Physiological and perceptual responses to sprint interval exercise using arm versus leg cycling ergometry

Todd A. Astorino, Shealin Pierce, Madisen B. Piva, Richard S. Metcalfe, Niels B.J. Vollaard

Sports Medicine and Health Science ›› 2024, Vol. 6 ›› Issue (4) : 385-393. DOI: 10.1016/j.smhs.2024.01.007
Original article

Physiological and perceptual responses to sprint interval exercise using arm versus leg cycling ergometry

Author information +
History +

Abstract

Increases in power output and maximal oxygen consumption (V˙O2max) occur in response to sprint interval exercise (SIE), but common use of “all-out” intensities presents a barrier for many adults. Furthermore, lower-body SIE is not feasible for all adults. We compared physiological and perceptual responses to supramaximal, but “non-all-out” SIE between leg and arm cycling exercise. Twenty-four active adults (mean ​± ​SD age: [25 ​± ​7] y; cycling V˙O2max: [39 ​± ​7] mL·kg−1·min−1) performed incremental exercise using leg (LCE) and arm cycle ergometry (ACE) to determine V˙O2max and maximal work capacity (Wmax). Subsequently, they performed four 20 ​s bouts of SIE at 130% Wmax on the LCE or ACE at cadence ​= ​120-130 ​rev/min, with 2 ​min recovery between intervals. Gas exchange data, heart rate (HR), blood lactate concentration (BLa), rating of perceived exertion (RPE), and affective valence were acquired. Data showed significantly lower (p ​< ​0.001) absolute mean ([1.24 ​± ​0.31] L·min−1 vs. [1.59 ​± ​0.34] L·min−1; d ​= ​1.08) and peak V˙O2 ([1.79 ​± ​0.48] L·min−1 vs. [2.10 ​± ​0.44] L·min−1; d ​= ​0.70) with ACE versus LCE. However, ACE elicited significantly higher (p ​< ​0.001) relative mean ([62% ​± ​9%] V˙O2max vs. [57% ​± ​7%] V˙O2max, d ​= ​0.63) and peak V˙O2 ([88% ​± ​10%] V˙O2max vs. [75% ​± ​10%] V˙O2max, d ​= ​1.33). Post-exercise BLa was significantly higher ([7.0 ​± ​1.7] mM vs. [5.7 ​± ​1.5] mM, p ​= ​0.024, d ​= ​0.83) for LCE versus ACE. There was no significant effect of modality on RPE or affective valence (p ​> ​0.42), and lowest affective valence recorded (2.0 ​± ​1.8) was considered “good to fairly good”. Data show that non “all-out” ACE elicits lower absolute but higher relative HR and V˙O2 compared to LCE. Less aversive perceptual responses could make this non-all-out modality feasible for inactive adults.

Keywords

High intensity interval training / Upper body exercise / Peak power output / Oxygen uptake / Blood lactate concentration

Cite this article

Download citation ▾
Todd A. Astorino, Shealin Pierce, Madisen B. Piva, Richard S. Metcalfe, Niels B.J. Vollaard. Physiological and perceptual responses to sprint interval exercise using arm versus leg cycling ergometry. Sports Medicine and Health Science, 2024, 6(4): 385‒393 https://doi.org/10.1016/j.smhs.2024.01.007

