Demystifying roles of exercise in immune response regulation against acute respiratory infections: A narrative review
Agustiningsih Dennya, Wibawa Trib
Demystifying roles of exercise in immune response regulation against acute respiratory infections: A narrative review
The benefits of physical activity and exercise, especially those classified as moderate-to-vigorous activity (MVPA), have been well-established in preventing non-communicable diseases and mental health problems in healthy adults. However, the relationship between physical activity and exercise and the prevention and management of acute respiratory infection (ARI), a global high-burden disease, has been inconclusive. There have been debates and disagreements among scientific publications regarding the relationship between exercise and immune response against the causative agents of ARI. This narrative review aims to explore the theory that sufficiently explains the correlation between exercise, immune response, and ARI. The potential root causes of discrepancies come from research associated with the “open window” hypothesis. The studies have several limitations, and future improvements to address them are urgently needed in the study design, data collection, exercise intervention, subject recruitment, biomarkers for infection and inflammation, nutritional and metabolism status, and in addressing confounding variables. In conclusion, data support the clinical advantages of exercise have a regulatory contribution toward improving the immune response, which in turn potentially protects humans fromARI. However, the hypothesis related to its negative effect must be adopted cautiously.
Physical activity / Exercise / Acute respiratory infection / Immune response
1 | |
2. | |
3. | |
4. | WHO. Global Action Plan on Physical Activity2018-2030: More Active People for a Healthier World. World Health Organization (2018). |
5. | WHO. WHO's Guidelines on Physical Activity and Sedentary Behaviour. World Health Organization (2020). |
6. | |
7. | |
8. | |
9. | S. Tahira. The association between sports participation and mental health across the lifespan. Int j sport stud health, 5 (2) (2023), Article e134601, 10.5812/intjssh-134601. |
10. | |
11. | |
12. | |
13. | |
14. | |
15. | |
16. | GBD2016 Lower Respiratory Infections Collaborators. Estimates of the global, regional, and national morbidity, mortality, and aetiologies of lower respiratory infections in 195 countries, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Infect Dis, 18 (11)(2018), pp. 1191-1210, 10.1016/S1473-3099(18)30310-4. |
17. | |
18. | |
19. | |
20. | |
21. | |
22. | |
23. | |
24. | |
25. | |
26. | |
27. | |
28. | |
29. | |
30. | J.W. Schoggins. Interferon-Stimulated Genes: what do they all do?. Annu Rev Virol, 6 (1) (2019), pp. 567-584, 10.1146/annurev-virology-092818-015756. |
31. | |
32. | |
33. | |
34. | |
35. | |
36. | |
37. | |
38. | |
39. | |
40. | |
41. | |
42. | |
43. | |
44. | O.J.Chrzanowski-Smith, E. Piatrikova, J.A. Betts, S. Williams, J.T. Gonzalez. Variability in exercise physiology: can capturing intra -individual variation help better understand true inter -individual responses?. Eur J Sport Sci, 20 (4)(2020), pp. 452-460, 10.1080/17461391.2019.1655100. |
45. | |
46. | |
47. | |
48. | |
49. | |
50. | |
51. | |
52. | |
53. | |
54. | |
55. | |
56. | |
57. | |
58. | |
59. | K. Suzuki. Cytokine response to exercise and |
60. | C.A.M.Gon?alves, P.M.S. Dantas, I.K. dos Santos, et al. Effect of acute and chronic aerobic exercise on immunological markers: a systematic review. Front Physiol, 10 (2020), p. 1602, 10.3389/fphys.2019.01602. |
61. | |
62. | |
63. | |
64. | |
