Physiological and perceptual responses to sprint interval exercise using arm versus leg cycling ergometry
Todd A. Astorino , Shealin Pierce , Madisen B. Piva , Richard S. Metcalfe , Niels B.J. Vollaard
Sports Medicine and Health Science ›› 2024, Vol. 6 ›› Issue (4) : 385 -393.
Physiological and perceptual responses to sprint interval exercise using arm versus leg cycling ergometry
Increases in power output and maximal oxygen consumption (V˙O2max) occur in response to sprint interval exercise (SIE), but common use of “all-out” intensities presents a barrier for many adults. Furthermore, lower-body SIE is not feasible for all adults. We compared physiological and perceptual responses to supramaximal, but “non-all-out” SIE between leg and arm cycling exercise. Twenty-four active adults (mean ± SD age: [25 ± 7] y; cycling V˙O2max: [39 ± 7] mL·kg−1·min−1) performed incremental exercise using leg (LCE) and arm cycle ergometry (ACE) to determine V˙O2max and maximal work capacity (Wmax). Subsequently, they performed four 20 s bouts of SIE at 130% Wmax on the LCE or ACE at cadence = 120-130 rev/min, with 2 min recovery between intervals. Gas exchange data, heart rate (HR), blood lactate concentration (BLa), rating of perceived exertion (RPE), and affective valence were acquired. Data showed significantly lower (p < 0.001) absolute mean ([1.24 ± 0.31] L·min−1 vs. [1.59 ± 0.34] L·min−1; d = 1.08) and peak V˙O2 ([1.79 ± 0.48] L·min−1 vs. [2.10 ± 0.44] L·min−1; d = 0.70) with ACE versus LCE. However, ACE elicited significantly higher (p < 0.001) relative mean ([62% ± 9%] V˙O2max vs. [57% ± 7%] V˙O2max, d = 0.63) and peak V˙O2 ([88% ± 10%] V˙O2max vs. [75% ± 10%] V˙O2max, d = 1.33). Post-exercise BLa was significantly higher ([7.0 ± 1.7] mM vs. [5.7 ± 1.5] mM, p = 0.024, d = 0.83) for LCE versus ACE. There was no significant effect of modality on RPE or affective valence (p > 0.42), and lowest affective valence recorded (2.0 ± 1.8) was considered “good to fairly good”. Data show that non “all-out” ACE elicits lower absolute but higher relative HR and V˙O2 compared to LCE. Less aversive perceptual responses could make this non-all-out modality feasible for inactive adults.
High intensity interval training / Upper body exercise / Peak power output / Oxygen uptake / Blood lactate concentration
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
/
| 〈 |
|
〉 |