References

[[1]]
J.B. Gillen, M.J. Gibala. Is high-intensity interval training a time efficient exercise strategy to improve health and fitness?. Appl Physiol Nutr Metabol, 39 (3) ( 2014), pp. 409-412, DOI: 10.1139/apnm-2013-0187
[[2]]
T.A. Astorino, R.P. Allen, D.W. Roberson, et al.. Adaptations to high-intensity training are independent of gender. Eur J Appl Physiol, 111 (7) ( 2011), pp. 1279-1286, DOI: 10.1007/s00421-010-1741-y
[[3]]
K.A. Burgomaster, K.R. Howarth, S.M. Phillips, et al.. Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. J Physiol, 586 (1) ( 2008), pp. 151-160, DOI: 10.1113/jphysiol.2007.142109
[[4]]
I. Tabata, K. Nishimura, M. Kouzaki, et al.. Effects of moderate-intensity endurance and high-intensity intermittent training on anaerobic capacity and VO2max. Med Sci Sports Exerc, 28 (10) ( 1996), pp. 1327-1330, DOI: 10.1097/00005768-199610000-00018
[[5]]
T.A. Astorino, R.D. Clausen, J. Marroquin, B. Arthur, K. Stiles. Similar perceptual responses to reduced exertion high intensity interval training (REHIT) in adults differing in cardiorespiratory fitness. Physiol Behav, 213 ( 2020), Article 112687, DOI: 10.1016/j.physbeh.2019.112687
[[6]]
T.F. Cuddy, J.S. Ramos, L.C. Dalleck.Reduced exertion high-intensity interval training is more effective at improving cardiorespiratory fitness and cardiometabolic health than traditional moderate-intensity continuous training. Int J Environ Res Publ Health, 16 (3) ( 2019), p. 483, DOI: 10.3390/ijerph16030483
[[7]]
P. Songsorn, N. Brick, B. Fitzpatrick, et al.. Affective and perceptual responses during reduced-exertion high-intensity interval training (REHIT). Int J Sport Exerc Psychol, 18 (6) ( 2020), pp. 717-732, DOI: 10.1080/1612197X.2019.1593217
[[8]]
T.J. Hazell, R.E. Macpherson, B.M. Gravelle, P.W. Lemon. 10 or 30-s sprint interval training bouts enhance both aerobic and anaerobic performance. Eur J Appl Physiol, 110 (1) ( 2010), pp. 153-160, DOI: 10.1007/s00421-010-1474-y
[[9]]
R.S. Metcalfe, B. Fitzpatrick, S. Fitzpatrick, et al.. Extremely short duration interval exercise improves 24-h glycaemia in men with type 2 diabetes. Eur J Appl Physiol, 118 (12) ( 2018), pp. 2551-2562, DOI: 10.1007/s00421-018-3980-2
[[10]]
M.J. Gibala, J.P. Little, M. Van Essen, et al.. Short-term sprint interval versus traditional endurance training: similar initial adaptations in human skeletal muscle and exercise performance. J Physiol, 575 (Pt3) ( 2006), pp. 901-911, DOI: 10.1113/jphysiol.2006.112094
[[11]]
S.J. Hardcastle, H. Ray, L. Beale, M.S. Hagger.Why sprint interval training is inappropriate for a largely sedentary population. Front Psychol, 5 ( 2014), p. 1505, DOI: 10.3389/fpsyg.2014.01505
[[12]]
S.J.H. Biddle, A.M. Batterham.High-intensity interval exercise training for public health: a big HIT or shall we HIT it on the head?. Int J Behav Nutr Phys Activ, 12 ( 2015), p. 95, DOI: 10.1186/s12966-015-0254-9
[[13]]
R.S. Metcalfe, S. Williams, G. Fernandes, et al.. Affecting effects on affect: the impact of protocol permutations on affective responses to sprint interval exercise; a systematic review and meta-analysis of pooled individual participant data. Front Sports Act Living, 4 ( 2022), Article 815555, DOI: 10.3389/fspor.2022.815555