65. | Altme S, Plaza-Florido A, Esteban FJ, et al. Effects of exercise on whole-blood transcriptome profile in children with overweight/obesity. Am J Hum Biol. Published online September 16, 2023. https://doi.org/10.1002/ajhb.23983.. |
66. | M. Nie, Q. Liu, R. Jia, Z. Li, X. Li, X. Meng. Comparative transcriptome analysis of unfractionated peripheral blood leukocytes after exercise in human. Sci Rep, 13 (1) (2023), Article 11140, 10.1038/s41598-023-38064-2. |
67. | G.O. Gjevestad, H. Hamarsland, T. Raastad, et al.. Gene expression is differentially regulated in skeletal muscle and circulating immune cells in response to an acute bout of high-load strength exercise. Genes Nutr, 12 (2017), p. 8, 10.1186/s12263-017-0556-4. |
68. | L.N. Masi, T.D.A. Serdan, A.C. Levada-Pires, et al.. Regulation of gene expression by exercise-related Micrornas. Cell Physiol Biochem, 39 (6) (2016), pp. 2381-2397, 10.1159/000452507. |
69. | M. Tarnowski, P. Kopytko, K. Piotrowska. Epigenetic regulation of inflammatory responses in the context of physical activity. Genes, 12 (9) (2021), p. 1313, 10.3390/genes12091313. |
70. | G. Wu, X. Zhang, F. Gao. The epigenetic landscape of exercise in cardiac health and disease. J Sport Health Sci, 10 (6) (2021), pp. 648-659, 10.1016/j.jshs.2020.12.003. |
71. | M. Zawadzka, P.P. Jagodziński. Exercise-induced epigenetic regulations in inflammatory related cells. J Appl Biomed, 15 (1) (2017), pp. 63-70, 10.1016/j.jab.2016.09.002. |
72. | J. Plaza-Diaz, D. Izquierdo, á. Torres-Martos, A.T. Baig, C.M. Aguilera, F.J. Ruiz-Ojeda. Impact of physical activity and exercise on the epigenome in skeletal muscle and effects on systemic metabolism. Biomedicines, 10 (1) (2022), p. 126, 10.3390/biomedicines10010126. |
73. | P. van der Harst, L.J. de Windt, J.C. Chambers. Translational perspective on epigenetics in cardiovascular disease. J Am Coll Cardiol, 70 (5) (2017), pp. 590-606, 10.1016/j.jacc.2017.05.067. |
74. | A.B. Gevaert, N. Wood, J.R.A. Boen, et al.. Epigenetics in the primary and secondary prevention of cardiovascular disease: influence of exercise and nutrition. Eur J Prev Cardiol, 29 (17) (2022), pp. 2183-2199, 10.1093/eurjpc/zwac179. |
75. | C. Lim, J. Shimizu, F. Kawano, H.J. Kim, C.K. Kim. Adaptive responses of histone modifications to resistance exercise in human skeletal muscle. PLoS One, 15 (4) (2020), Article e0231321, 10.1371/journal.pone.0231321. |
76. | F. Kawano. Histone modification: a mechanism for regulating skeletal muscle characteristics and adaptive changes. Appl Sci, 11 (9) (2021), p. 3905, 10.3390/app11093905. |
77. | J. Denham, F.Z. Marques, E.L. Bruns, B.J. O'Brien, F.J. Charchar. Epigenetic changes in leukocytes after 8 weeks of resistance exercise training. Eur J Appl Physiol, 116 (6) (2016), pp. 1245-1253, 10.1007/s00421-016-3382-2. |
78. | M.E. Lindholm, F. Marabita, D. Gomez-Cabrero, et al.. An integrative analysis reveals coordinated reprogramming of the epigenome and the transcriptome in human skeletal muscle after training. Epigenetics, 9 (12) (2014), pp. 1557-1569, 10.4161/15592294.2014.982445. |
79. | W.J. ?wiatowy, H. Drzewiecka, M. Kliber, et al.. Physical activity and DNA methylation in humans. Int J Mol Sci, 22 (23) (2021), Article 12989, 10.3390/ijms222312989. |
80. | S. Masuki, K. Nishida, S. Hashimoto, et al.. Effects of milk product intake on thigh muscle strength and NFKB gene methylation during home-based interval walking training in older women: a randomized, controlled pilot study. PLoS One, 12 (5) (2017), Article e0176757, 10.1371/journal.pone.0176757. |
81. | A. Fuso, T. Raia, M. Orticello, M. Lucarelli. The complex interplay between DNA methylation and miRNAs in gene expression regulation. Biochimie, 173 (2020), pp. 12-16, 10.1016/j.biochi.2020.02.006. |
