Demystifying roles of exercise in immune response regulation against acute respiratory infections: A narrative review

Agustiningsih Dennya, Wibawa Trib

Sports Medicine and Health Science ›› 2024, Vol. 6 ›› Issue (2) : 139-153. DOI: 10.1016/j.smhs.2024.01.004

Demystifying roles of exercise in immune response regulation against acute respiratory infections: A narrative review

  • Agustiningsih Dennya, Wibawa Trib
Author information +
History +

Abstract

The benefits of physical activity and exercise, especially those classified as moderate-to-vigorous activity (MVPA), have been well-established in preventing non-communicable diseases and mental health problems in healthy adults. However, the relationship between physical activity and exercise and the prevention and management of acute respiratory infection (ARI), a global high-burden disease, has been inconclusive. There have been debates and disagreements among scientific publications regarding the relationship between exercise and immune response against the causative agents of ARI. This narrative review aims to explore the theory that sufficiently explains the correlation between exercise, immune response, and ARI. The potential root causes of discrepancies come from research associated with the “open window” hypothesis. The studies have several limitations, and future improvements to address them are urgently needed in the study design, data collection, exercise intervention, subject recruitment, biomarkers for infection and inflammation, nutritional and metabolism status, and in addressing confounding variables. In conclusion, data support the clinical advantages of exercise have a regulatory contribution toward improving the immune response, which in turn potentially protects humans fromARI. However, the hypothesis related to its negative effect must be adopted cautiously.

Keywords

Physical activity / Exercise / Acute respiratory infection / Immune response

Cite this article

Download citation ▾
Agustiningsih Denny, Wibawa Tri. Demystifying roles of exercise in immune response regulation against acute respiratory infections: A narrative review. Sports Medicine and Health Science, 2024, 6(2): 139‒153 https://doi.org/10.1016/j.smhs.2024.01.004

