Influence of biological maturation on cardiac autonomic recovery in female volleyball players during & after repeated sprints training: An experimental trial

Paulo Francisco de Almeida-Neto, Fernanda Cristina Silva de Oliveira, José Marcondes de Oliveira-Júnior, Júlio César Medeiros Alves, Matheus de Lima Rocha, Iago Medeiros da Silva, Roberto Felipe Câmara Rocha, Paulo Moreira Silva Dantas, Breno Guilherme de Araújo Tinôco Cabral

Sports Medicine and Health Science ›› 2024, Vol. 6 ›› Issue (3) : 279-286. DOI: 10.1016/j.smhs.2023.10.002
Original article

Influence of biological maturation on cardiac autonomic recovery in female volleyball players during & after repeated sprints training: An experimental trial

Author information +
History +

Abstract

Previously, it was suggested that biological maturation (BM) could be linked to cardiac autonomic recovery (CAR) in the pediatric population. However, this influence hasn’t been confirmed yet. Our aim was to investigate the impact of BM on CAR in female volleyball players. Experimental study with a sample of 38 volleyball players, comprising 20 girls (age: [11.6 ​± ​2.1] years) and 18 women (age: [24.5 ​± ​5.5] years), we analyzed BM, comparing maturing subjects (girls) with mature subjects (women). Additionally, we assessed peak height velocity (PHV) in girls. We conducted a training session involving repeated sprints (3 rounds of 6 sprints interspersed by 5 ​min [min] of passive rest). Using short-range radio telemetry, we analyzed CAR during (at the end of the 1st and 2nd rounds) and after (following the 3rd round) the training session of repeated sprints by applying the 60-s to 300-s heart rate recovery index (HRR-Index). Girls exhibited superior CAR compared to women (round 2: 60-s, 120-s, 240-s, and 300-s, p ​< ​0.005). Subgroup analyses of BM indicated that individuals in the Late-PHV stage demonstrated superior CAR compared to those in the Early-PHV and During-PHV groups. (60-s to 300-s, η2p ​> ​0.4, p ​< ​0.05). Subjects in the During-PHV stage were superior to those in the Early-PHV stage (240-s á 300-s, η2 p ​> ​0.4, p ​< ​0.05). We have concluded that biological maturation has a significant impact on cardiac autonomic recovery.

Cite this article

Download citation ▾
Paulo Francisco de Almeida-Neto, Fernanda Cristina Silva de Oliveira, José Marcondes de Oliveira-Júnior, Júlio César Medeiros Alves, Matheus de Lima Rocha, Iago Medeiros da Silva, Roberto Felipe Câmara Rocha, Paulo Moreira Silva Dantas, Breno Guilherme de Araújo Tinôco Cabral. Influence of biological maturation on cardiac autonomic recovery in female volleyball players during & after repeated sprints training: An experimental trial. Sports Medicine and Health Science, 2024, 6(3): 279‒286 https://doi.org/10.1016/j.smhs.2023.10.002

