Comparison of physiological and biochemical changes in old and young hyperglycemic rats submitted to aerobic exercise and anabolic steroid use

Carolina Freitas da Silva, Morun Bernardino-Neto, Thiago Montes Fidale, Anibal Monteiro de Magalhães Neto, João Rafael Valentim-Silva, Yuri Karaccas de Carvalho, Rodrigo Daminello Raimundo, Luiz Carlos de Abreu, Romeu Paulo Martins Silva, Nilson Penha-Silva

Sports Medicine and Health Science ›› 2025, Vol. 7 ›› Issue (1) : 28-36. DOI: 10.1016/j.smhs.2023.12.007
Original article

Comparison of physiological and biochemical changes in old and young hyperglycemic rats submitted to aerobic exercise and anabolic steroid use

Author information +
History +

Abstract

Prolonged hyperglycemia conditions are a risk factor for chronic degenerative diseases such as diabetes and obesity. Testosterone is known to cause muscle hypertrophy, reduced fat mass, and increased body strength. The study aimed to verify possible alterations and differences in the influence of testosterone on the physical performance in post-exercise conditions of young and old animals with alloxan-induced hyperglycemia. We randomly assigned 32 young Wistar rats to groups of untreated non-diabetic young, treated non-diabetic young, untreated diabetic young, and treated diabetic young rats, and 32 aged Wistar rats to groups of untreated non-diabetic elderly, treated non-diabetic elderly, untreated diabetic elderly, and treated diabetic elderly rats, with eight animals each group. The treated non-diabetic and treated diabetic groups received injections of 15 ​mg/kg weight Durateston™. All the trained groups performed aquatic training with an overload of 5% of the body mass. Following the experiment, we anesthetized and euthanized the animals after exercise (exhaustion). Hemoglobin, erythrocytes, and hematocrit values were higher in the treated groups. The treated diabetic elderly group had the highest leukocyte and neutrophil counts compared to the untreated young groups (p ​< ​0.05). As for the lipid profile, untreated rats had the highest values. Glucose concentration was higher at rest and after exercise in the untreated diabetic groups (p ​< ​0.05). Lactate was more elevated in the untreated diabetic groups, and the testosterone-treated groups performed the longest swimming time after the maximal test (p ​< ​0.05). The use of testosterone in conjunction with physical exercise improved physical performance in water, blood glucose, and lipid profiles.

Keywords

Aging / Diabetes / Anabolics / Lipid / Exercise / Glucose

Cite this article

Download citation ▾
Carolina Freitas da Silva, Morun Bernardino-Neto, Thiago Montes Fidale, Anibal Monteiro de Magalhães Neto, João Rafael Valentim-Silva, Yuri Karaccas de Carvalho, Rodrigo Daminello Raimundo, Luiz Carlos de Abreu, Romeu Paulo Martins Silva, Nilson Penha-Silva. Comparison of physiological and biochemical changes in old and young hyperglycemic rats submitted to aerobic exercise and anabolic steroid use. Sports Medicine and Health Science, 2025, 7(1): 28‒36 https://doi.org/10.1016/j.smhs.2023.12.007

References

[[1]]
J.F. Bach. Immunotherapy of type 1 diabetes: lessons for other autoimmune diseases. Arthritis Res, 4 (Suppl 3) ( 2002), pp. S3-S15, DOI: 10.1186/ar554
[[2]]
NCD-Risk.Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. Lancet, 387
( 10027 (2016), pp. 1513-1530, DOI: 10.1016/S0140-6736(16)00618-8
[[3]]
Y. Zheng, S.H. Ley, F.B. Hu. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol, 14 (2) ( 2018), pp. 88-98, DOI: 10.1038/nrendo.2017.151
[[4]]
M. Writing Group, D. Mozaffarian, E.J. Benjamin, et al.. Executive summary: heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation, 133 (4) ( 2016), pp. 447-454, DOI: 10.1161/CIR.0000000000000366
[[5]]
P.Z. Zimmet.Diabetes and its drivers: the largest epidemic in human history?. Clin Diabetes Endocrinol, 3 ( 2017), p. 1, DOI: 10.1186/s40842-016-0039-3
[[6]]
U. Galicia-Garcia, A. Benito-Vicente, S. Jebari, et al.. Pathophysiology of type 2 diabetes mellitus. Int J Mol Sci, 21 (17) ( 2020), p. 6275, DOI: 10.3390/ijms21176275
[[7]]
N.T. Shahidi. A review of the chemistry, biological action, and clinical applications of anabolic-androgenic steroids. Clin Therapeut, 23 (9) ( 2001), pp. 1355-1390, DOI: 10.1016/s0149-2918(01)80114-4
[[8]]
J.E. Morley. Frailty and sarcopenia in elderly. Wien Klin Wochenschr, 128 (Suppl 7) ( 2016), pp. 439-445, DOI: 10.1007/s00508-016-1087-5
[[9]]
M.M. Bamman, V.J. Hill, G.R. Adams, et al.. Gender differences in resistance-training-induced myofiber hypertrophy among older adults. J Gerontol A Biol Sci Med Sci, 58 (2) ( 2003), pp. 108-116, DOI: 10.1093/gerona/58.2.b108
[[10]]
B.H. Goodpaster, P. Chomentowski, B.K. Ward, et al.. Effects of physical activity on strength and skeletal muscle fat infiltration in older adults: a randomized controlled trial. J Appl Physiol ( 1985), 105 (5) ( 2008), pp. 1498-1503, DOI: 10.1152/japplphysiol.90425.2008
[[11]]
M. Da Boit, R. Sibson, J.R. Meakin, et al.. Sex differences in the response to resistance exercise training in older people. Phys Rep, 4 (12) ( 2016), Article e12834, DOI: 10.14814/phy2.12834
[[12]]
F. Amati, J.J. Dube, P.M. Coen, M. Stefanovic-Racic, F.G. Toledo, B.H. Goodpaster. Physical inactivity and obesity underlie the insulin resistance of aging. Diabetes Care, 32 (8) ( 2009), pp. 1547-1549, DOI: 10.2337/dc09-0267
[[13]]
A. Safdar, M.J. Hamadeh, J.J. Kaczor, S. Raha, J. Debeer, M.A. Tarnopolsky. Aberrant mitochondrial homeostasis in the skeletal muscle of sedentary older adults. PLoS One, 5 (5) ( 2010), Article e10778, DOI: 10.1371/journal.pone.0010778
[[14]]
B.K. Pedersen, T. Rohde, M. Zacho. Immunity in athletes. J Sports Med Phys Fit, 36 (4) ( 1996), pp. 236-345
[[15]]
S. Joanisse, J.P. Nederveen, J.M. Baker, T. Snijders, C. Iacono, G. Parise. Exercise conditioning in old mice improves skeletal muscle regeneration. Faseb J, 30 (9) ( 2016), pp. 3256-3268, DOI: 10.1096/fj.201600143RR
[[16]]
G. Distefano, B.H. Goodpaster.Effects of exercise and aging on skeletal muscle. Cold Spring Harb Perspect Med, 8 (3) ( 2018), p. a029785, DOI: 10.1101/cshperspect.a029785
[[17]]
N.A. Evans. Current concepts in anabolic-androgenic steroids. Am J Sports Med, 32 (2) ( 2004), pp. 534-542, DOI: 10.1177/0363546503262202
[[18]]
S. Bhasin, L. Woodhouse, R. Casaburi, et al.. Testosterone dose-response relationships in healthy young men. Am J Physiol Endocrinol Metab, 281 (6) ( 2001), pp. E1172-E1181, DOI: 10.1152/ajpendo.2001.281.6.E1172
[[19]]
D.M. Huber, A.C. Bendixen, P. Pathrose, et al.. Androgens suppress osteoclast formation induced by RANKL and macrophage-colony stimulating factor. Endocrinology, 142 (9) ( 2001), pp. 3800-3808, DOI: 10.1210/endo.142.9.8402