References

1
A.E. Bauman, R.S. Reis, J.F. Sallis, et al. Correlates of physical activity: why are some people physically active and others not?. Lancet, 380 (9838) (2012), pp. 258-271, 10.1016/S0140-6736(12)60735-1.
2.
A. Wahid, N. Manek, M. Nichols, et al. Quantifying the association between physical activity and cardiovascular disease and diabetes: a systematic review and meta-analysis. J Am Heart Assoc, 5 (9) (2016), Article e002495, 10.1161/JAHA.115.002495.
3.
Z.A. Saqib, J. Dai, R. Menhas, et al. Physical activity is a medicine for non-communicable diseases: a survey study regarding the perception of physical activity impact on health wellbeing. Risk Manag Healthc Pol, 13 (2020), pp. 2949-2962, 10.2147/RMHP.S280339.
4.
WHO. Global Action Plan on Physical Activity2018-2030: More Active People for a Healthier World. World Health Organization (2018).
5.
WHO. WHO's Guidelines on Physical Activity and Sedentary Behaviour. World Health Organization (2020).
6.
D. Thivel, A. Tremblay, P.M. Genin, S. Panahi, D. Rivière, M. Duclos.Physical activity, inactivity, and sedentary behaviors: definitions and implications in occupational health. Front Public Health, 6 (2018), p. 288, 10.3389/fpubh.2018.00288.
7.
G. Liguori, Y. Feito, C. Fountaine, B. Roy. ACSM’s Guidelines for Exercise Testing and Prescription (eleventh ed.), Wolters Kluwer (2022).
8.
W.R. Thompson, R. Sallis, E. Joy, C.A. Jaworski, R.M. Stuhr, J.L. Trilk. Exercise is medicine. Am J Lifestyle Med, 14 (5) (2020), pp. 511-523, 10.1177/1559827620912192.
9.
S. Tahira. The association between sports participation and mental health across the lifespan. Int j sport stud health, 5 (2) (2023), Article e134601, 10.5812/intjssh-134601.
10.
D.C. Nieman, C.A. Sakaguchi.Physical activity lowers the risk for acute respiratory infections: time for recognition. J Sport Health Sci, 11 (6)(2022), pp. 648-655, 10.1016/j.jshs.2022.08.002.
11.
M.G. Leahy, S. Kipp, A.W. Sheel.The respiratory physiology of exercise: age and sex considerations. Curr Opin Physiol, 33 (2023), Article 100652, 10.1016/j.cophys.2023.100652.
12.
C.R. Olivo, T.B.P.Castro, A. Riane, et al. The effects of exercise training on the lungs and cardiovascular function of animals exposed to diesel exhaust particles and gases. Environ Res, 203 (2022), Article 111768, 10.1016/j.envres.2021.111768.
13.
W. Davis, J. Duque, Q.S. Huang, et al.Sensitivity and specificity of surveillance case definitions in detection of influenza and respiratory syncytial virus among hospitalized patients, New Zealand, 2012-2016. J Infect, 84 (2)(2022), pp. 216-226, 10.1016/j.jinf.2021.12.012.
14.
N. Marano, J.A. Ahmed.Acute respiratory infection. D. Townes (Ed.), Health in Humanitarian Emergencies, Cambridge University Press (2018), pp. 295-309, 10.1017/9781107477261.022.
15.
E. Simoes, T. Cherian, J. Chow, S.A.Shahid-Salles, R. Laxminarayan, T.J. John. Acute respiratory infections in children. D.T. Jamison, J.G. Breman, A.R. Measham, et al. (Eds.), Disease Control Priorities in Developing Countries (2nd ed.), The World Bank/Oxford University Press (2006), pp. 483-498.
16.
GBD2016 Lower Respiratory Infections Collaborators. Estimates of the global, regional, and national morbidity, mortality, and aetiologies of lower respiratory infections in 195 countries, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Infect Dis, 18 (11)(2018), pp. 1191-1210, 10.1016/S1473-3099(18)30310-4.
17.
X. Jin, J. Ren, R. Li, et al.Global burden of upper respiratory infections in 204 countries and territories, from 1990 to 2019. EClinicalMedicine, 37 (2021), Article 100986, 10.1016/j.eclinm.2021.100986.
18.
P. Ghimire, R. Gachhadar, N. Piya, K. Shrestha, K. Shrestha. Prevalence and factors associated with acute respiratory infection among under-five children in selected tertiary hospitals of Kathmandu Valley. PLoS One, 17 (4) (2022), Article e0265933, 10.1371/journal.pone.0265933.
19.
V. Oktaria, M. Danchin, R. Triasih, et al. The incidence of acute respiratory infection in Indonesian infants and association with vitamin D deficiency. PLoS One, 16 (3) (2021), Article e0248722, 10.1371/journal.pone.0248722.
20.
L. Liu, S. Oza, D. Hogan, et al. Global, regional,national causes of child mortality in2000-13, with projections to inform post-2015 priorities: an updated systematic analysis. Lancet, 385 (9966)(2015), pp. 430-440, 10.1016/S0140-6736(14)61698-6.
21.
A.T. Aman, T. Wibawa, H. Kosasih, et al. Etiologies of severe acute respiratory infection (SARI) andmisdiagnosis of influenza in Indonesia, 2013-2016. Influenza Other Respir Viruses, 15 (1)(2021), pp. 34-44, 10.1111/irv.12781.
22.
P. Mishra, L. Nayak, R.R. Das, B. Dwibedi, A. Singh. Viral agents causing acute respiratory infections in children under five: a study from Eastern India. Int J Pediatr, 2016 (2016), Article 7235482, 10.1155/2016/7235482.
23.
J. Chen, P. Hu, T. Zhou, et al. Epidemiology and clinical characteristics of acute respiratory tract infections among hospitalized infants and young children in Chengdu, West China, 2009-2014. BMC Pediatr, 18 (1)(2018), p. 216, 10.1186/s12887-018-1203-y.
24.