References

[[1]]
L.K. Schutz. Volleyball. Phys Med Rehabil Clin, 10 (1) ( 1999), pp. 19-34, DOI: 10.1016/s1047-9651(18)30213-4
[[2]]
2.I.D.S. Silva, V.R. de Oliviera, W.D.S. Bento, O.G.R. de Angelis, F.S.C. Franco. Characterization of rally times in volleyball at the Minas Gerais school games. Revista Thema, 17 (3) ( 2020), pp. 556-571, DOI: 10.15536/thema.V17.2020.556-571.1262
[[3]]
O.G.R. de Angelis, W.D.S. Bento, I.S.D. Silva, V.R. de Oliveira, F.S.C. Franco.Characterizing the pattern of rally times and complexes in school volleyball. J Phys Educ, 31 (1) ( 2020), p. e3133, DOI: 10.4025/jphyseduc.v31i1.3133
[[4]]
C. Akarçeşme, E. Cengizel, Ö. Şenel, İ. Yıldıran, Z. Akyildiz, H. Nobari. Heart rate and blood lactate responses during the volleyball match. Sci Rep, 12 (1) ( 2022), Article 15344, DOI: 10.1038/s41598-022-19687-3
[[5]]
A. Rodríguez-Fernández, J. Sanchez-Sanchez, R. Ramirez-Campillo, F.Y. Nakamura, J.A. Rodríguez-Marroyo, J.G. Villa-Vicente. Relationship between repeated sprint ability, aerobic capacity, intermittent endurance, and heart rate recovery in youth soccer players. J Strength Condit Res, 33 (12) ( 2019), pp. 3406-3413, DOI: 10.1519/JSC.0000000000002193
[[6]]
C.H. Gibbons. Basics of autonomic nervous system function. Handb Clin Neurol, 160 ( 2019), pp. 407-418, DOI: 10.1016/B978-0-444-64032-1.00027-8
[[7]]
W. Jänig. The autonomic nervous system. C.G. Galizia, P.M. Lledo (Eds.), Neurosciences-From Molecule to Behavior: A University Textbook (first ed.), Springer ( 2013), pp. 179-211, DOI: 10.1007/978-3-642-10769-6
[[8]]
E.J.C. de Geus, P.J. Gianaros, R.C. Brindle, J.R. Jennings, G.G. Berntson. Should heart rate variability be “corrected” for heart rate? Biological, quantitative, and interpretive considerations. J Psychophysiol, 56 (2) ( 2019), Article e13287, DOI: 10.1111/psyp.13287
[[9]]
A.C. Almeida, A.F. Machado, M.C. Albuquerque, et al.. The effects of cold water immersion with different dosages (duration and temperature variations) on heart rate variability post-exercise recovery: a randomized controlled trial. J Sci Med Sport, 19 (8) ( 2016), pp. 676-681, DOI: 10.1016/j.jsams.2015.10.003
[[10]]
T. Peçanha, R. Bartels, L.C. Brito, M. Paula-Ribeiro, R.S. Oliveira, J.J. Goldberger. Methods of assessment of the post-exercise cardiac autonomic recovery: a methodological review. Int J Cardiol, 227 ( 2017), pp. 795-802, DOI: 10.1016/j.ijcard.2016.10.057
[[11]]
M. Buchheit, C. Gindre. Cardiac parasympathetic regulation: respective associations with cardiorespiratory fitness and training load. Am J Physiol Heart Circ Physiol, 291 (1) ( 2006), pp. H451-H458, DOI: 10.1152/ajpheart.00008.2006
[[12]]
M. Buchheit, Y. Papelier, P.B. Laursen, S. Ahmaidi. Noninvasive assessment of cardiac parasympathetic function: post exercise heart rate recovery or heart rate variability. Am J Physiol Heart Circ Physiol, 293 (1) ( 2007), pp. H8-H10, DOI: 10.1152/ajpheart.00335.2007
[[13]]
T.A. Dewland, A.S. Androne, F.A. Lee, R.J. Lampert, S.D. Katz. Effect of acetylcholinesterase inhibition with pyridostigmine on cardiac parasympathetic function in sedentary adults and trained athletes. Am J Physiol Heart Circ Physiol, 293 ( 2007), pp. H86-H92, DOI: 10.1152/ajpheart.01339.2006
[[14]]
A. Noma, W. Trautwein. Relaxation of the ACh-induced potassium current in the rabbit sinoatrial node cell. Eur J Appl Physiol, 377 (3) ( 1978), pp. 193-200, DOI: 10.1007/bf00584272
[[15]]
W. Osterrieder, A. Noma, W. Trautwein. On the kinetics of the potassium channel activated by acetylcholine in the SA node of the rabbit heart. Eur J Appl Physiol, 386 (2) ( 1980), pp. 101-109, DOI: 10.1007/bf00584196