82. | L.S. Chow, R.E. Gerszten, J.M. Taylor, et al.. Exerkines in health, resilience and disease. Nat Rev Endocrinol, 18 (5) (2022), pp. 273-289, 10.1038/s41574-022-00641-2. |
83. | L. Vella, M.K. Caldow, A.E. Larsen, et al.. Resistance exercise increases NF-κB activity in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol, 302 (6) (2012), pp. R667-R673, 10.1152/ajpregu.00336.2011. |
84. | A. Gallego-Selles, V. Galvan-Alvarez, M. Martinez-Canton, et al.. Fast regulation of the NF-κB signalling pathway in human skeletal muscle revealed by high-intensity exercise and ischaemia at exhaustion: role of oxygenation and metabolite accumulation. Redox Biol, 55 (2022), Article 102398, 10.1016/j.redox.2022.102398. |
85. | P.A.M. Cavalcante, M.F. Gregnani, J.S. Henrique, F.H. Ornellas, R.C. Araújo. Aerobic but not resistance exercise can induce inflammatory pathways via Toll-Like 2 and 4: a systematic review. Sports Med Open, 3 (1) (2017), p. 42, 10.1186/s40798-017-0111-2. |
86. | Y. Ezzatvar, R. Ramírez-Vélez, M. Izquierdo, A. Garcia-Hermoso. Physical activity and risk of infection, severity and mortality of COVID-19: a systematic review and non-linear dose-response meta-analysis of data from 1 853 610 adults. Br J Sports Med, 56 (20) (2022), pp. 1188-1193, 10.1136/bjsports-2022-105733. |
87. | A.A. Mohamed, M. Alawna. The effect of aerobic exercise on immune biomarkers and symptoms severity and progression in patients with COVID-19: a randomized control trial. J Bodyw Mov Ther, 28 (2021), pp. 425-432, 10.1016/j.jbmt.2021.07.012. |
88. | J.M. de Abreu, R.A. de Souza, L.G. Viana-Meireles, J. Landeira-Fernandez, A. Filgueiras. Effects of physical activity and exercise on well-being in the context of the Covid-19 pandemic. PLoS One, 17 (1) (2022), Article e0260465, 10.1371/journal.pone.0260465. |
89. | A. Jimeno-Almazán, F. Franco-López, Buendía-Romero á et al.. Rehabilitation for post-COVID-19 condition through a supervised exercise intervention: a randomized controlled trial. Scand J Med Sci Sports, 32 (12) (2022), pp. 1791-1801, 10.1111/sms.14240. |
90. | S.K. Kunutsor, S. Seidu, J.A. Laukkanen. Physical activity reduces the risk of pneumonia: systematic review and meta-analysis of 10 prospective studies involving 1,044,492 participants. Geroscience, 44 (1) (2022), pp. 519-532, 10.1007/s11357-021-00491-2. |
91. | T. Ikeda, S. Inoue, T. Konta, et al.. Can daily walking alone reduce pneumonia-related mortality among older people?. Sci Rep, 10 (1) (2020), p. 8556, 10.1038/s41598-020-65440-z. |
92. | A. José S. Dal Corso. Inpatient rehabilitation improves functional capacity, peripheral muscle strength and quality of life in patients with community-acquired pneumonia: a randomised trial. J Physiother, 62 (2) (2016), pp. 96-102, 10.1016/j.jphys.2016.02.014. |
93. | S.F.M. Chastin, U. Abaraogu, J.G. Bourgois, et al.. Effects of regular physical activity on the immune system, vaccination and risk of community-acquired infectious disease in the general population: systematic review and meta-analysis. Sports Med, 51 (8) (2021), pp. 1673-1686, 10.1007/s40279-021-01466-1. |
94. | J. Hallam, T. Jones, J. Alley, M.L. Kohut. Exercise after influenza or COVID-19 vaccination increases serum antibody without an increase in side effects. Brain Behav Immun, 102 (2022), pp. 1-10, 10.1016/j.bbi.2022.02.005. |
95. | S.M. Ranadive, M. Cook, R.M. Kappus, et al.. Effect of acute aerobic exercise on vaccine efficacy in older adults. Med Sci Sports Exerc, 46 (3) (2014), pp. 455-461, 10.1249/MSS.0b013e3182a75ff2. |