W. Correia, R. Dorta-Guerra, M. Sanches, et al.Study of the etiology of acute respiratory infections in children under 5 years at the Dr. Agostinho neto hospital, praia, santiago island, cabo verde. Front Pediatr., 9 (2021), Article 716351, 10.3389/fped.2021.716351.
25.
P.T. Truong, S. Saito, I. Takayama, et al. Respiratory microbes detected in hospitalized adults with acute respiratory infections: associations between influenza A(H1N1)pdm09 virus and intensive care unit admission or fatal outcome in Vietnam (2015-2017). BMC Infect Dis, 21 (1)(2021), p. 320, 10.1186/s12879-021-05988-x.
26.
Y Bin Seo, J.Y. Song, M.J. Choi, et al. Etiology and clinical outcomes of acute respiratory virus infection in hospitalized adults. Infect Chemother, 46 (2) (2014), pp. 67-76, 10.3947/ic.2014.46.2.67.
27.
D. Li, M. Wu. Pattern recognition receptors in health and diseases. Signal Transduct Targeted Ther, 6 (1) (2021), p. 291, 10.1038/s41392-021-00687-0.
28.
F.H.N. Howard, A. Kwan, N. Winder, A. Mughal, C. Collado-Rojas, M. Muthana. Understanding immune responses to viruses—do underlying Th1/Th2 cell biases predict outcome?. Viruses, 14 (7) (2022), p. 1493, 10.3390/v14071493.
29.
M. Carty, C. Guy, A.G. Bowie.Detection of viral infections by innate immunity. Biochem Pharmacol, 183 (2021), Article 114316, 10.1016/j.bcp.2020.114316.
30.
J.W. Schoggins. Interferon-Stimulated Genes: what do they all do?. Annu Rev Virol, 6 (1) (2019), pp. 567-584, 10.1146/annurev-virology-092818-015756.
31.
L. Josset, N. Tchitchek, L.E. Gralinski, et al. Annotation of long non-coding RNAs expressed in Collaborative Cross founder mice in response to respiratory virus infection reveals a new class of interferon-stimulated transcripts. RNA Biol, 11 (7) (2014), pp. 875-890, 10.4161/rna.29442.
32.
S.C. Forster, M.D. Tate, P.J. Hertzog.MicroRNA as Type I Interferon-regulated transcripts and modulators of the innate immune response. Front Immunol, 6 (2015), p. 334, 10.3389/fimmu.2015.00334.
33.
T.A. Nyman, S. Matikainen.Proteomics to study macrophage response to viral infection. J Proteonomics, 180 (2018), pp. 99-107, 10.1016/j.jprot.2017.06.018.
34.
N.K. Bj?rkstr?m, B. Strunz, H.G. Ljunggren. Natural killer cells in antiviral immunity. Nat Rev Immunol, 22 (2) (2022), pp. 112-123, 10.1038/s41577-021-00558-3.
35.
J.A. Soto, N.M.S.Gálvez, C.A. Andrade, et al. The role of Dendritic Cells during infections caused by highly prevalent viruses. Front Immunol, 11 (2020), p. 1513, 10.3389/fimmu.2020.01513.
36.
J. Stambas, C. Lu, R.A. Tripp.Innate and adaptive immune responses in respiratory virus infection: implications for the clinic. Expet Rev Respir Med, 14 (11)(2020), pp. 1141-1147, 10.1080/17476348.2020.1807945.
37.
J.E. Libbey, R.S. Fujinami. Adaptive immune response to viral infections in the central nervous system. Handb Clin Neurol, 123 (2014), pp. 225-247, 10.1016/B978-0-444-53488-0.00010-9.
38.
J.L.M. Carrillo, F.P.C. Rodríguez, O.G. Coronado, M.A.M. García, J.F.C. Cordero. Physiology and pathology of innate immune response against pathogens. N. Rezaei (Ed.), Physiology And Pathology Of Immunology, InTech (2017), 10.5772/intechopen.70556.
39.
X. Ding, S. Xiang. Endocytosis and human innate immunity. J Immunol Sci, 2 (1) (2018), pp. 65-70, 10.29245/2578-3009/2018/1.1121.
40.
A. Cruz-Adalia, G. Ramirez-Santiago, J. Osuna-Pérez, et al. Conventional CD4+ T cells present bacterial antigens to induce cytotoxic and memory CD8+ T cell responses. Nat Commun, 8 (1) (2017), p. 1591, 10.1038/s41467-017-01661-7.
41.
H. Budde, R. Schwarz, B. Velasques, et al.The need for differentiating between exercise, physical activity, and training. Autoimmun Rev, 15 (1)(2016), pp. 110-111, 10.1016/j.autrev.2015.09.004.
42.
P. Magyari, Lrkm, Sj. ACSM's Resource for Exercise Physiologist. A Practical Guide for the Health Fitness Professional. (second ed.), Wolter Kluwer Health (2018).
43.
L.M. Ross, C.A. Slentz, W.E. Kraus.Evaluating individual level responses to exercise for health outcomes in overweight or obese adults. Front Physiol, 10 (2019), p. 1401, 10.3389/fphys.2019.01401.
44.
O.J.Chrzanowski-Smith, E. Piatrikova, J.A. Betts, S. Williams, J.T. Gonzalez. Variability in exercise physiology: can capturing intra -individual variation help better understand true inter -individual responses?. Eur J Sport Sci, 20 (4)(2020), pp. 452-460, 10.1080/17461391.2019.1655100.
45.
F. Herold, P. Müller, T. Gronwald, N.G. Müller.Dose-response matters! - a perspective on the exercise prescription in exercise-cognition research. Front Psychol, 10 (2019), p. 2338, 10.3389/fpsyg.2019.02338.
46.
N. Smith, S. Liu.A systematic review of the dose-response relationship between usage and outcomes of online physical activity weight-loss interventions. Internet Interv, 22 (2020), Article 100344, 10.1016/j.invent.2020.100344.
47.
D. Riebe, J. Ehrman, G. Liguori, M. Magal. ACSM's Guidelines for Exercise Testing and Prescription. Wolter Kluwer (2018).
48.
C. Gjestvang, T. Stensrud, L.A.H. Haakstad. How is rating of perceived capacity related to VO 2max and what is VO 2max at onset of training?. BMJ Open Sport Exerc Med, 3 (1) (2017), Article e000232, 10.1136/bmjsem-2017-000232.