[[16]]
C.R. Cole, E.H. Blackstone, F.J. Pashkow, C.E. Snader, M.S. Lauer. Heart-rate recovery immediately after exercise as a predictor of mortality. N Engl J Med, 341 (18) ( 1999), pp. 1351-1357, DOI: 10.1056/NEJM199910283411804
[[17]]
L.M. Harteveld, I. Nederend, A.D.J. Ten Harkel, et al.. Maturation of the cardiac autonomic nervous system activity in children and adolescents. J Am Heart Assoc, 10 (4) ( 2021), Article e017405, DOI: 10.1161/JAHA.120.017405
[[18]]
T.W. Rowland. Children’s Exercise Physiology. (first ed.), Human Kinetics ( 2005)
[[19]]
C. Scheffler, M. Hermanussen. Growth in childhood and adolescence. W. Trevathan, M. Cartmill, D. Dufour, et al. (Eds.), The International Encyclopedia of Biological Anthropology, John Wiley & Sons Inc. ( 2018), pp. 1-22, DOI: 10.1002/9781118584538.ieba0537
[[20]]
S.A. Moore, H.A. McKay, H. Macdonald, et al.. Enhancing a somatic maturity prediction model. Med Sci Sports Exerc, 47 (8) ( 2015), pp. 1755-1764, DOI: 10.1249/MSS.0000000000000588
[[21]]
P.F. de Almeida-Neto, J.A. de Medeiros, R.M.V. Medeiros, et al.. Reliability of biological maturation analyses performed by equations predicting skeletal age and peak height velocity with hand and wrist X-ray results. Am J Hum Biol, 34 (9) ( 2022), Article e23775, DOI: 10.1002/ajhb.23775
[[22]]
R.L. Mirwald, A.D. Baxter-Jones, D.A. Bailey, G.P. Beunen. An assessment of maturity from anthropometric measurements. Med Sci Sports Exerc, 34 (4) ( 2002), pp. 689-694, DOI: 10.1097/00005768-200204000-00020
[[23]]
S. Ratel, A.J. Blazevich. Are prepubertal children metabolically comparable to well-trained adult endurance athletes?. Sports Med, 47 (8) ( 2017), pp. 1477-1485, DOI: 10.1007/s40279-016-0671-1
[[24]]
M. Massin, G. Von Bernuth. Normal ranges of heart rate variability during infancy and childhood. Pediatr Cardiol, 18 ( 1997), pp. 297-302, DOI: 10.1007/s002469900178
[[25]]
N. Michels, E. Clays, M. De Buyzere, et al.. Determinants and reference values of short-term heart rate variability in children. Eur J Appl Physiol, 113 ( 2013), pp. 1477-1488, DOI: 10.1007/s00421-012-2572-9
[[26]]
F. Shaffer, J.P. Ginsberg.An overview of heart rate variability metrics and norms. Front Public Health, 5 ( 2017), p. 258, DOI: 10.3389/fpubh.2017.00258
[[27]]
S.J. Sheinkopf, T.P. Levine, C.E.B. McCormick, et al.. Developmental trajectories of autonomic functioning in autism from birth to early childhood. Biol Psychol, 142 ( 2019), pp. 13-18, DOI: 10.1016/j.biopsycho.2019.01.003
[[28]]
J.M. Dollar, S.D. Calkins, N.T. Berry, et al.. Developmental patterns of respiratory sinus arrhythmia from toddlerhood to adolescence. Dev Psychol, 56 (4) ( 2020), p. 783, DOI: 10.1037/dev0000894
[[29]]
van Delden Jjm R. van der Graaf. Revised cioms international ethical guidelines for health-related research involving humans. JAMA, 317 (2) ( 2017), pp. 135-136, DOI: 10.1001/jama.2016.18977
[[30]]
V.S. da Silva, M.F.S. Vieira. International Society for the Advancement of Kinanthropometry (ISAK) global: international accreditation scheme of the competent anthropometrist. Rev Bras Cineantropometr Desempenho Hum, 22 ( 2020), Article e70517, DOI: 10.1590/1980-0037.2020v22e70517
[[31]]
T.A. Perini, G.L. de Oliveira, J.D.S. Ornellas, F.P. de Oliveira. Technical error of measurement in anthropometry. Rev Bras Med Esporte, 11 (1) ( 2005), pp. 86-90, DOI: 10.1590/S1517-86922005000100009
[[32]]