96. | S.B. AL-Mhanna, W.S. Wan Ghazali, A. Maqsood, et al.. Physical Activities Pre- and Post-COVID-19 Vaccination and its Implementations: A Narrative Review. SAGE Open Med, 11 (2023), 10.1177/20503121231158981. 20503121231158981. |
97. | S. Collie, R.T. Saggers, R. Bandini, et al.. Association between regular physical activity and the protective effect of vaccination against SARS-CoV-2 in a South African case-control study. Br J Sports Med, 57 (4) (2023), pp. 205-211, 10.1136/bjsports-2022-105734. |
98. | E. Bohn-Goldbaum, K.B. Owen, V.Y.J. Lee, R. Booy, K.M. Edwards. Physical activity and acute exercise benefit influenza vaccination response: a systematic review with individual participant data meta-analysis. PLoS One, 17 (6) (2022), Article e0268625, 10.1371/journal.pone.0268625. |
99. | M.T. Elzayat, M.M. Markofski, R.J. Simpson, M. Laughlin, E.C. LaVoy. No effect of acute eccentric resistance exercise on immune responses to influenza vaccination in older adults: a randomized control trial. Front Physiol, 12 (2021), Article 713183, 10.3389/fphys.2021.713183. |
100. | W. Derman, M. Badenhorst, M.M. Eken, et al.. Incidence of acute respiratory illnesses in athletes: a systematic review and meta-analysis by a subgroup of the IOC consensus on ‘acute respiratory illness in the athlete’. Br J Sports Med, 56 (11) (2022), pp. 630-640, 10.1136/bjsports-2021-104737. |
101. | O. Ruuskanen, R. Luoto, M. Valtonen, O.J. Heinonen, M. Waris. Respiratory viral infections in athletes: many unanswered questions. Sports Med, 52 (9) (2022), pp. 2013-2021, 10.1007/s40279-022-01660-9. |
102. | A.J. Grande, J. Keogh, V. Silva, A.M. Scott. Exercise versus no exercise for the occurrence, severity, and duration of acute respiratory infections. Cochrane Database Syst Rev, 2020 (4) (2020), Article CD010596, 10.1002/14651858.CD010596.pub3. |
103. | W.E. Cayley Jr.. Exercise vs. no exercise for the occurrence, severity, and duration of acute respiratory tract infections. Am Fam Physician, 103 (3) (2021), pp. 144-145. |
104. | M. Sellami, N.L. Bragazzi, B. Aboghaba, M.A. Elrayess. The impact of acute and chronic exercise on immunoglobulins and cytokines in elderly: insights from a critical review of the literature. Front Immunol, 12 (2021), Article 631873, 10.3389/fimmu.2021.631873. |
105. | M. Gleeson, W.A. McDonald, D.B. Pyne, et al.. Salivary IgA levels and infection risk in elite swimmers. Med Sci Sports Exerc, 31 (1) (1999), pp. 67-73, 10.1097/00005768-199901000-00012. |
106. | S. Turner, J. Hull, A. Jackson, et al.. Evaluating salivary IgA levels as a biomarker for susceptibility to upper respiratory tract infection in elite athletes. Eur Respir J, 56 (suppl 64) (2020), p. 2347, 10.1183/13993003.congress-2020.2347. |
107. | M. Gleeson, W.A. McDonald, D.B. Pyne, et al.. Immune status and respiratory illness for elite swimmers during a 12-week training cycle. Int J Sports Med, 21 (4) (2000), pp. 302-307, 10.1055/s-2000-313. |
108. | M.M. Fahlman, H.J. Engels. Mucosal IgA and URTI in American College Football players: a year longitudinal study. Med Sci Sports Exerc, 37 (3) (2005), pp. 374-380, 10.1249/01.MSS.0000155432.67020.88. |
109. | A. Tanner, S. Day. The effects of a 4-week, intensified training, and competition period on salivary hormones, Immunoglobulin A, illness symptoms, and mood state in elite synchronised swimmers. Sports, 5 (3) (2017), p. 64, 10.3390/sports5030064. |
110. | C. Tiernan, M. Lyons, T. Comyns, A.M. Nevill, G. Warrington. Salivary IgA as a predictor of upper respiratory tract infections and relationship to training load in elite rugby union players. J Strength Cond Res, 34 (3) (2020), pp. 782-790, 10.1519/JSC.0000000000003019. |
111. | D.C. Nieman. Exercise, upper respiratory tract infection, and the immune system. Med Sci Sports Exerc, 26 (2) (1994), pp. 128-139, 10.1249/00005768-199402000-00002. |
112. | B.K. Pedersen, H. Ullum. NK cell response to physical activity: possible mechanisms of action. Med Sci Sports Exerc, 26 (2) (1994), pp. 140-146, 10.1249/00005768-199402000-00003. |
113. | J.P. Campbell, J.E. Turner. Debunking the myth of exercise-induced immune suppression: redefining the impact of exercise on immunological health across the lifespan. Front Immunol, 9 (2018), p. 648, 10.3389/fimmu.2018.00648. |
114. | A. Cicchella, C. Stefanelli, M. Massaro. Upper respiratory tract infections in pport and the Immune system response. a review. Biology, 10 (5) (2021), p. 362, 10.3390/biology10050362. |
115. | M. Gleeson, D.B. Pyne, R. Callister. The missing links in exercise effects on mucosal immunity. Exerc Immunol Rev, 10 (2004), pp. 107-128. |
116. | R.J. Simpson, J.P. Campbell, M. Gleeson, et al.. Can exercise affect immune function to increase susceptibility to infection?. Exerc Immunol Rev, 26 (2020), pp. 8-22. |
117. | M. Schwellnus, T. Soligard, J.M. Alonso, et al.. How much is too much? (Part 2) International Olympic Committee consensus statement on load in sport and risk of illness. Br J Sports Med, 50 (17) (2016), pp. 1043-1052, 10.1136/bjsports-2016-096572. |
118. | M. Kurowski, S. Seys, M. Bonini, et al.. Physical exercise, immune response, and susceptibility to infections—current knowledge and growing research areas. Allergy, 77 (9) (2022), pp. 2653-2664, 10.1111/all.15328. |
119. | J.B. Ferreira-Júnior, E.D.S. Freitas, S.F.N. Chaves. Exercise: a protective measure or an “open window” for COVID-19? a mini review. Front Sports Act Living, 2 (2020), p. 61, 10.3389/fspor.2020.00061. |
120. | S.J. Lain, C.L. Roberts, J. Warning, J. Vivian-Taylor, J.B. Ford. A survey of acute self-reported infections in pregnancy. BMJ Open, 1 (1) (2011), Article e000083, 10.1136/bmjopen-2011-000083. |
121. | C.E. Hastie, D.J. Lowe, A. McAuley, et al.. Outcomes among confirmed cases and a matched comparison group in the Long-COVID in Scotland study. Nat Commun, 13 (1) (2022), p. 5663, 10.1038/s41467-022-33415-5. |
122. | K. van Zandvoort, M.O. Bobe, A.I. Hassan, et al.. Social contacts and other risk factors for respiratory infections among internally displaced people in Somaliland. Epidemics, 41 (2022), Article 100625, 10.1016/j.epidem.2022.100625. |
123. | F. Adorni, F. Prinelli, F. Bianchi, et al.. Self-reported symptoms of SARS-CoV-2 infection in a nonhospitalized population in Italy: cross-sectional study of the EPICOVID19 web-based survey. JMIR Public Health Surveill, 6 (3) (2020), Article e21866, 10.2196/21866. |
124. | A. Moreira, L. Delgado, P. Moreira, T. Haahtela. Does exercise increase the risk of upper respiratory tract infections?. Br Med Bull, 90 (1) (2009), pp. 111-131, 10.1093/bmb/ldp010. |
125. | D.C. Nieman, S.L. Nehlsen-Cannarella, O.R. Fagoaga, et al.. Immune function in female elite rowers and non-athletes. Br J Sports Med, 34 (3) (2000), pp. 181-187, 10.1136/bjsm.34.3.181. |
126. | R. Gokhale, S. Chandrashekara, K.C. Vasanthakumar. Cytokine response to strenuous exercise in athletes and non-athletes—an adaptive response. Cytokine, 40 (2) (2007), pp. 123-127, 10.1016/j.cyto.2007.08.006. |
127. | Rawla P., Killeen R., Joseph N. IgA Deficiency. StatPearls Publishing;2023. Accessed February 4, 2023. https://www.ncbi.nlm.nih.gov/books/NBK538205/?report=printable.. |
128. | S. Ghafouri-Fard, R. Noroozi, R. Vafaee, et al.. Effects of host genetic variations on response to, susceptibility and severity of respiratory infections. Biomed Pharmacother, 128 (2020), Article 110296, 10.1016/j.biopha.2020.110296. |