49.
Y. Qiu, B. Fernández-García, H.I. Lehmann, et al.Exercise sustains the hallmarks of health. J Sport Health Sci, 12 (1)(2023), pp. 8-35, 10.1016/j.jshs.2022.10.003.
50.
Q. Zheng, G. Cui, J. Chen, et al. Regular exercise enhances the immune response against microbial antigens through up-regulation of Toll-like Receptor signaling pathways. Cell Physiol Biochem, 37 (2) (2015), pp. 735-746, 10.1159/000430391.
51.
D.C. Nieman, L.M. Wentz.The compelling link between physical activity and the body's defense system. J Sport Health Sci, 8 (3)(2019), pp. 201-217, 10.1016/j.jshs.2018.09.009.
52.
T.R.S. Tenório, P.B. Balagopal, L.B. Andersen, et al. Effect of low- versus high-intensity exercise training on biomarkers of inflammation and endothelial dysfunction in adolescents with obesity: a 6-month randomized exercise intervention study. Pediatr Exerc Sci, 30 (1) (2018), pp. 96-105, 10.1123/pes.2017-0067.
53.
E.S. Evans, A.C. Hackney, R.G. McMurray, et al. Impact of acute intermittent exercise on Natural Killer Cells in breast cancer survivors. Integr Cancer Ther, 14 (5) (2015), pp. 436-445, 10.1177/1534735415580681.
54.
P. Gupta, A.B. Bigley, M. Markofski, M. Laughlin, E.C.LaVoy. Autologous serum collected 1 h post-exercise enhances natural killer cell cytotoxicity. Brain Behav Immun, 71 (2018), pp. 81-92, 10.1016/j.bbi.2018.04.007.
55.
M.P. da Silveira, K.K. da Silva Fagundes, M.R. Bizuti, é. Starck, R.C. Rossi, D.T. de Resende E Silva. Physical exercise as a tool to help the immune system against COVID-19: an integrative review of the current literature. Clin Exp Med, 21 (1) (2021), pp. 15-28, 10.1007/s10238-020-00650-3.
56.
P.S. Rogeri, S.O. Gasparini, G.L. Martins, et al.Crosstalk between skeletal muscle and immune system: which roles do IL-6 and glutamine play?. Front Physiol, 11 (2020), Article 582258, 10.3389/fphys.2020.582258.
57.
é. Cerqueira, D.A. Marinho, H.P. Neiva,O. Louren?o. Inflammatory effects of high and moderate intensity exercise—a systematic review. Front Physiol, 10 (2020), p. 1550, 10.3389/fphys.2019.01550.
58.
L.C.D. Spirandelli, V.B. Veloso, E.E.V. de Carvalho, A.M.K. Salge, G.K. Abdalla, D.R. Abdalla. Transient immune deficit after exercise and the relationship with immuno-nutrition: a short review of the literature. Int J Sports Exerc Med, 6 (4) (2020), p. 172, 10.23937/2469-5718/1510172.
59.
K. Suzuki. Cytokine response to exercise and its modulation. Antioxidants, 7 (1) (2018), p. 17, 10.3390/antiox7010017.
60.
C.A.M.Gon?alves, P.M.S. Dantas, I.K. dos Santos, et al. Effect of acute and chronic aerobic exercise on immunological markers: a systematic review. Front Physiol, 10 (2020), p. 1602, 10.3389/fphys.2019.01602.
61.
McCall M.C., Heneghan C., Nunan D. Does physical exercise prevent or treat acute respiratory infection (ARI)? The Centre for Evidence-Based Medicine. April 16,2020. Accessed January 13, 2023.
62.
L.R. Drummond, H.O. Campos, F.R. Drummond, et al. Acute and chronic effects of physical exercise on IgA and IgG levels and susceptibility to upper respiratory tract infections: a systematic review and meta-analysis. Pflügers Archiv, 474 (12) (2022), pp. 1221-1248, 10.1007/s00424-022-02760-1.
63.
D.R. Laddu, C.J. Lavie, S.A. Phillips, R. Arena.Physical activity for immunity protection: inoculating populations with healthy living medicine in preparation for the next pandemic. Prog Cardiovasc Dis, 64 (2021), pp. 102-104, 10.1016/j.pcad.2020.04.006.
64.
G.O. Gjevestad, K.B. Holven, S.M. Ulven. Effects of exercise on gene expression of inflammatory markers in human peripheral blood cells: a systematic review. Curr Cardiovasc Risk Rep, 9 (7) (2015), p. 34, 10.1007/s12170-015-0463-4.
65.
Altme S, Plaza-Florido A, Esteban FJ, et al. Effects of exercise on whole-blood transcriptome profile in children with overweight/obesity. Am J Hum Biol. Published online September 16, 2023. https://doi.org/10.1002/ajhb.23983..
66.
M. Nie, Q. Liu, R. Jia, Z. Li, X. Li, X. Meng. Comparative transcriptome analysis of unfractionated peripheral blood leukocytes after exercise in human. Sci Rep, 13 (1) (2023), Article 11140, 10.1038/s41598-023-38064-2.
67.
G.O. Gjevestad, H. Hamarsland, T. Raastad, et al.. Gene expression is differentially regulated in skeletal muscle and circulating immune cells in response to an acute bout of high-load strength exercise. Genes Nutr, 12 (2017), p. 8, 10.1186/s12263-017-0556-4.
68.
L.N. Masi, T.D.A. Serdan, A.C. Levada-Pires, et al.. Regulation of gene expression by exercise-related Micrornas. Cell Physiol Biochem, 39 (6) (2016), pp. 2381-2397, 10.1159/000452507.
69.
M. Tarnowski, P. Kopytko, K. Piotrowska. Epigenetic regulation of inflammatory responses in the context of physical activity. Genes, 12 (9) (2021), p. 1313, 10.3390/genes12091313.
70.
G. Wu, X. Zhang, F. Gao. The epigenetic landscape of exercise in cardiac health and disease. J Sport Health Sci, 10 (6) (2021), pp. 648-659, 10.1016/j.jshs.2020.12.003.
71.
M. Zawadzka, P.P. Jagodziński. Exercise-induced epigenetic regulations in inflammatory related cells. J Appl Biomed, 15 (1) (2017), pp. 63-70, 10.1016/j.jab.2016.09.002.
