Aerobic interval training preconditioning protocols inhibit isoproterenol-induced pathological cardiac remodeling in rats: Implications on oxidative balance, autophagy, and apoptosis

Hakimeh Shahsavarnajand Bonab, Javad Tolouei Azar, Hamid Soraya, Akbar Nouri Habashi

Sports Medicine and Health Science ›› 2024, Vol. 6 ›› Issue (4) : 344-357. DOI: 10.1016/j.smhs.2024.01.010
Original article

Aerobic interval training preconditioning protocols inhibit isoproterenol-induced pathological cardiac remodeling in rats: Implications on oxidative balance, autophagy, and apoptosis

Author information +
History +

Abstract

This study aimed to investigate the potential cardioprotective effects of moderate and high-intensity aerobic interval training (MIIT and HIIT) preconditioning. The focus was on histological changes, pro-oxidant-antioxidant balance, autophagy initiation, and apoptosis in myocardial tissue incited by isoproterenol-induced pathological cardiac remodeling (ISO-induced PCR). Male Wistar rats were randomly divided into control (n ​= ​6), ISO (n ​= ​8), MIIT (n ​= ​4), HIIT (n ​= ​4), MIIT ​+ ​ISO (n ​= ​8), and HIIT ​+ ​ISO (n ​= ​8) groups. The MIIT and HIIT protocols were administered for 10 weeks, followed by the induction of cardiac remodeling using subcutaneous injection of ISO (100 ​mg/kg for two consecutive days). Alterations in heart rate (HR), mean arterial pressure (MAP), rate pressure product (RPP), myocardial oxygen consumption (MV˙O2), cardiac hypertrophy, histopathological changes, pro-oxidant-antioxidant balance, autophagy biomarkers (Beclin-1, Atg7, p62, LC3 I/II), and apoptotic cell distribution were measured. The findings revealed that the MIIT ​+ ​ISO and HIIT ​+ ​ISO groups demonstrated diminished myocardial damage, hemorrhage, immune cell infiltration, edema, necrosis, and apoptosis compared to ISO-induced rats. MIIT and HIIT preconditioning mitigated HR, enhanced MAP, and preserved MV˙O2 and RPP. The pro-oxidant-antioxidant balance was sustained in both MIIT ​+ ​ISO and HIIT ​+ ​ISO groups, with MIIT primarily inhibiting pro-apoptotic autophagy progression through maintaining pro-oxidant-antioxidant balance, and HIIT promoting pro-survival autophagy. The results demonstrated the beneficial effects of both MIIT and HIIT as AITs preconditioning in ameliorating ISO-induced PCR by improving exercise capacity, hemodynamic parameters, and histopathological changes. Some of these protective effects can be attributed to the modulation of cardiac apoptosis, autophagy, and oxidative stress.

Keywords

Pathological cardiac remodeling / Aerobic interval training preconditioning / Oxidative stress / Autophagy / Apoptosis

Cite this article

Download citation ▾
Hakimeh Shahsavarnajand Bonab, Javad Tolouei Azar, Hamid Soraya, Akbar Nouri Habashi. Aerobic interval training preconditioning protocols inhibit isoproterenol-induced pathological cardiac remodeling in rats: Implications on oxidative balance, autophagy, and apoptosis. Sports Medicine and Health Science, 2024, 6(4): 344‒357 https://doi.org/10.1016/j.smhs.2024.01.010

