Robergs, Todd A. Astorino. Increases in the incremental exercise mean response time across the steady state domain: Implications for exercise testing & prescription. Sports Medicine and Health Science, 2024, 6(4): 315‒323 https://doi.org/10.1016/j.smhs.2024.02.002

References

[[1]]
D. Iannetta, J.M. Murias, D.A. Keir. A simple method to quantify the VO2mean response time of ramp-incremental exercise. Med Sci Sports Exerc, 51 (5) ( 2019), pp. 1080-1086, DOI: 10.1249/MSS.0000000000001880
[[2]]
F.Z. Werneck, E.F. Coelho, J.R. de Lima, et al.. Pulmonary oxygen uptake kinetics during exercise in subclinical hypothyroidism. Thyroid, 24 (6) ( 2014), pp. 931-938, DOI: 10.1089/thy.2013.0534
[[3]]
D.A. Keir, D.H. Paterson, J.M. Kowalchuk, J.M. Murias. Using ramp-incremental VO2responses for constant-intensity exercise selection. Appl Physiol Nutr Metabol, 43 (9) ( 2018), pp. 882-892, DOI: 10.1139/apnm-2017-0826
[[4]]
B.J. Whipp, J.A. Davis, F. Torres, K. Wasserman. A test to determine parameters of aerobic function during exercise. J Appl Physiol, 50 (1) ( 1981), pp. 217-221, DOI: 10.1152/jappl.1981.50.1.217
[[5]]
J. Boone, J. Bourgois. The oxygen uptake response to incremental ramp exercise: methodological and physiological issues. Sports Med, 42 (6) ( 2012), pp. 511-526, DOI: 10.2165/11599690-000000000-00000
[[6]]
R.L. Hughson, M.D. Inman. Oxygen uptake kinetics from ramp work tests: variability of single test values. J Appl Physiol, 61 (1) ( 1986), pp. 373-376, DOI: 10.1152/jappl.1986.61.1.373
[[7]]
G.H. Markovitz, J.W. Sayre, T.W. Storer, C.B. Cooper. On issues of confidence in determining the time constant for oxygen uptake kinetics. Br J Sports Med, 38 (5) ( 2004), pp. 553-560, DOI: 10.1136/bjsm.2003.004721
[[8]]
D.A. Keir, T.C. Robertson, A.P. Benson, H.B. Rossiter, J.M. Kowalchuk. The influence of metabolic and circulatory heterogeneity on the expression of pulmonary oxygen uptake kinetics in humans. Exp Physiol, 101 (1) ( 2016), pp. 176-192, DOI: 10.1113/EP085338
[[9]]
D.A. Keir, A.P. Benson, L.K. Love, T.C. Robertson, H.B. Rossiter, J.M. Kowalchuk. Influence of muscle metabolic heterogeneity in determining the VO2p kinetic response to ramp-incremental exercise. J Appl Physiol, 120 (5) ( 2016), pp. 503-513, DOI: 10.1152/japplphysiol.00804.2015
[[10]]
C.J. Brittain, H.B. Rossiter, J.M. Kowalchuk, B.J. Whipp. Effect of prior metabolic rate on the kinetics of oxygen uptake during moderate-intensity exercise. Eur J Appl Physiol, 86 (2) ( 2001), pp. 125-134, DOI: 10.1007/s004210100514
[[11]]
R.L. Hughson, M. Morrissey. Delayed kinetics of respiratory gas exchange in the transition from prior exercise. J Appl Physiol Respir Environ Exerc Physiol, 52 (4) ( 1982), pp. 921-929, DOI: 10.1152/jappl.1982.52.4.921
[[12]]
R.L. Hughson, M. Morrissey. Delayed kinetics of VO2in the transition from prior exercise. Evidence for O2 transport limitation of VO2kinetics: a review. Int J Sports Med, 4 (1) ( 1983), pp. 31-39, DOI: 10.1055/s-2008-1026013