72.
J. Plaza-Diaz, D. Izquierdo, á. Torres-Martos, A.T. Baig, C.M. Aguilera, F.J. Ruiz-Ojeda. Impact of physical activity and exercise on the epigenome in skeletal muscle and effects on systemic metabolism. Biomedicines, 10 (1) (2022), p. 126, 10.3390/biomedicines10010126.
73.
P. van der Harst, L.J. de Windt, J.C. Chambers. Translational perspective on epigenetics in cardiovascular disease. J Am Coll Cardiol, 70 (5) (2017), pp. 590-606, 10.1016/j.jacc.2017.05.067.
74.
A.B. Gevaert, N. Wood, J.R.A. Boen, et al.. Epigenetics in the primary and secondary prevention of cardiovascular disease: influence of exercise and nutrition. Eur J Prev Cardiol, 29 (17) (2022), pp. 2183-2199, 10.1093/eurjpc/zwac179.
75.
C. Lim, J. Shimizu, F. Kawano, H.J. Kim, C.K. Kim. Adaptive responses of histone modifications to resistance exercise in human skeletal muscle. PLoS One, 15 (4) (2020), Article e0231321, 10.1371/journal.pone.0231321.
76.
F. Kawano. Histone modification: a mechanism for regulating skeletal muscle characteristics and adaptive changes. Appl Sci, 11 (9) (2021), p. 3905, 10.3390/app11093905.
77.
J. Denham, F.Z. Marques, E.L. Bruns, B.J. O'Brien, F.J. Charchar. Epigenetic changes in leukocytes after 8 weeks of resistance exercise training. Eur J Appl Physiol, 116 (6) (2016), pp. 1245-1253, 10.1007/s00421-016-3382-2.
78.
M.E. Lindholm, F. Marabita, D. Gomez-Cabrero, et al.. An integrative analysis reveals coordinated reprogramming of the epigenome and the transcriptome in human skeletal muscle after training. Epigenetics, 9 (12) (2014), pp. 1557-1569, 10.4161/15592294.2014.982445.
79.
W.J. ?wiatowy, H. Drzewiecka, M. Kliber, et al.. Physical activity and DNA methylation in humans. Int J Mol Sci, 22 (23) (2021), Article 12989, 10.3390/ijms222312989.
80.
S. Masuki, K. Nishida, S. Hashimoto, et al.. Effects of milk product intake on thigh muscle strength and NFKB gene methylation during home-based interval walking training in older women: a randomized, controlled pilot study. PLoS One, 12 (5) (2017), Article e0176757, 10.1371/journal.pone.0176757.
81.
A. Fuso, T. Raia, M. Orticello, M. Lucarelli. The complex interplay between DNA methylation and miRNAs in gene expression regulation. Biochimie, 173 (2020), pp. 12-16, 10.1016/j.biochi.2020.02.006.
82.
L.S. Chow, R.E. Gerszten, J.M. Taylor, et al.. Exerkines in health, resilience and disease. Nat Rev Endocrinol, 18 (5) (2022), pp. 273-289, 10.1038/s41574-022-00641-2.
83.
L. Vella, M.K. Caldow, A.E. Larsen, et al.. Resistance exercise increases NF-κB activity in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol, 302 (6) (2012), pp. R667-R673, 10.1152/ajpregu.00336.2011.
84.
A. Gallego-Selles, V. Galvan-Alvarez, M. Martinez-Canton, et al.. Fast regulation of the NF-κB signalling pathway in human skeletal muscle revealed by high-intensity exercise and ischaemia at exhaustion: role of oxygenation and metabolite accumulation. Redox Biol, 55 (2022), Article 102398, 10.1016/j.redox.2022.102398.
85.
P.A.M. Cavalcante, M.F. Gregnani, J.S. Henrique, F.H. Ornellas, R.C. Araújo. Aerobic but not resistance exercise can induce inflammatory pathways via Toll-Like 2 and 4: a systematic review. Sports Med Open, 3 (1) (2017), p. 42, 10.1186/s40798-017-0111-2.
86.
Y. Ezzatvar, R. Ramírez-Vélez, M. Izquierdo, A. Garcia-Hermoso. Physical activity and risk of infection, severity and mortality of COVID-19: a systematic review and non-linear dose-response meta-analysis of data from 1 853 610 adults. Br J Sports Med, 56 (20) (2022), pp. 1188-1193, 10.1136/bjsports-2022-105733.
87.
A.A. Mohamed, M. Alawna. The effect of aerobic exercise on immune biomarkers and symptoms severity and progression in patients with COVID-19: a randomized control trial. J Bodyw Mov Ther, 28 (2021), pp. 425-432, 10.1016/j.jbmt.2021.07.012.
88.
J.M. de Abreu, R.A. de Souza, L.G. Viana-Meireles, J. Landeira-Fernandez, A. Filgueiras. Effects of physical activity and exercise on well-being in the context of the Covid-19 pandemic. PLoS One, 17 (1) (2022), Article e0260465, 10.1371/journal.pone.0260465.
89.
A. Jimeno-Almazán, F. Franco-López, Buendía-Romero á et al.. Rehabilitation for post-COVID-19 condition through a supervised exercise intervention: a randomized controlled trial. Scand J Med Sci Sports, 32 (12) (2022), pp. 1791-1801, 10.1111/sms.14240.
90.
S.K. Kunutsor, S. Seidu, J.A. Laukkanen. Physical activity reduces the risk of pneumonia: systematic review and meta-analysis of 10 prospective studies involving 1,044,492 participants. Geroscience, 44 (1) (2022), pp. 519-532, 10.1007/s11357-021-00491-2.
91.
T. Ikeda, S. Inoue, T. Konta, et al.. Can daily walking alone reduce pneumonia-related mortality among older people?. Sci Rep, 10 (1) (2020), p. 8556, 10.1038/s41598-020-65440-z.
92.
A. José S. Dal Corso. Inpatient rehabilitation improves functional capacity, peripheral muscle strength and quality of life in patients with community-acquired pneumonia: a randomised trial. J Physiother, 62 (2) (2016), pp. 96-102, 10.1016/j.jphys.2016.02.014.
93.