D. Du Bois, E.F. Du Bois. A formula to estimate the approximate surface area if height and body mass be known. 1916. Nutrition, 5 (5) ( 1989), pp. 303-313
[[33]]
G.A. Borg. Psychological bases of physical exertion. Med Sci Sports Exerc, 14 (5) ( 1982), pp. 377-381
[[34]]
J. Cohen. Quantitative methods in psychology: a power primer. Psychol Bull, 112 (1) ( 1992), pp. 155-159, DOI: 10.1037//0033-2909.112.1.155
[[35]]
D.W. White, P.B. Raven. Autonomic neural control of heart rate during dynamic exercise: revisited. J Physiol, 592 (12) ( 2014), pp. 2491-2500, DOI: 10.1113/jphysiol.2014.271858
[[36]]
S. Michael, K.S. Graham, G.M. Davis.Cardiac autonomic responses during exercise and post-exercise recovery using heart rate variability and systolic time intervals—a review. Front Physiol, 8 ( 2017), p. 301, DOI: 10.3389/fphys.2017.00301
[[37]]
M. Špenko, I. Potočnik, I. Edwards, N. Potočnik.Training history, cardiac autonomic recovery from submaximal exercise and associated performance in recreational runners. Int J Environ Res Publ Health, 19 (16) ( 2022), p. 9797, DOI: 10.3390/ijerph19169797
[[38]]
A. Hautala, M.P. Tulppo, T.H. Mäkikallio, R. Laukkanen, S. Nissilä, H.V. Huikuri. Changes in cardiac autonomic regulation after prolonged maximal exercise. Clin Physiol, 21 (2) ( 2001), pp. 238-245, DOI: 10.1046/j.1365-2281.2001.00309.x
[[39]]
J. Stanley, J.M. Peake, M. Buchheit. Cardiac parasympathetic reactivation following exercise: implications for training prescription. Sports Med, 43 (2) ( 2013), pp. 1259-1277, DOI: 10.1007/s40279-013-0083-4
[[40]]
H. Al Haddad, P.B. Laursen, D. Chollet, S. Ahmaidi, M. Buchheit. Reliability of resting and post exercise heart rate measures. Int J Sports Med, 32 (8) ( 2011), pp. 598-605, DOI: 10.1055/s-0031-1275356
[[41]]
G.J. Palmer, M.G. Ziegler, C.R. Lake. Response of norepinephrine and blood pressure to stress increases with age. J Gerontol, 33 (4) ( 1978), pp. 482-487, DOI: 10.1093/geronj/33.4.482
[[42]]
H. Ohuchi, H. Suzuki, K. Yasuda, Y. Arakaki, S. Echigo, T. Kamiya. Heart rate recovery after exercise and cardiac autonomic nervous activity in children. Pediatr Res, 47 (3) ( 2000), pp. 329-335, DOI: 10.1203/00006450-200003000-00008
[[43]]
E. Baraldi, D.M. Cooper, S. Zanconato, Y. Armon. Heart rate recovery from 1 minute of exercise in children and adults. Pediatr Res, 29 (6) ( 1991), pp. 575-579, DOI: 10.1203/00006450-199106010-00011
[[44]]
M. Esler, G. Lambert, D. Esler, C. Ika Sari, L. Guo, G. Jennings. Evaluation of elevated heart rate as a sympathetic nervous system biomarker in essential hypertension. J Hypertens, 38 (8) ( 2020), pp. 1488-1495, DOI: 10.1097/HJH.0000000000002407
[[45]]
D. Hering, K. Lachowska, M. Schlaich.Role of the sympathetic nervous system in stress-mediated cardiovascular disease. Curr Hypertens Rep, 17 (10) ( 2015), p. 80, DOI: 10.1007/s11906-015-0594-5
[[46]]
R. Rang, J.M. Ritter, R.J. Flower, et al.. Elsevier Brazil (Farmacologia. (first ed.ed.), 2015)
[[47]]
A.N. Davison. Physiological role of monoamine oxidase. Physiol Rev, 38 (4) ( 1958), pp. 729-747, DOI: 10.1152/physrev.1958.38.4.729
[[48]]
J.J. Kaczor, W. Ziolkowski, J. Popinigis, M.A. Tarnopolsky. Anaerobic and aerobic enzyme activities in human skeletal muscle from children and adults. Pediatr Res, 57 (3) ( 2005), pp. 331-335, DOI: 10.1203/01.PDR.0000150799.77094.DE
[[49]]
A. Birat, P. Bourdier, E. Piponnier, et al.. Metabolic and fatigue profiles are comparable between prepubertal children and well-trained adult endurance athletes. Front Physiol, 9 ( 2018), p. 387, DOI: 10.3389/fphys.2018.00387
[[50]]
S. Ratel, A. