The missing hydrogen ion, part-1: Historical precedents vs. fundamental concepts

Robert Robergs, Bridgette O'Malley, Sam Torrens, Jason Siegler

Sports Medicine and Health Science ›› 2023, Vol. 5 ›› Issue (4) : 336-343. DOI: 10.1016/j.smhs.2023.10.008
Original article

The missing hydrogen ion, part-1: Historical precedents vs. fundamental concepts

Author information +
History +

Abstract

The purpose of this review and commentary was to provide an historical and evidence-based account of organic acids and the biochemical and organic chemistry evidence for why cells do not produce metabolites that are acids. The scientific study of acids has a long history dating to the 16th and 17th centuries, and the definition of an acid was proposed in 1884 as a molecule that when in an aqueous solution releases a hydrogen ion (H+). There are three common ionizable functional groups for molecules classified as acids: 1) the carboxyl group, 2) the phosphoryl group and 3) the amine group. The propensity by which a cation will associate or dissociate with a negatively charged atom is quantified by the equilibrium constant (Keq) of the dissociation constant (Kd) of the ionization (Keq ​= ​Kd), which for lactic acid (HLa) vs. lactate (La-) is expressed as: Keq=Kd=[H+][La−][HLa]= 4 677.351 4 (ionic strength ​= ​0.01 Mol⋅L-1, T ​= ​25 ​°C). The negative log10 of the dissociation pKd reveals the pH at which half of the molecules are ionized, which for HLa ​= ​3.67. Thus, knowing the pKd and the pH of the solution at question will reveal the extent of the ionization vs. acidification of molecules that are classified as acids.

Keywords

Hydrogen ion / Acid / Acidosis / pH / Equilibrium constant (Keq) / Ionization / Dissociation constant (Kd)

Cite this article

Download citation ▾
Robert Robergs, Bridgette O'Malley, Sam Torrens, Jason Siegler. The missing hydrogen ion, part-1: Historical precedents vs. fundamental concepts. Sports Medicine and Health Science, 2023, 5(4): 336‒343 https://doi.org/10.1016/j.smhs.2023.10.008

References

[[1]]
M.S. Lesney. Chemistry chronicles: a basic history of acid - from aristotle to arnold. Today's Chem A T Work ( 2003), pp. 47-48
[[2]]
2.C.H. Holten. Lactic Acid:Property and Chemistry of Lactic Acid and Derivatives. Verlag Chemie ( 1971)
[[3]]
R.C. Ray, V. Joshi. Fermented foods: past, present and future. R.C. Ray, D. Montet (Eds.), Microorganisms and Fermentation of Traditional Foods, CRC Press ( 2014), pp. 1-36, DOI: 10.1201/b17307
[[4]]
A.V. Hill, C.N.H. Long, H. Lupton. Muscular exercise, lactic acid, and the supply and utilization of oxygen. - parts IV-VI. Proc Roy Soc, 97 (681) ( 1924), pp. 84-137, DOI: 10.1098/rspb.1924.0045
[[5]]
A.V. Hill.Croonian lecture. Proc Roy Soc, 100 ( 1926), p. 87
[[6]]
T.N. Raju. The Nobel chronicles. 1922: archibald vivian Hill (1886-1977), otto fritz meyerhof (1884-1951). Lancet, 352 (9137) ( 1998), p. 1396, DOI: 10.1016/S0140-6736(05)60805-7
[[7]]
M.A. Shampo, R.A. Kyle.Otto Meyerhoff - Nobel prize for studies of muscle metabolism. Mayo Clin Proc, 74 (1) ( 1999), p. 67, DOI: 10.4065/74.1.67
[[8]]
J. Bangsbo. Quantification of anaerobic energy production during intense exercise. Med Sci Sports Exerc, 30 (1) ( 1988), pp. 47-52, DOI: 10.1097/00005768-199801000-00007
[[9]]
A. Katz, K. Sahlin. Regulation of lactic acid production during exercise. J Appl Physiol, 65 (2) ( 1988), pp. 509-518, DOI: 10.1152/jappl.1988.65.2.509
[[10]]
R. Margaria, H.T. Edwards, S.B. Dill. The possible mechanisms of contracting and paying the oxygen debt and the role of lactic acid in muscular contraction. Am J Physiol, 106 ( 1933), pp. 689-715
[[11]]
J.O. Medbo, I. Tabata. Anaerobic energy release in working muscle during 30 s to 3 min of exhaustive bicycling. J Appl Physiol, 75 (4) ( 1993), pp. 1654-1660, DOI: 10.1152/jappl.1993.75.4.1654
[[12]]
K. Sahlin. Intracellular pH and energy metabolism in skeletal muscle of man. Acta Physiol Scand, 455 ( 1978), pp. 7-50
[[13]]
K. Sahlin, L. Edstrom, H. Sjoholm, et al.. Effects of lactic acid accumulation and ATP decrease on muscle tension and relaxation. Am J Physiol, 240 ( 1981), pp. C121-C126, DOI: 10.1152/ajpcell.1981.240.3.C121
[[14]]
K. Popper. The Logic of Scientific Discovery. Martino Publishing, Connecticut ( 2014)
[[15]]
G.F. Cahill, R.L. Veech. Ketoacids? Good medicine?. Trans Am Clin Climatol Assoc, 114 ( 2003), pp. 149-153
[[16]]
A. Green, R.E. Bishop. Ketoacidosis - where do the protons come from?. Trends Biochem Sci, 44 (6) ( 2019), pp. 484-489, DOI: 10.1016/j.tibs.2019.01.005
[[17]]
P.B. Koul. Diabetic ketoacidosis: a current appraisal of pathophysiology and management. Clin Pediatr (N Y), 48 (2) ( 2009), pp. 135-144, DOI: 10.1177/0009922808323907
[[18]]
T.B. VanItallie, T.H. Nufert. Ketones: metabolisms ugly duckling. Nutr Rev, 61 (10) ( 2003), pp. 327-341, DOI: 10.1301/nr.2003.oct.327-341
[[19]]
N.F. Hall. Systems of acids and bases. J Chem Education, 17 (3) ( 1940), pp. 124-128
[[20]]
D.L. Nelson, M.M. Cox. Lehninger Principles of Biochemistry. WH Freeman & Company ( 2008)
[[21]]
J. Karlsson. Lactate and phosphagen concentrations in working muscle of man. Acta Physiol Scand, 358 ( 1971), pp. 1-72
[[22]]
R.A. Robergs. Competitive cation binding computations of proton balance for reactions of the phosphagen and glycolytic energy systems within skeletal muscle. PLoS One, 12 (12) ( 2017), Article e0189822, DOI: 10.1371/journal.pone.0189822
[[23]]
M.J. Kushmerick. Multiple equilibria of cations with metabolites in muscle bioenergetics. Am J Physiol Cell Physiol, 272 (5 Pt 1) ( 1997), pp. C1739-C1747, DOI: 10.1152/ajpcell.1997.272.5.C1739
[[24]]
K. Vinnakota, M.L. Kemp, M.J. Kushmerick. Dynamics of muscle glycogenolysis modelled with pH time course computation and pH-dependent reaction equilibria and enzyme kinetics. Biophys J, 91 (4) ( 2006), pp. 1264-1287, DOI: 10.1529/biophysj.105.073296
[[25]]
R.A. Robergs, F. Ghiasvand, D. Parker. Biochemistry of exercise-induced metabolic acidosis. Am J Physiol Regul Integr Comp Physiol, 287 ( 2004), pp. R502-R516, DOI: 10.1152/ajpregu.00114.2004
[[26]]
R.A. Robergs. Invited review: quantifying proton exchange from chemical reactions -Implications for the biochemistry of metabolic acidosis. Comp Biochem Physiol, A, 235 ( 2019), pp. 29-45, DOI: 10.1016/j.cbpa.2019.04.024
[[27]]
R.A. Robergs. Quantifying H+ exchange from muscle cytosolic energy catabolism using metabolite flux and H+ coefficients from multiple competitive cation binding: new evidence for consideration in established theories. Physiol Rep, 9 ( 2021), Article e14728, DOI: 10.14814/phy2.14728

Accesses

Citations

Detail

Sections
Recommended

/