S.F.M. Chastin, U. Abaraogu, J.G. Bourgois, et al.. Effects of regular physical activity on the immune system, vaccination and risk of community-acquired infectious disease in the general population: systematic review and meta-analysis. Sports Med, 51 (8) (2021), pp. 1673-1686, 10.1007/s40279-021-01466-1.
94.
J. Hallam, T. Jones, J. Alley, M.L. Kohut. Exercise after influenza or COVID-19 vaccination increases serum antibody without an increase in side effects. Brain Behav Immun, 102 (2022), pp. 1-10, 10.1016/j.bbi.2022.02.005.
95.
S.M. Ranadive, M. Cook, R.M. Kappus, et al.. Effect of acute aerobic exercise on vaccine efficacy in older adults. Med Sci Sports Exerc, 46 (3) (2014), pp. 455-461, 10.1249/MSS.0b013e3182a75ff2.
96.
S.B. AL-Mhanna, W.S. Wan Ghazali, A. Maqsood, et al.. Physical Activities Pre- and Post-COVID-19 Vaccination and its Implementations: A Narrative Review. SAGE Open Med, 11 (2023), 10.1177/20503121231158981. 20503121231158981.
97.
S. Collie, R.T. Saggers, R. Bandini, et al.. Association between regular physical activity and the protective effect of vaccination against SARS-CoV-2 in a South African case-control study. Br J Sports Med, 57 (4) (2023), pp. 205-211, 10.1136/bjsports-2022-105734.
98.
E. Bohn-Goldbaum, K.B. Owen, V.Y.J. Lee, R. Booy, K.M. Edwards. Physical activity and acute exercise benefit influenza vaccination response: a systematic review with individual participant data meta-analysis. PLoS One, 17 (6) (2022), Article e0268625, 10.1371/journal.pone.0268625.
99.
M.T. Elzayat, M.M. Markofski, R.J. Simpson, M. Laughlin, E.C. LaVoy. No effect of acute eccentric resistance exercise on immune responses to influenza vaccination in older adults: a randomized control trial. Front Physiol, 12 (2021), Article 713183, 10.3389/fphys.2021.713183.
100.
W. Derman, M. Badenhorst, M.M. Eken, et al.. Incidence of acute respiratory illnesses in athletes: a systematic review and meta-analysis by a subgroup of the IOC consensus on ‘acute respiratory illness in the athlete’. Br J Sports Med, 56 (11) (2022), pp. 630-640, 10.1136/bjsports-2021-104737.
101.
O. Ruuskanen, R. Luoto, M. Valtonen, O.J. Heinonen, M. Waris. Respiratory viral infections in athletes: many unanswered questions. Sports Med, 52 (9) (2022), pp. 2013-2021, 10.1007/s40279-022-01660-9.
102.
A.J. Grande, J. Keogh, V. Silva, A.M. Scott. Exercise versus no exercise for the occurrence, severity, and duration of acute respiratory infections. Cochrane Database Syst Rev, 2020 (4) (2020), Article CD010596, 10.1002/14651858.CD010596.pub3.
103.
W.E. Cayley Jr.. Exercise vs. no exercise for the occurrence, severity, and duration of acute respiratory tract infections. Am Fam Physician, 103 (3) (2021), pp. 144-145.
104.
M. Sellami, N.L. Bragazzi, B. Aboghaba, M.A. Elrayess. The impact of acute and chronic exercise on immunoglobulins and cytokines in elderly: insights from a critical review of the literature. Front Immunol, 12 (2021), Article 631873, 10.3389/fimmu.2021.631873.
105.
M. Gleeson, W.A. McDonald, D.B. Pyne, et al.. Salivary IgA levels and infection risk in elite swimmers. Med Sci Sports Exerc, 31 (1) (1999), pp. 67-73, 10.1097/00005768-199901000-00012.
106.
S. Turner, J. Hull, A. Jackson, et al.. Evaluating salivary IgA levels as a biomarker for susceptibility to upper respiratory tract infection in elite athletes. Eur Respir J, 56 (suppl 64) (2020), p. 2347, 10.1183/13993003.congress-2020.2347.
107.
M. Gleeson, W.A. McDonald, D.B. Pyne, et al.. Immune status and respiratory illness for elite swimmers during a 12-week training cycle. Int J Sports Med, 21 (4) (2000), pp. 302-307, 10.1055/s-2000-313.
108.
M.M. Fahlman, H.J. Engels. Mucosal IgA and URTI in American College Football players: a year longitudinal study. Med Sci Sports Exerc, 37 (3) (2005), pp. 374-380, 10.1249/01.MSS.0000155432.67020.88.
109.
A. Tanner, S. Day. The effects of a 4-week, intensified training, and competition period on salivary hormones, Immunoglobulin A, illness symptoms, and mood state in elite synchronised swimmers. Sports, 5 (3) (2017), p. 64, 10.3390/sports5030064.
110.
C. Tiernan, M. Lyons, T. Comyns, A.M. Nevill, G. Warrington. Salivary IgA as a predictor of upper respiratory tract infections and relationship to training load in elite rugby union players. J Strength Cond Res, 34 (3) (2020), pp. 782-790, 10.1519/JSC.0000000000003019.
111.
D.C. Nieman. Exercise, upper respiratory tract infection, and the immune system. Med Sci Sports Exerc, 26 (2) (1994), pp. 128-139, 10.1249/00005768-199402000-00002.
112.
B.K. Pedersen, H. Ullum. NK cell response to physical activity: possible mechanisms of action. Med Sci Sports Exerc, 26 (2) (1994), pp. 140-146, 10.1249/00005768-199402000-00003.
113.
J.P. Campbell, J.E. Turner. Debunking the myth of exercise-induced immune suppression: redefining the impact of exercise on immunological health across the lifespan. Front Immunol, 9 (2018), p. 648, 10.3389/fimmu.2018.00648.
114.
A. Cicchella, C. Stefanelli, M. Massaro. Upper respiratory tract infections in pport and the Immune system response. a review. Biology, 10 (5) (2021), p. 362, 10.3390/biology10050362.
115.