[[14]]
M. Hu, M.E. Jung, J. Nie, Z. Kong. Affective and enjoyment responses to sprint interval training in healthy individuals: a systematic review and meta-analysis. Front Psychol, 13 ( 2022), Article 820228, DOI: 10.3389/fpsyg.2022.820228
[[15]]
H. Islam, L.K. Townsend, T.J. Hazell.Modified sprint interval training protocols. Part I. Physiological responses. Appl Physiol Nutr Metabol, 42 (4) ( 2017), pp. 339-346, DOI: 10.1139/apnm-2016-0478
[[16]]
L.K. Townsend, H. Islam, E. Dunn, M. Eys, J. Robertson-Wilson, T.J. Hazell.Modified sprint interval training protocols. Part II. Psychological responses. Appl Physiol Nutr Metabol, 42 (4) ( 2017), pp. 347-353, DOI: 10.1139/apnm-2016-0479
[[17]]
N.B.J. Vollaard, R.S. Metcalfe. Into the health benefits of sprint interval training should focus on protocols with fewer and shorter sprints. Sports Med, 47 (12) ( 2017), pp. 2443-2451, DOI: 10.1007/s40279-017-0727-x
[[18]]
J.S. Ruffino, P. Songsorn, M. Haggett, et al.. A comparison of the health benefits of reduced-exertion high-intensity interval training (REHIT) and moderate-intensity walking in type 2 diabetes patients. Appl Physiol Nutr Metabol, 42 (2) ( 2017), pp. 202-208, DOI: 10.1139/apnm-2016-0497
[[19]]
M. Bayati, B. Barzad, R. Gharakhanlou, H. Agha-Alinejad. A practical model of low-volume high-intensity interval training induces performance and metabolic adaptations that resemble ‘all-out’ sprint interval training. J Sports Sci Med, 10 (3) ( 2011), pp. 571-576
[[20]]
L. Follador, R.C. Alves, S.D.S. Ferreira, et al.. Physiological, perceptual, and affective responses to six high-intensity interval training protocols. Percept Mot Skills, 125 (2) ( 2018), pp. 329-350, DOI: 10.1177/0031512518754584
[[21]]
R.E. Macpherson, T.J. Hazell, T.D. Olver, D.H. Paterson, P.W. Lemon. Run sprint interval training improves aerobic performance but not maximal cardiac output. Med Sci Sports Exerc, 43 (1) ( 2011), pp. 115-122, DOI: 10.1249/MSS.0b013e3181e5eacd
[[22]]
T.E. Nightingale, R.S. Metcalfe, N.B. Vollaard, J.L. Bilzon. Exercise guidelines to promote cardiometabolic health in spinal cord injured humans: time to raise the intensity?. Arch Phys Med Rehabil, 98 (8) ( 2017), pp. 1693-1704, DOI: 10.1016/j.apmr.2016.12.008
[[23]]
L.S. Goodman, D.C. McKenzie, C.R. Nath, W. Schamberger, J.E. Taunton, W.C. Ammann. Central adaptations in aerobic circuit versus walking/jogging trained cardiac patients. Can J Appl Physiol, 20 (2) ( 1995), pp. 178-197, DOI: 10.1139/h95-013
[[24]]
B. Brurok, J. Helgerud, T. Karlsen, G. Leivseth, J. Hoff. Effect of aerobic high-intensity hybrid training on stroke volume and peak oxygen consumption in men with spinal cord injury. Amer J Phys Med Rehabil, 90 (5) ( 2011), pp. 407-414, DOI: 10.1097/PHM.0b013e31820f960f
[[25]]
M. Price, C. Beckford, A. Dorricott, et al.. Oxygen uptake during upper body and lower body Wingate anaerobic tests. Appl Physiol Nutr Metabol, 39 (1) ( 2014), pp. 1345-1351, DOI: 10.1139/apnm-2013-0405
[[26]]
C. Zinner, D. Morales-Alamo, N. Ørtenblad, et al.. The physiological mechanisms of performance enhancement with sprint interval training differ between the upper and lower extremities in humans. Front Physiol, 7 ( 2016), p. 426, DOI: 10.3389/fphys.2016.00426
[[27]]
M.N. Sawka. Physiology of upper body exercise. Exerc Sport Sci Rev, 14 ( 1986), pp. 175-211
[[28]]
A.S. Jackson, M.L. Pollock. Generalized equations for predicting body density of men. Br J Nutr, 40 (3) ( 1978), pp. 497-504, DOI: 10.1079/bjn19780152
[[29]]
A.S. Jackson, M.L. Pollock, A. Ward. Generalized equations for predicting body density of women. Med Sci Sports Exerc, 12 (3) ( 1980), pp. 175-181
[[30]]
W.E. Siri. Body composition from fluid space and density. J. Brozek J, A. Hanschel (Eds.), Techniques for Measuring Body Composition, National Academy of Science ( 1961), pp. 223-244
[[31]]
T.A. Astorino, T. Robson, D.W. McMillan. Classifying intensity domains from arm cycle ergometry differs versus leg cycling ergometry. J Strength Condit Res, 37 (11) ( 2023), pp. 2192-2199, DOI: 10.1519/JSC.0000000000004549
[[32]]
T.A. Astorino, D. Emma. Differences in physiological and perceptual responses to high intensity interval exercise between arm and leg cycling. Front Physiol, 12 ( 2021), Article 700294, DOI: 10.3389/fphys.2021.700294
[[33]]
A.L. Van Sumeren, T.K. Bye, M.A. Kilgas, M.M. Hartvigsen, S.J. Elmer. Influence of the lower body on seated arm cranking performance. Int J Sports Med, 39 (10) ( 2018), pp. 757-763, DOI: 10.1055/a-0633-9188
[[34]]
T.A. Astorino, A.C. White, L.C. Dalleck. Supramaximal testing to confirm attainment of VO2max in sedentary men and women. Int J Sports Med, 30 (4) ( 2009), pp. 279-284, DOI: 10.1055/s-0028-1104588
[[35]]
T.A. Astorino, N. Bediamol, S. Cotoia, et al.. Verification testing to confirm VO2max attainment in persons with spinal cord injury. J Spinal Cord Med, 42 (4) ( 2019), pp. 494-501, DOI: 10.1080/10790268.2017.1422890
[[36]]
N. Olney, T. Wertz, Z. LaPorta, A. Mora, J. Serbas, T.A. Astorino. Comparison of acute physiological and psychological responses between moderate intensity continuous exercise and three regimes of high intensity training. J Strength Condit Res, 32 (8) ( 2018), pp. 2130-2138, DOI: 10.1519/JSC.0000000000002154
[[37]]
K.M. Wood, B. Olive, K. LaValle, H. Thompson, K. Greer, T.A. Astorino. Dissimilar physiological and perceptual responses between sprint interval training and high-intensity interval training. J Strength Condit Res, 30 (1) ( 2016), pp. 244-250, DOI: 10.1519/JSC.0000000000001042
[[38]]
G. Borg. Psychophysical bases of perceived exertion. Med Sci Sports Exerc, 14 (5) ( 1982), pp. 377-381
[[39]]
C.J. Hardy, W.J. Rejeski. Not what, but how one feels: the measurement of affect during exercise. J Sport Exerc Psychol, 11 (3) ( 1989), pp. 304-317, DOI: 10.1123/JSEP.11.3.304
[[40]]
D. Kendzierski, K.J. DeCarlo. Physical activity enjoyment scale: two validation studies. J Sport Exerc Psychol, 13 (1) ( 1991), pp. 50-64, DOI: 10.1123/JSEP.13.1.50
[[41]]
M.J. Stork, M.J. Gibala, K.A. Martin Ginis. Psychological and behavioral responses to interval and continuous exercise. Med Sci Sports Exerc, 50 (10) ( 2018), pp. 2110-2121, DOI: 10.1249/MSS.0000000000001671
[[42]]
J.S. Thum, G. Parsons, T. Whittle, T.A. Astorino. High-intensity interval training elicits higher enjoyment than moderate intensity continuous exercise. PLoS One, 12 (1) ( 2017), Article e0166299, DOI: 10.1371/journal.pone.0166299
[[43]]
J. Cohen. Statistical Power Analysis for the Behavioral Sciences. (second ed.), Lawrence Erlbaum Associates ( 1988)
[[44]]
F. Faul, E. Erdfelder, A.G. Lang, A.G. Buchner. Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods, 39 (2) ( 2007), pp. 175-191, DOI: 10.3758/bf03193146
[[45]]
L.A. Kaminsky, M.T. Imboden, R. Arena, J. Myers. Reference standards for cardiorespiratory fitness measured with cardiopulmonary exercise testing using cycle ergometry: data from the fitness registry and the importance of exercise national database (FRIEND) registry. Mayo Clin Proc, 92 (2) ( 2017), pp. 228-233, DOI: 10.1016/j.mayocp.2016.10.003
[[46]]
J.M. Pivarnik, T.R. Grafner, E.B. Elkins. Metabolic, thermoregulatory, and psychophysiological responses during arm and leg exercise. Med Sci Sports Exerc, 20 (1) ( 1988), pp. 1-5, DOI: 10.1249/00005768-198802000-00001
[[47]]
C.E. Garber, B. Blissmer, M.R. Deschenes, et al.. Quantity and quality of exercise for developing and maintaining cardio-respiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc, 43 (7) ( 2011), pp. 1334-1359, DOI: 10.1249/MSS.0b013e318213fefb
[[48]]
T.J. Barstow, A.M. Jones, P.H. Nguyen, R. Casaburi. Influence of muscle fiber type and pedal frequency on oxygen uptake kinetics of heavy exercise. J Appl Physiol, 81 (4) ( 1996), pp. 1642-1650, DOI: 10.1152/jappl.1996.81.4.1642
[[49]]
M.M. Toner, M.N. Sawka, L. Levine, K.B. Pandolf. Cardiorespiratory responses to exercise distributed between the upper and lower body. J Appl Physiol, 14 (5) ( 1983), pp. 1403-1407, DOI: 10.1152/jappl.1983.54.5.1403
[[50]]
L. Harvey, A. Wiegand, C. Solomon, C. McClellan, D.I. Lovell. A comparison of upper and lower-body energetics during high intensity exercise. J Sports Med Phys Fit, 55 (7-8) ( 1995), pp. 708-713
[[51]]
J.A.L. Calbet, J. Gonzalez Alonso, J. Helge, et al.. Central and peripheral hemodynamics in exercising humans: leg vs. arm exercise. Scand J Med Sci Sports, 25 (S4) ( 2015), pp. 144-157, DOI: 10.1111/sms.12604
[[52]]
T.A. Astorino, C.A. Vella. Predictors of change in affect in response to high intensity interval exercise (HIIE) and sprint interval exercise (SIE). Physiol Behav, 196 ( 2018), pp. 211-217, DOI: 10.1016/j.physbeh.2018.08.017
[[53]]
G. de Simone, R.B. Devereux, S.R. Daniels, R.A. Meyer. Gender differences in left ventricular growth. Hypertension, 26 (6 Pt 1) ( 1995), pp. 979-983, DOI: 10.1161/01.hyp.26.6.979
[[54]]
L. Hottenrott, M. Mohle, A. Ide, S. Ketelhut, O. Stoll, K. Hottenrott. Recovery from different high-intensity interval training protocols: comparing well-trained women and men. Sports, 9 (3) ( 2021), p. 34, DOI: 10.3390/sports9030034
[[55]]
L.N. Coe, T.A. Astorino. Sex differences in hemodynamic response to high-intensity interval exercise. Scand J Med Sci Sports ( 2023), DOI: 10.1111/sms.14495. (in press)
[[56]]
P.D. Gollnick, R.B. Armstrong, C.W. Saubert, K. Piehl, B. Saltin. Enzyme activity and fiber composition in skeletal muscle of untrained and trained men. J Appl Physiol, 33 (3) ( 1972), pp. 312-319, DOI: 10.1152/jappl.1972.33.3.312

The Authors acknowledge the participants for taking part in this study as well as Mr. Robert Sturdy for assistance with data collection.

Accesses

Citations

Detail

Sections
Recommended

/