References

[[1]]
Z. Zuo, M.Y. Ji, K. Zhao, et al.. CD 47 deficiency attenuates isoproterenol-induced cardiac remodeling in mice. Oxid Med Cell Longev, 2019 ( 2019), Article 7121763, DOI: 10.1155/2019/7121763
[[2]]
P.S. Azevedo, B.F. Polegato, M.F. Minicucci, S.A. Paiva, L.A. Zornoff. Cardiac remodeling: concepts, clinical impact, pathophysiological mechanisms and pharmacologic treatment. Arq Bras Cardiol, 106 (1) ( 2016), pp. 62-69, DOI: 10.5935/abc.20160005
[[3]]
H. Soraya, A. Khorrami, A. Garjani, N. Maleki-Dizaji, A. Garjani. Acute treatment with metformin improves cardiac function following isoproterenol induced myocardial infarction in rats. Pharmacol Rep, 64 (6) ( 2012), pp. 1476-1484, DOI: 10.1016/s1734-1140(12)70945-3
[[4]]
G. Shanmugam, A.K. Challa, A. Devarajan, et al.. Exercise mediated Nrf 2 signaling protects the myocardium from isoproterenol-induced pathological remodeling. Front Cardiovasc Med, 6 ( 2019), p. 68, DOI: 10.3389/fcvm.2019.00068
[[5]]
L. Li, W. Qi, Y. Zhu, et al.. Danlou tablet protects against cardiac remodeling and dysfunction after myocardial ischemia/reperfusion injury through activating AKT/FoxO3a pathway. J Cardiovasc Transl Res, 16 (4) ( 2023), pp. 803-815, DOI: 10.1007/s12265-023-10365-x
[[6]]
X. Wang, Z. Guo, Z. Ding, J.L. Mehta. Inflammation, autophagy, and apoptosis after myocardial infarction. J Am Heart Assoc, 7 (9) ( 2018), Article e008024, DOI: 10.1161/JAHA.117.008024
[[7]]
N. Popgeorgiev, J.D. Sa, L. Jabbour, et al.. Ancient and conserved functional interplay between Bcl-2 family proteins in the mitochondrial pathway of apoptosis. Sci Adv, 6 (40) ( 2020), Article eabc4149, DOI: 10.1126/sciadv.abc4149
[[8]]
K. Nishida, K. Otsu. Autophagy during cardiac remodeling. J Mol Cell Cardiol, 95 ( 2016), pp. 11-18, DOI: 10.1016/j.yjmcc.2015.12.003
[[9]]
W. Ding, H. Feng, W-j Li, H-h Liao, Q-z Tang. Research progress on the interaction between autophagy and energy homeostasis in cardiac remodeling. Front Pharmacol, 11 ( 2020), Article 587438, DOI: 10.3389/fphar.2020.587438
[[10]]
B. Boťanská, I. Dovinová, M. Barančík. The interplay between autophagy and redox signaling in cardiovascular diseases. Cells, 11 (7) ( 2022), p. 1203, DOI: 10.3390/cells11071203
[[11]]
S.M. Davidson, A. Adameová, L. Barile, et al.. Mitochondrial and mitochondrial-independent pathways of myocardial cell death during ischaemia and reperfusion injury. J Cell Mol Med, 24 (7) ( 2020), pp. 3795-3806, DOI: 10.1111/jcmm.15127
[[12]]
H. Chen, C. Chen, M. Spanos, et al.. Exercise training maintains cardiovascular health: signaling pathways involved and potential therapeutics. Signal Transduct Targeted Ther, 7 (1) ( 2022), p. 306, DOI: 10.1038/s41392-022-01153-1
[[13]]
V.A. Lira, M. Okutsu, M. Zhang, et al.. Autophagy is required for exercise training-induced skeletal muscle adaptation and improvement of physical performance. Faseb J, 27 (10) ( 2013), pp. 4184-4193, DOI: 10.1096/fj.13-228486
[[14]]
C.H. Davos. Do we have to reconsider the guidelines for exercise intensity determination in cardiovascular rehabilitation?. Eur J Prev Cardiol, 26 (18) ( 2019), pp. 1918-1920, DOI: 10.1177/2047487319871870
[[15]]
J.C. Quindry, B.A. Franklin. Exercise preconditioning as a cardioprotective phenotype. Am J Cardiol, 148 ( 2021), pp. 8-15, DOI: 10.1016/j.amjcard.2021.02.030
[[16]]