M. Gleeson, D.B. Pyne, R. Callister. The missing links in exercise effects on mucosal immunity. Exerc Immunol Rev, 10 (2004), pp. 107-128.
116.
R.J. Simpson, J.P. Campbell, M. Gleeson, et al.. Can exercise affect immune function to increase susceptibility to infection?. Exerc Immunol Rev, 26 (2020), pp. 8-22.
117.
M. Schwellnus, T. Soligard, J.M. Alonso, et al.. How much is too much? (Part 2) International Olympic Committee consensus statement on load in sport and risk of illness. Br J Sports Med, 50 (17) (2016), pp. 1043-1052, 10.1136/bjsports-2016-096572.
118.
M. Kurowski, S. Seys, M. Bonini, et al.. Physical exercise, immune response, and susceptibility to infections—current knowledge and growing research areas. Allergy, 77 (9) (2022), pp. 2653-2664, 10.1111/all.15328.
119.
J.B. Ferreira-Júnior, E.D.S. Freitas, S.F.N. Chaves. Exercise: a protective measure or an “open window” for COVID-19? a mini review. Front Sports Act Living, 2 (2020), p. 61, 10.3389/fspor.2020.00061.
120.
S.J. Lain, C.L. Roberts, J. Warning, J. Vivian-Taylor, J.B. Ford. A survey of acute self-reported infections in pregnancy. BMJ Open, 1 (1) (2011), Article e000083, 10.1136/bmjopen-2011-000083.
121.
C.E. Hastie, D.J. Lowe, A. McAuley, et al.. Outcomes among confirmed cases and a matched comparison group in the Long-COVID in Scotland study. Nat Commun, 13 (1) (2022), p. 5663, 10.1038/s41467-022-33415-5.
122.
K. van Zandvoort, M.O. Bobe, A.I. Hassan, et al.. Social contacts and other risk factors for respiratory infections among internally displaced people in Somaliland. Epidemics, 41 (2022), Article 100625, 10.1016/j.epidem.2022.100625.
123.
F. Adorni, F. Prinelli, F. Bianchi, et al.. Self-reported symptoms of SARS-CoV-2 infection in a nonhospitalized population in Italy: cross-sectional study of the EPICOVID19 web-based survey. JMIR Public Health Surveill, 6 (3) (2020), Article e21866, 10.2196/21866.
124.
A. Moreira, L. Delgado, P. Moreira, T. Haahtela. Does exercise increase the risk of upper respiratory tract infections?. Br Med Bull, 90 (1) (2009), pp. 111-131, 10.1093/bmb/ldp010.
125.
D.C. Nieman, S.L. Nehlsen-Cannarella, O.R. Fagoaga, et al.. Immune function in female elite rowers and non-athletes. Br J Sports Med, 34 (3) (2000), pp. 181-187, 10.1136/bjsm.34.3.181.
126.
R. Gokhale, S. Chandrashekara, K.C. Vasanthakumar. Cytokine response to strenuous exercise in athletes and non-athletes—an adaptive response. Cytokine, 40 (2) (2007), pp. 123-127, 10.1016/j.cyto.2007.08.006.
127.
Rawla P., Killeen R., Joseph N. IgA Deficiency. StatPearls Publishing;2023. Accessed February 4, 2023. https://www.ncbi.nlm.nih.gov/books/NBK538205/?report=printable..
128.
S. Ghafouri-Fard, R. Noroozi, R. Vafaee, et al.. Effects of host genetic variations on response to, susceptibility and severity of respiratory infections. Biomed Pharmacother, 128 (2020), Article 110296, 10.1016/j.biopha.2020.110296.
129.
K. Suzuki. Recent progress in applicability of exercise immunology and inflammation research to sports nutrition. Nutrients, 13 (12) (2021), p. 4299, 10.3390/nu13124299.
130.
H. Agha-Alinejad, A.H. Ahmadi Hekmatikar, R.T. Ruhee, et al.. A guide to different intensities of exercise, vaccination, and sports nutrition in the course of preparing elite athletes for the management of upper respiratory infections during the COVID-19 pandemic: a narrative review. Int J Environ Res Public Health, 19 (3) (2022), p. 1888, 10.3390/ijerph19031888.
131.
A. Nieters, N. Blagitko-Dorfs, H.H. Peter, S. Weber. Psychophysiological insomnia and respiratory tract infections: results of an infection-diary-based cohort study. Sleep, 42 (8) (2019), Article zsz098, 10.1093/sleep/zsz098.
132.
E.S.M.E. Silva, B.H.V.S. Ono, J.C. Souza. Sleep and immunity in times of COVID-19. Rev Assoc Med Bras (1992), 66 (suppl 2) (2020), pp. 143-147, 10.1590/1806-9282.66.s2.143.
133.
A. Al-Sayyar, K.D. Hulme, R. Thibaut, et al.. Respiratory tract infections in diabetes - lessons from tuberculosis and influenza to guide understanding of COVID-19 severity. Front Endocrinol, 13 (2022), Article 919223, 10.3389/fendo.2022.919223.
134.
T.A. Wills, S.S. Soneji, K. Choi, I. Jaspers, E.K. Tam. E-cigarette use and respiratory disorders: an integrative review of converging evidence from epidemiological and laboratory studies. Eur Respir J, 57 (1) (2021), Article 1901815, 10.1183/13993003.01815-2019.
135.
D. Benzano, F. Ornell, J.B. Schuch, et al.. Clinical vulnerability for severity and mortality by COVID-19 among users of alcohol and other substances. Psychiatr Res, 300 (2021), Article 113915, 10.1016/j.psychres.2021.113915.
136.
S. Cohen. Psychosocial vulnerabilities to upper respiratory infectious illness: implications for susceptibility to Coronavirus Disease 2019 (COVID-19). Perspect Psychol Sci, 16 (1) (2021), pp. 161-174, 10.1177/1745691620942516.
137.
S.B. Gordon, N.G. Bruce, J. Grigg, et al.. Respiratory risks from household air pollution in low and middle income countries. Lancet Respir Med, 2 (10) (2014), pp. 823-860, 10.1016/S2213-2600(14)70168-7.
138.