[[13]]
K. Koppo, J. Bouckaert, A.M. Jones. Effects of training status and exercise intensity on phase II VO2kinetics. Med Sci Sports Exerc, 36 (2) ( 2004), pp. 225-232, DOI: 10.1249/01.MSS.0000113473.48220.20
[[14]]
P.E. di Prampero, P.B. Mahler, D. Giezendanner, P. Cerretelli. Effects of priming exercise on VO2kinetics and O2 deficit at the onset of stepping and cycling. J Appl Physiol, 66 (5) ( 1989), pp. 2023-2031, DOI: 10.1152/jappl.1989.66.5.2023
[[15]]
C. McNulty, R.A. Robergs, D. Morris. Influence of increment magnitude and exercise intensity on VO2kinetics, time to steady state and muscle oxygenation. J Sci Med Sport, 18 (5) ( 2015), pp. 37-58, DOI: 10.1016/j.jsams.2014.11.283
[[16]]
Exercise and Sports Science Australia (ESSA). Adult Pre-exercise Screening System (APSS). ( 2021).
[[17]]
B. Yoon, L. Kravitz, R. Robergs. VO2max, protocol duration, and the VO2plateau. Med Sci Sports Exerc, 39 (7) ( 2007), pp. 1186-1192, DOI: 10.1249/mss.0b13e318054e304
[[18]]
M.J. Buchfuhrer, J.E. Hansen, T.E. Robinson, D.Y. Sue, K. Wasserman, B.J. Whipp. Optimizing the exercise protocol for cardiopulmonary assessment. J Appl Physiol Respir Environ Exerc Physiol, 55 (5) ( 1983), pp. 1558-1564, DOI: 10.1152/jappl.1983.55.5.1558
[[19]]
T.A. Astorino, J.C. Rietschel, P.A. Tam, K.L. Taylor, T.P. Freedman, C.E. Sakarya. Reinvestigation of optimal duration of VO2max testing. J Exerc Phys onl, 7 (6) ( 2004), pp. 1-8.
[[20]]
M. Martin-Rincon, J.J. González-Henríquez, J. Losa-Reyna, et al.. Impact of data averaging strategies on VO2max assessment: mathematical modeling and reliability. Scand J Med Sci Sports, 29 (10) ( 2019), pp. 1473-1488, DOI: 10.1111/sms.13495
[[21]]
M. Martin-Rincon, J.A.L. Calbet.Progress update and challenges on VO2max testing and interpretation. Front Physiol, 11 ( 2020), p. 1070, DOI: 10.3389/fphys.2020.01070
[[22]]
D.C. Poole, A.M. Jones. Measurement of the maximum oxygen uptake VO2max: VO2peak is no longer acceptable. J Appl Physiol, 122 (4) ( 2017), pp. 997-1002, DOI: 10.1152/japplphysiol.01063.2016
[[23]]
A.M. Jones, A. Vanhatalo. The 'critical power' concept: applications to sports performance with a focus on intermittent high-intensity exercise. Sports Med, 47 (Suppl 1) ( 2017), pp. 65-78, DOI: 10.1007/s40279-017-0688-0
[[24]]
V.A.B. Costa, A.W. Midgley, S. Carroll, T.A. Astorino, T. de Paula, et al.. Is a verification phase useful for confirming maximal oxygen uptake in apparently healthy adults? A systematic review and meta-analysis. PLoS One, 16 (2) ( 2021), Article e0247057, DOI: 10.1371/journal.pone.0247057
[[25]]
N.A. Jamnick, R.W. Pettitt, C. Granata, et al.. An examination and critique of current methods to determine exercise intensity. Sports Med, 50 (10) ( 2020), pp. 1729-1756, DOI: 10.1007/s40279-020-01322-8
[[26]]
D. Iannetta, E.C. Inglis, A.T. Mattu, et al.. A critical evaluation of current methods for exercise prescription in women and men. Med Sci Sports Exerc, 52 (2) ( 2020), pp. 466-473, DOI: 10.1249/MSS.0000000000002147
[[27]]
A.M. Jones, M. Burnley, M.I. Black, D.C. Poole, A. Vanhatalo. The maximal metabolic steady state: redefining the 'gold standard'. Phys Rep, 7 (10) ( 2019), Article e14098, DOI: 10.14814/phy2.14098
[[28]]
D. Kim, R.A. Robergs. Validation of a new mixing chamber system for breath-by-breath indirect calorimetry. Appl Physiol Nutr Metabol, 37 (1) ( 2012), pp. 157-166, DOI: 10.1139/h11-147
[[29]]
C. McNulty, R.A. Robergs. New methods for processing and quantifying VO2kinetics to steady state: VO2onset kinetics. Front Physiol, 8 (740) ( 2017), pp. 1-8, DOI: 10.3389/fphys.2017.00740
[[30]]
V.J. Caiozzo, J.A. Davis, J.F. Ellis, et al.. A comparison of gas exchange indices used to detect the anaerobic threshold. J Appl Physiol Respir Environ Exerc Physiol, 53 (5) ( 1982), pp. 1184-1189, DOI: 10.1152/jappl.1982.53.5.1184
[[31]]
R.A. Robergs, D. Dwyer, T. Astorino. Recommendations for improved data processing from expired gas analysis indirect calorimetry. Sports Med, 40 ( 2010), pp. 95-111, DOI: 10.2165/11319670-000000000-00000
[[32]]
Oxygen uptake kinetics in Sport, exercise and medicine. J Sports Sci Med, 4 (1) ( 2005), p. 84, DOI: 10.4324/9780203613771
[[33]]
J.A. Davis, B.J. Whipp, N. Lamarra, D.J. Huntsman, M.H. Frank, K. Wasserman. Effect of ramp slope on determination of aerobic parameters from the ramp exercise test. Med Sci Sports Exerc, 14 (5) ( 1982), pp. 339-343
[[34]]
G.D. Swanson, R.L. Hughson. On the modeling and interpretation of oxygen uptake kinetics from ramp work rate tests. J Appl Physiol, 65 (6) ( 1988), pp. 2453-2458, DOI: 10.1152/jappl.1988.65.6.2453
[[35]]
S.L. Wilcox, R.M. Broxterman, T.J. Barstow. Constructing quasi-linear VO2responses from nonlinear parameters. J Appl Physiol, 120 (2) ( 2016), pp. 121-129, DOI: 10.1152/japplphysiol.00507.2015
[[36]]
K. Caen, J. Boone, J. Bourgois, A. Colosio, S. Pogliaghia.Translating ramp VO2into constant power output: a novel strategy that minds the gap. Med Sci Sports Exerc, 52 (9) ( 2020), pp. 2020-2028, DOI: 10.1249/MSS.0000000000002328
[[37]]
K. Caen, J. Bourgois, E. Stassijns, J. Boone. A longitudinal study on the interchangeable use of whole-body and local exercise thresholds in cycling. Eur J Appl Physiol, 122 (7) ( 2022), pp. 1657-1670, DOI: 10.1007/s00421-022-04942-2
[[38]]
R. De Almeida Azevedo, D. Iannetta, D. Keir,J. Murias. The oxygen mean response time at different ramp-incremental cycling slopes. Med Sci Sports Exerc, 51 (6S) ( 2019), p. 301, DOI: 10.1249/01.mss.0000561408.91496.58
[[39]]
C.A. Vella, D. Marks, R.A. Robergs. Oxygen cost of ventilation during incremental exercise to VO2max. Respirology, 11 (2) ( 2006), pp. 175-181, DOI: 10.1111/j.1440-1843.2006.00825.x

Accesses

Citations

Detail

Sections
Recommended

/