129. | K. Suzuki. Recent progress in applicability of exercise immunology and inflammation research to sports nutrition. Nutrients, 13 (12) (2021), p. 4299, 10.3390/nu13124299. |
130. | H. Agha-Alinejad, A.H. Ahmadi Hekmatikar, R.T. Ruhee, et al.. A guide to different intensities of exercise, vaccination, and sports nutrition in the course of preparing elite athletes for the management of upper respiratory infections during the COVID-19 pandemic: a narrative review. Int J Environ Res Public Health, 19 (3) (2022), p. 1888, 10.3390/ijerph19031888. |
131. | A. Nieters, N. Blagitko-Dorfs, H.H. Peter, S. Weber. Psychophysiological insomnia and respiratory tract infections: results of an infection-diary-based cohort study. Sleep, 42 (8) (2019), Article zsz098, 10.1093/sleep/zsz098. |
132. | E.S.M.E. Silva, B.H.V.S. Ono, J.C. Souza. Sleep and immunity in times of COVID-19. Rev Assoc Med Bras (1992), 66 (suppl 2) (2020), pp. 143-147, 10.1590/1806-9282.66.s2.143. |
133. | A. Al-Sayyar, K.D. Hulme, R. Thibaut, et al.. Respiratory tract infections in diabetes - lessons from tuberculosis and influenza to guide understanding of COVID-19 severity. Front Endocrinol, 13 (2022), Article 919223, 10.3389/fendo.2022.919223. |
134. | T.A. Wills, S.S. Soneji, K. Choi, I. Jaspers, E.K. Tam. E-cigarette use and respiratory disorders: an integrative review of converging evidence from epidemiological and laboratory studies. Eur Respir J, 57 (1) (2021), Article 1901815, 10.1183/13993003.01815-2019. |
135. | D. Benzano, F. Ornell, J.B. Schuch, et al.. Clinical vulnerability for severity and mortality by COVID-19 among users of alcohol and other substances. Psychiatr Res, 300 (2021), Article 113915, 10.1016/j.psychres.2021.113915. |
136. | S. Cohen. Psychosocial vulnerabilities to upper respiratory infectious illness: implications for susceptibility to Coronavirus Disease 2019 (COVID-19). Perspect Psychol Sci, 16 (1) (2021), pp. 161-174, 10.1177/1745691620942516. |
137. | S.B. Gordon, N.G. Bruce, J. Grigg, et al.. Respiratory risks from household air pollution in low and middle income countries. Lancet Respir Med, 2 (10) (2014), pp. 823-860, 10.1016/S2213-2600(14)70168-7. |
138. | S. Zhang, Z. Li, J. Nie, L. Huang, S. Wang, Z. Wei. How to record the amount of exercise automatically? A general real-time recognition and counting approach for repetitive activities. 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), IEEE (2016), pp. 831-834, 10.1109/BIBM.2016.7822633. |
139. | S. Esposito, A. Mencacci, E. Cenci, et al.. Multiplex platforms for the identification of respiratory pathogens: are they useful in pediatric clinical practice?. Front Cell Infect Microbiol, 9 (2019), p. 196, 10.3389/fcimb.2019.00196. |
140. | D. Zheng, T. Liwinski, E. Elinav. Interaction between microbiota and immunity in health and disease. Cell Res, 30 (6) (2020), pp. 492-506, 10.1038/s41422-020-0332-7. |
141. | C. Vandelanotte, M.J. Duncan, R. Stanton, et al.. Validity and responsiveness to change of the Active Australia Survey according to gender, age, BMI, education, and physical activity level and awareness. BMC Publ Health, 19 (1) (2019), p. 407, 10.1186/s12889-019-6717-1. |
142. | A. Timperio, J. Salmon, D. Crawford. Validity and reliability of a physical activity recall instrument among overweight and non-overweight men and women. J Sci Med Sport, 6 (4) (2003), pp. 477-491, 10.1016/S1440-2440(03)80273-6. |
143. | C. Quinlan, B. Rattray, D. Pryor, et al.. The accuracy of self-reported physical activity questionnaires varies with sex and body mass index. PLoS One, 16 (8) (2021), Article e0256008, 10.1371/journal.pone.0256008. |
144. | S.T. Ibrahim, N. Hammami, T.R. Katapally. Traditional surveys versus ecological momentary assessments: digital citizen science approaches to improve ethical physical activity surveillance among youth. PLOS Digit Health, 2 (9) (2023), Article e0000294, 10.1371/journal.pdig.0000294. |
146. | S.A. Billinger, P. Boyne, E. Coughenour, K. Dunning, A. Mattlage. Does aerobic exercise and the FITT principle fit into stroke recovery?. Curr Neurol Neurosci Rep, 15 (2) (2015), p. 519, 10.1007/s11910-014-0519-8. |
147. | S. Luti, R. Militello, G. Pinto, et al.. Chronic training induces metabolic and proteomic response in male and female basketball players: salivary modifications during in-season training programs. Healthcare, 11 (2) (2023), p. 241, 10.3390/healthcare11020241. |
148. | P. Ma?kowska, M. Sawczuk. Cytokines as biomarkers for evaluating physical exercise in trained and non-trained individuals: a narrative review. Int J Mol Sci, 24 (13) (2023), Article 11156, 10.3390/ijms241311156. |
149. | M. Polakovi?ová P. Musil, E. Laczo, D. Hamar, J. Kyselovi?. Circulating microRNAs as potential biomarkers of exercise response. Int J Mol Sci, 17 (10) (2016), p. 1553, 10.3390/ijms17101553. |
150. | G. Xu, W. Lin, A.J. McAinch, X. Yan, X. Weng. Identification of urinary biomarkers for exercise-induced immunosuppression by iTRAQ proteomics. BioMed Res Int, 2020 (2020), Article 3030793, 10.1155/2020/3030793. |
151. | P. Brodin, M.M. Davis. Human immune system variation. Nat Rev Immunol, 17 (1) (2017), pp. 21-29, 10.1038/nri.2016.125. |
152. | A. Liston, E.J. Carr, M.A. Linterman. Shaping variation in the human immune system. Trends Immunol, 37 (10) (2016), pp. 637-646, 10.1016/j.it.2016.08.002. |
153. | K.J. Jager, C. Zoccali, A. Macleod, F.W. Dekker. Confounding: what it is and how to deal with it. Kidney Int, 73 (3) (2008), pp. 256-260, 10.1038/sj.ki.5002650. |
154. | M.A. Pourhoseingholi, A.R. Baghestani, M. Vahedi. How to control confounding effects by statistical analysis. Gastroenterol Hepatol Bed Bench, 5 (2) (2012), pp. 79-83. |
155. | M.W. Kakanis, J. Peake, E.W. Brenu, et al.. The open window of susceptibility to infection after acute exercise in healthy young male elite athletes. Exerc Immunol Rev, 16 (2010), pp. 119-137. |
156. | S. M?rtensson, K. Nordebo, C. Malm. High training volumes are associated with a low number of self-reported sick days in elite endurance athletes. J Sports Sci Med, 13 (4) (2014), pp. 929-933. |
157. | M. Fahlman, H. Engels, H. Hall. SIgA and upper respiratory Syndrome during a college cross country season. Sports Med Int Open, 1 (6) (2017), pp. E188-E194, 10.1055/s-0043-119090. |
158. | M.L. Schlagheck, D. Walzik, N. Joisten, et al.. Cellular immune response to acute exercise: comparison of endurance and resistance exercise. Eur J Haematol, 105 (1) (2020), pp. 75-84, 10.1111/ejh.13412. |
159. | A.P. Isaev, V.V. Erlikh, V.I. Zalyapin, et al.. The immune system of athletes of different sports. Pedagog psychol med biol probl phys train sports, 22 (6) (2018), pp. 280-286, 10.15561/18189172.2018.0601. |
160. | C. Monje, I. Rada, M. Castro-Sepulveda, L. Pe?ailillo, L. Deldicque, H. Zbinden-Foncea. Effects of a high intensity interval session on mucosal immune function and salivary hormones in male and female endurance athletes. J Sports Sci Med, 19 (2) (2020), pp. 436-443. |
161. | D.P. Born, C. Zinner, B. Sperlich. The mucosal immune function is not compromised during a period of high-intensity interval training. Is it time to reconsider an old assumption?. Front Physiol, 8 (2017), p. 485, 10.3389/fphys.2017.00485. |
162. | B. Barrett, M.S. Hayney, D. Muller, et al.. Meditation or exercise for preventing acute respiratory infection: a randomized controlled trial. Ann Fam Med, 10 (4) (2012), pp. 337-346, 10.1370/afm.1376. |
/
〈 | 〉 |