S. Zhang, Z. Li, J. Nie, L. Huang, S. Wang, Z. Wei. How to record the amount of exercise automatically? A general real-time recognition and counting approach for repetitive activities. 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), IEEE (2016), pp. 831-834, 10.1109/BIBM.2016.7822633.
139.
S. Esposito, A. Mencacci, E. Cenci, et al.. Multiplex platforms for the identification of respiratory pathogens: are they useful in pediatric clinical practice?. Front Cell Infect Microbiol, 9 (2019), p. 196, 10.3389/fcimb.2019.00196.
140.
D. Zheng, T. Liwinski, E. Elinav. Interaction between microbiota and immunity in health and disease. Cell Res, 30 (6) (2020), pp. 492-506, 10.1038/s41422-020-0332-7.
141.
C. Vandelanotte, M.J. Duncan, R. Stanton, et al.. Validity and responsiveness to change of the Active Australia Survey according to gender, age, BMI, education, and physical activity level and awareness. BMC Publ Health, 19 (1) (2019), p. 407, 10.1186/s12889-019-6717-1.
142.
A. Timperio, J. Salmon, D. Crawford. Validity and reliability of a physical activity recall instrument among overweight and non-overweight men and women. J Sci Med Sport, 6 (4) (2003), pp. 477-491, 10.1016/S1440-2440(03)80273-6.
143.
C. Quinlan, B. Rattray, D. Pryor, et al.. The accuracy of self-reported physical activity questionnaires varies with sex and body mass index. PLoS One, 16 (8) (2021), Article e0256008, 10.1371/journal.pone.0256008.
144.
S.T. Ibrahim, N. Hammami, T.R. Katapally. Traditional surveys versus ecological momentary assessments: digital citizen science approaches to improve ethical physical activity surveillance among youth. PLOS Digit Health, 2 (9) (2023), Article e0000294, 10.1371/journal.pdig.0000294.
146.
S.A. Billinger, P. Boyne, E. Coughenour, K. Dunning, A. Mattlage. Does aerobic exercise and the FITT principle fit into stroke recovery?. Curr Neurol Neurosci Rep, 15 (2) (2015), p. 519, 10.1007/s11910-014-0519-8.
147.
S. Luti, R. Militello, G. Pinto, et al.. Chronic training induces metabolic and proteomic response in male and female basketball players: salivary modifications during in-season training programs. Healthcare, 11 (2) (2023), p. 241, 10.3390/healthcare11020241.
148.
P. Ma?kowska, M. Sawczuk. Cytokines as biomarkers for evaluating physical exercise in trained and non-trained individuals: a narrative review. Int J Mol Sci, 24 (13) (2023), Article 11156, 10.3390/ijms241311156.
149.
M. Polakovi?ová P. Musil, E. Laczo, D. Hamar, J. Kyselovi?. Circulating microRNAs as potential biomarkers of exercise response. Int J Mol Sci, 17 (10) (2016), p. 1553, 10.3390/ijms17101553.
150.
G. Xu, W. Lin, A.J. McAinch, X. Yan, X. Weng. Identification of urinary biomarkers for exercise-induced immunosuppression by iTRAQ proteomics. BioMed Res Int, 2020 (2020), Article 3030793, 10.1155/2020/3030793.
151.
P. Brodin, M.M. Davis. Human immune system variation. Nat Rev Immunol, 17 (1) (2017), pp. 21-29, 10.1038/nri.2016.125.
152.
A. Liston, E.J. Carr, M.A. Linterman. Shaping variation in the human immune system. Trends Immunol, 37 (10) (2016), pp. 637-646, 10.1016/j.it.2016.08.002.
153.
K.J. Jager, C. Zoccali, A. Macleod, F.W. Dekker. Confounding: what it is and how to deal with it. Kidney Int, 73 (3) (2008), pp. 256-260, 10.1038/sj.ki.5002650.
154.
M.A. Pourhoseingholi, A.R. Baghestani, M. Vahedi. How to control confounding effects by statistical analysis. Gastroenterol Hepatol Bed Bench, 5 (2) (2012), pp. 79-83.
155.
M.W. Kakanis, J. Peake, E.W. Brenu, et al.. The open window of susceptibility to infection after acute exercise in healthy young male elite athletes. Exerc Immunol Rev, 16 (2010), pp. 119-137.
156.
S. M?rtensson, K. Nordebo, C. Malm. High training volumes are associated with a low number of self-reported sick days in elite endurance athletes. J Sports Sci Med, 13 (4) (2014), pp. 929-933.
157.
M. Fahlman, H. Engels, H. Hall. SIgA and upper respiratory Syndrome during a college cross country season. Sports Med Int Open, 1 (6) (2017), pp. E188-E194, 10.1055/s-0043-119090.
158.
M.L. Schlagheck, D. Walzik, N. Joisten, et al.. Cellular immune response to acute exercise: comparison of endurance and resistance exercise. Eur J Haematol, 105 (1) (2020), pp. 75-84, 10.1111/ejh.13412.
159.
A.P. Isaev, V.V. Erlikh, V.I. Zalyapin, et al.. The immune system of athletes of different sports. Pedagog psychol med biol probl phys train sports, 22 (6) (2018), pp. 280-286, 10.15561/18189172.2018.0601.
160.
C. Monje, I. Rada, M. Castro-Sepulveda, L. Pe?ailillo, L. Deldicque, H. Zbinden-Foncea. Effects of a high intensity interval session on mucosal immune function and salivary hormones in male and female endurance athletes. J Sports Sci Med, 19 (2) (2020), pp. 436-443.
161.
D.P. Born, C. Zinner, B. Sperlich. The mucosal immune function is not compromised during a period of high-intensity interval training. Is it time to reconsider an old assumption?. Front Physiol, 8 (2017), p. 485, 10.3389/fphys.2017.00485.
162.
B. Barrett, M.S. Hayney, D. Muller, et al.. Meditation or exercise for preventing acute respiratory infection: a randomized controlled trial. Ann Fam Med, 10 (4) (2012), pp. 337-346, 10.1370/afm.1376.

Accesses

Citations

Detail

Sections
Recommended

/