[[20]]
T. Tamaki, S. Uchiyama, Y. Uchiyama, A. Akatsuka, R.R. Roy, V.R. Edgerton. Anabolic steroids increase exercise tolerance. Am J Physiol Endocrinol Metab, 280 (6) ( 2001), pp. E973-E981, DOI: 10.1152/ajpendo.2001.280.6.E973
[[21]]
S. Bhasin, J.P. Brito, G.R. Cunningham, et al.. Testosterone therapy in men with hypogonadism: an endocrine society clinical practice guideline. J Clin Endocrinol Metab, 103 (5) ( 2018), pp. 1715-1744, DOI: 10.1210/jc.2018-00229
[[22]]
A. Vermeulen. Androgen replacement therapy in the aging male - a critical evaluation. J Clin Endocrinol Metab, 86 (6) ( 2001), pp. 2380-2390, DOI: 10.1210/jcem.86.6.7630
[[23]]
J.D.B. Santos, A.A.S. Mendonca, R.C. Sousa, et al.. Food-drug interaction: anabolic steroids aggravate hepatic lipotoxicity and nonalcoholic fatty liver disease induced by trans fatty acids. Food Chem Toxicol, 116 (Pt B) ( 2018), pp. 360-368, DOI: 10.1016/j.fct.2018.04.056
[[24]]
R.V. Goncalves, J.D.B. Santos, N.S. Silva, et al.. Trans-fatty acids aggravate anabolic steroid-induced metabolic disturbances and differential gene expression in muscle, pancreas and adipose tissue. Life Sci, 232 ( 2019), Article 116603, DOI: 10.1016/j.lfs.2019.116603
[[25]]
B. Trifunovic, G.R. Norton, M.J. Duffield, P. Avraam, A.J. Woodiwiss. An androgenic steroid decreases left ventricular compliance in rats. Am J Physiol, 268 (3 Pt 2) ( 1995), pp. H1096-H1105, DOI: 10.1152/ajpheart.1995.268.3.H1096
[[26]]
F.K. Marcondes, L.C. Vanderlei, L.L. Lanza, R.C. Spadari-Bratfisch. Stress-induced subsensitivity to catecholamines depends on the estrous cycle. Can J Physiol Pharmacol, 74 (6) ( 1996), pp. 663-669
[[27]]
F.A. Voltarelli, C.A. Gobatto, M.A. de Mello. Determination of anaerobic threshold in rats using the lactate minimum test. Braz J Med Biol Res, 35 (11) ( 2002), pp. 1389-1394, DOI: 10.1590/s0100-879x2002001100018
[[28]]
P.S. Hegde, N.S. Rajasekaran, T.S. Chandra. Effects of the antioxidant properties of millet species on oxidative stress and glycemic status in alloxan-induced rats. Nutr Res, 25 (12) ( 2005), pp. 1109-1120, DOI: 10.1016/j.nutres.2005.09.020
[[29]]
P.E. Schwarz. Report from the congress of the American diabetes association (ADA): orlando 2005 - 65th annual scientific sessions in San Diego, CA, USA, june 10th-14th 2005. Exp Clin Endocrinol Diabetes, 113 (8) ( 2005), pp. 475-479, DOI: 10.1055/s-2005-865942
[[30]]
Y. Moriyama, J.W. Fisher. Effects of testosterone and erythropoietin on erythroid colony formation in human bone marrow cultures. Blood, 45 (5) ( 1975), pp. 665-670
[[31]]
E. Bachman, T.G. Travison, S. Basaria, et al.. Testosterone induces erythrocytosis via increased erythropoietin and suppressed hepcidin: evidence for a new erythropoietin/hemoglobin set point. J Gerontol A Biol Sci Med Sci, 69 (6) ( 2014), pp. 725-735, DOI: 10.1093/gerona/glt154
[[32]]
J.E. Mullen, N. Gårevik, J.J. Schulze, A. Rane, L. Björkhem Bergman, L. Ekström. Perturbation of the hematopoietic profile by anabolic androgenic steroids. J Horm, 2014 ( 2014), Article 510257, DOI: 10.1155/2014/510257
[[33]]
S.A. Solheim, J. Morkeberg, Y. Dehnes, et al.. Changes in blood parameters after intramuscular testosterone ester injections - implications for anti-doping. Drug Test Anal, 12 (8) ( 2020), pp. 1019-1030, DOI: 10.1002/dta.2803
[[34]]
G. Wittert, K. Bracken, K.P. Robledo, et al.. Testosterone treatment to prevent or revert type 2 diabetes in men enrolled in a lifestyle programme (T4DM): a randomised, double-blind, placebo-controlled, 2-year, phase 3b trial. Lancet Diabetes Endocrinol, 9 (1) ( 2021), pp. 32-45, DOI: 10.1016/S2213-8587(20)30367-3
[[35]]
J.R. Byrnes, A.S. Wolberg. Red blood cells in thrombosis. Blood, 130 (16) ( 2017), pp. 1795-1799, DOI: 10.1182/blood-2017-03-745349
[[36]]
J. He, Q. Jiang, Y. Yao, et al.. Blood cells and venous thromboembolism risk: a two-sample Mendelian randomization study. Front Cardiovasc Med, 9 ( 2022), Article 919640, DOI: 10.3389/fcvm.2022.919640
[[37]]
A. Gateva, Y. Assyov, T. Gatev, Z. Kamenov. Endothelial dysfunction and intima media thickness are selectively related to the different carbohydrate disturbances across the glucose continuum. Arch Physiol Biochem, 125 (5) ( 2019), pp. 430-434, DOI: 10.1080/13813455.2018.1479762
[[38]]
J.C. Alonso, V. Huecas, J.A. Alonso, M. Abelenda, R. Muñoz-Pulido, M.L. Puerta. Hematology and blood chemistry of adult white storks (Ciconia ciconia). Comp Biochem Physiol, 98 (3-4) ( 1991), pp. 395-397, DOI: 10.1016/0300-9629(91)90421-8
[[39]]
M. Puerta, M.P. Nava, C. Venero, J.P. Veiga. Hematology and plasma chemistry of house sparrows (Passer domesticus) along the summer months and after testosterone treatment. Comp Biochem Physiol, 110 (4) ( 1995), pp. 303-307, DOI: 10.1016/0300-9629(94)00187-X
[[40]]
T.-Y. Wen, D.-M. Kan. Effects of testosterone replacement therapy on glucose and lipid metabolism in middle-aged and elderly high-fat-fed male rats. Biomed Res, 28 (7) ( 2017), pp. 3048-3052
[[41]]
M. Pal, S. Gupta.Testosterone supplementation improves glucose homeostasis despite increasing hepatic insulin resistance in male mouse model of type 2 diabetes mellitus. Nutr Diabetes, 6 (12) ( 2016), p. e236, DOI: 10.1038/nutd.2016.45
[[42]]
P. Proia, C.M. Di Liegro, G. Schiera, A. Fricano, I. Di Liegro.Lactate as a metabolite and a regulator in the central nervous system. Int J Mol Sci, 17 (9) ( 2016), p. 1450, DOI: 10.3390/ijms17091450
[[43]]
A. Facey, R. Irving, L. Dilworth. Overview of lactate metabolism and the implications for athletes. Am J Sports Sci Med, 1 (3) ( 2013), pp. 42-46, DOI: 10.12691/ajssm-1-3-3
[[44]]
P. Brancaccio, N. Maffulli, F.M. Limongelli. Creatine kinase monitoring in sport medicine. Br Med Bull, 81-82 ( 2007), pp. 209-230, DOI: 10.1093/bmb/ldm014
[[45]]
T.A. Pagonis, G.N. Koukoulis, C.S. Hadjichristodoulou, P.N. Toli, N.V. Angelopoulos. Multivitamins and phospholipids complex protects the hepatic cells from androgenic-anabolic-steroids-induced toxicity. Clin Toxicol, 46 (1) ( 2008), pp. 57-66, DOI: 10.1080/15563650701590910
[[46]]
S.A. Hild, B.J. Attardi, S. Koduri, B.A. Till, J.R. Reel. Effects of synthetic androgens on liver function using the rabbit as a model. J Androl, 31 (5) ( 2010), pp. 472-481, DOI: 10.2164/jandrol.109.009365
[[47]]
R. Singh, J.N. Artaza, W.E. Taylor, N.F. Gonzalez-Cadavid, S. Bhasin. Androgens stimulate myogenic differentiation and inhibit adipogenesis in C3H 10T1/2 pluripotent cells through an androgen receptor-mediated pathway. Endocrinology, 144 (11) ( 2003), pp. 5081-5088, DOI: 10.1210/en.2003-0741
[[48]]
C.A. Allan, B.J. Strauss, H.G. Burger, E.A. Forbes, R.I. McLachlan. Testosterone therapy prevents gain in visceral adipose tissue and loss of skeletal muscle in nonobese aging men. J Clin Endocrinol Metab, 93 (1) ( 2008), pp. 139-146, DOI: 10.1210/jc.2007-1291
[[49]]
E. Sarchielli, P. Comeglio, S. Filippi, et al.. Testosterone improves muscle fiber asset and exercise performance in a metabolic syndrome model. J Endocrinol, 245 (2) ( 2020), pp. 259-279, DOI: 10.1530/JOE-19-0532
[[50]]
Snyder P.J. Approach to older men with low testosterone. Modilib online. Updated September 2023. Accessed November 6, 2023.

Accesses

Citations

Detail

Sections
Recommended

/