S.L. Lennon, J.C. Quindry, J.P. French, S. Kim, J.L. Mehta, S.K. Powers. Exercise and myocardial tolerance to ischaemia-reperfusion. Acta Physiol Scand, 182 (2) ( 2004), pp. 161-169, DOI: 10.1111/j.1365-201X.2004.01346.x
[[17]]
J.C. Quindry, L. Miller, G. McGinnis, et al.. Ischemia reperfusion injury, KATP channels, and exercise-induced cardioprotection against apoptosis. J Appl Physiol( 1985), 113 (3) ( 2012), pp. 498-506, DOI: 10.1152/japplphysiol.00957.2011
[[18]]
M.A. Chowdhury, H.K. Sholl, M.S. Sharrett, et al.. Exercise and cardioprotection: a natural defense against lethal myocardial ischemia-reperfusion injury and potential guide to cardiovascular prophylaxis. J Cardiovasc Pharmacol Therapeut, 24 (1) ( 2019), pp. 18-30, DOI: 10.1177/1074248418788575
[[19]]
Z. Ping, W. Qiu, M. Yang, et al.. Optimization of different intensities of exercise preconditioning in protecting exhausted exercise induced heart injury in rats. Sports Med Health Sci, 3 (4) ( 2021), pp. 218-227, DOI: 10.1016/j.smhs.2021.10.006
[[20]]
D.P. Swain, B.A. Franklin. Comparison of cardioprotective benefits of vigorous versus moderate intensity aerobic exercise. Am J Cardiol, 97 (1) ( 2006), pp. 141-147, DOI: 10.1016/j.amjcard.2005.07.130
[[21]]
N. Yamashita, S. Hoshida, K. Otsu, M. Asahi, T. Kuzuya, M. Hori. Exercise provides direct biphasic cardioprotection via manganese superoxide dismutase activation. J Exp Med, 189 (11) ( 1999), pp. 1699-1706, DOI: 10.1084/jem.189.11.1699
[[22]]
D. Meng, P. Li, X. Huang, M.-H. Jiang, X.-B. Cao. Protective effects of short-term and long-term exercise preconditioning on myocardial injury in rats. Chin J Appl Physiol, 33 (6) ( 2017), pp. 531-534, DOI: 10.12047/j.cjap.5601.2017.126
[[23]]
G.R. McGinnis, C. Ballmann, B. Peters, et al.. Interleukin-6 mediates exercise preconditioning against myocardial ischemia reperfusion injury. Am J Physiol Heart Circ Physiol, 308 (11) ( 2015), pp. H1423-H1433, DOI: 10.1152/ajpheart.00850.2014
[[24]]
M.J. MacInnis, M.J. Gibala. Physiological adaptations to interval training and the role of exercise intensity. J Physiol, 595 (9) ( 2017), pp. 2915-2930, DOI: 10.1113/JP273196
[[25]]
H.K. Jiang, Y. Miao, Y.H. Wang, et al.. Aerobic interval training protects against myocardial infarction-induced oxidative injury by enhancing antioxidase system and mitochondrial biosynthesis. Clin Exp Pharmacol Physiol, 41 (3) ( 2014), pp. 192-201, DOI: 10.1111/1440-1681.12211
[[26]]
O.J. Kemi, Ø. Ellingsen, M. Ceci, et al.. Aerobic interval training enhances cardiomyocyte contractility and Ca2+ cycling by phosphorylation of CaMKII and Thr-17 of phospholamban. J Mol Cell Cardiol, 43 (3) ( 2007), pp. 354-361, DOI: 10.1016/j.yjmcc.2007.06.013
[[27]]
N. Naderi, M. Hemmatinafar, A.A. Gaeini, et al.. High-intensity interval training increase GATA4, CITED4 and c-Kit and decreases C/EBPβ in rats after myocardial infarction. Life Sci, 221 ( 2019), pp. 319-326, DOI: 10.1016/j.lfs.2019.02.045
[[28]]
B. Li, F. Liang, X. Ding, et al.. Interval and continuous exercise overcome memory deficits related to β-Amyloid accumulation through modulating mitochondrial dynamics. Behav Brain Res, 376 ( 2019), Article 112171, DOI: 10.1016/j.bbr.2019.112171
[[29]]
J.M. Petrosino, V.J. Heiss, S.K. Maurya, et al.. Graded maximal exercise testing to assess mouse cardio-metabolic phenotypes. PLoS One, 11 (2) ( 2016), Article e0148010, DOI: 10.1371/journal.pone.0148010
[[30]]
A. Elshazly, H. Khorshid, H. Hanna, A. Ali. Effect of exercise training on heart rate recovery in patients post anterior myocardial infarction. Egypt Heart J, 70 (4) ( 2018), pp. 283-285, DOI: 10.1016/j.ehj.2018.04.007
[[31]]
V. Adams, B. Reich, M. Uhlemann, J. Niebauer. Molecular effects of exercise training in patients with cardiovascular disease: focus on skeletal muscle, endothelium, and myocardium. Am J Physiol Heart Circ Physiol, 313 (1) ( 2017), pp. H72-H88, DOI: 10.1152/ajpheart.00470.2016
[[32]]
Y.M. Zhang, Y. Lu, Y. Tang, et al.. The effects of different initiation time of exercise training on left ventricular remodeling and cardiopulmonary rehabilitation in patients with left ventricular dysfunction after myocardial infarction. Disabil Rehabil, 38 (3) ( 2016), pp. 268-276, DOI: 10.3109/09638288.2015.1036174
[[33]]
M.F. Maessen, T.M. Eijsvogels, G. Stevens, A.P. van Dijk, M.T. Hopman. Benefits of lifelong exercise training on left ventricular function after myocardial infarction. Eur J Prev Cardiol, 24 (17) ( 2017), pp. 1856-1866, DOI: 10.1177/2047487317728765
[[34]]
J. Quindry, J. French, K. Hamilton, Y. Lee, J.L. Mehta, S. Powers. Exercise training provides cardioprotection against ischemia-reperfusion induced apoptosis in young and old animals. Exp Gerontol, 40 (5) ( 2005), pp. 416-425, DOI: 10.1016/j.exger.2005.03.010
[[35]]
Y. Xing, S.D. Yang, M.M. Wang, Y.S. Feng, F. Dong, F. Zhang.The beneficial role of exercise training for myocardial infarction treatment in elderly. Front Physiol, 11 ( 2020), p. 270, DOI: 10.3389/fphys.2020.00270
[[36]]
E. Metias, N. Aboelmaaty, A. Hussein, E. Abdallah, A. Abdelaziz.Modulation of ECG, myocardial oxidative stress markers and connexion 43 expression by ascorbic acid and ferulic acid in isoproterenol-induced myocardial infarction in rats. Biochem Physiol, 5 (210) ( 2016), p. 2, DOI: 10.4172/2168-9652.1000210
[[37]]
E. Takimoto, D.A. Kass. Role of oxidative stress in cardiac hypertrophy and remodeling. Hypertension, 49 (2) ( 2007), pp. 241-248, DOI: 10.1161/01.HYP.0000254415.31362.a7
[[38]]
A. Harvey, D. Grieve. Reactive oxygen species (ROS) signaling in cardiac remodeling and failure. I. Laher ( Ed.), Systems Biology of Free Radicals and Antioxidants, Springer ( 2014), pp. 951-992, DOI: 10.1007/978-3-642-30018-9_50
[[39]]
A.K.B.S. Shah, V. Elimban, N.S. Dhalla. Oxidative stress as a mechanism for functional alterations in cardiac hypertrophy and heart failure. Antioxidants, 10 (6) ( 2021), p. 931, DOI: 10.3390/antiox10060931
[[40]]
S. Tangvarasittichai. Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus. World J Diabetes, 6 (3) ( 2015), pp. 456-480, DOI: 10.4239/wjd.v6.i3.456
[[41]]
G.A. Kurian, R. Rajagopal, S. Vedantham, M. Rajesh. The role of oxidative stress in myocardial ischemia and reperfusion injury and remodeling: revisited. Oxid Med Cell Longev, 2016 ( 2016), Article 1656450, DOI: 10.1155/2016/1656450
[[42]]
P. Das, K.K. Nutan, S.L. Singla-Pareek, A. Pareek.Oxidative environment and redox homeostasis in plants: dissecting out significant contribution of major cellular organelles. Front Environ Sci, 2 ( 2015), p. 70, DOI: 10.3389/fenvs.2014.00070
[[43]]
K. Lu, L. Wang, C. Wang, Y. Yang, D. Hu, R. Ding. Effects of high-intensity interval versus continuous moderate-intensity aerobic exercise on apoptosis, oxidative stress and metabolism of the infarcted myocardium in a rat model. Mol Med Rep, 12 (2) ( 2015), pp. 2374-2382, DOI: 10.3892/mmr.2015.3669
[[44]]
Y. Lu, H.D. Wiltshire, J.S. Baker, Q. Wang. Effects of high intensity exercise on oxidative stress and antioxidant status in untrained humans: a systematic review. Biology, 10 (12) ( 2021), p. 1272, DOI: 10.3390/biology10121272
[[45]]
D. Jia, L. Hou, Y. Lv, L. Xi, Z. Tian. Postinfarction exercise training alleviates cardiac dysfunction and adverse remodeling via mitochondrial biogenesis and SIRT1/PGC-1α/PI3K/Akt signaling. J Cell Physiol, 234 (12) ( 2019), pp. 23705-23718, DOI: 10.1002/jcp.28939
[[46]]
S.W. Ryter, K. Mizumura, A.M. Choi. The impact of autophagy on cell death modalities. Int J Cell Biol, 2014 ( 2014), Article 502676, DOI: 10.1155/2014/502676
[[47]]
G. Runwal, E. Stamatakou, F.H. Siddiqi, C. Puri, Y. Zhu, D.C. Rubinsztein. LC3-positive structures are prominent in autophagy-deficient cells. Sci Rep, 9 ( 2019), Article 10147, DOI: 10.1038/s41598-019-46657-z
[[48]]
S. Akbar Gharehbagh, J. Tolouei Azar, M. Razi. ROS and metabolomics-mediated autophagy in rat's testicular tissue alter after exercise training; Evidence for exercise intensity and outcomes. Life Sci, 277 ( 2021), Article 119585, DOI: 10.1016/j.lfs.2021.119585
[[49]]
W.J. Liu, L. Ye, W.F. Huang, et al.. p 62 links the autophagy pathway and the ubiqutin-proteasome system upon ubiquitinated protein degradation. Cell Mol Biol Lett, 21 ( 2016), p. 29, DOI: 10.1186/s11658-016-0031-z
[[50]]
J. Navarro-Yepes, M. Burns, A. Anandhan, et al.. Oxidative stress, redox signaling, and autophagy: cell death versus survival. Antioxidants Redox Signal, 21 (1) ( 2014), pp. 66-85, DOI: 10.1089/ars.2014.5837
[[51]]
W. Ornatowski, Q. Lu, M. Yegambaram, et al.. Complex interplay between autophagy and oxidative stress in the development of pulmonary disease. Redox Biol, 36 ( 2020), Article 101679, DOI: 10.1016/j.redox.2020.101679
[[52]]
A. Wärri, K.L. Cook, R. Hu, et al.. Autophagy and unfolded protein response (UPR) regulate mammary gland involution by restraining apoptosis-driven irreversible changes. Cell Death Dis, 4 ( 2018), p. 40, DOI: 10.1038/s41420-018-0105-y
[[53]]
P. Li, R. Ma, L. Dong, et al.. Autophagy impairment contributes to PBDE-47-induced developmental neurotoxicity and its relationship with apoptosis. Theranostics, 9 (15) ( 2019), pp. 4375-4390, DOI: 10.7150/thno.33688
[[54]]
G. Das, B.V. Shravage, E.H. Baehrecke. Regulation and function of autophagy during cell survival and cell death. Cold Spring Harbor Perspect Biol, 4 (6) ( 2012), Article a008813, DOI: 10.1101/cshperspect.a008813
[[55]]
G. Filomeni, D. De Zio, F. Cecconi. Oxidative stress and autophagy: the clash between damage and metabolic needs. Cell Death Differ, 22 (3) ( 2015), pp. 377-388, DOI: 10.1038/cdd.2014.150

The present manuscript is derived from a Ph.D. thesis (NO: 11112). The authors wish to extend their gratitude for the scientific support received from the Faculty of Sport Sciences, Urmia University, and the School of Pharmacy, Urmia University of Medical Sciences. Furthermore, the authors would like to acknowledge the valuable assistance provided by the RASTA special research institute (RSRI) in the laboratory.

Accesses

Citations

Detail

Sections
Recommended

/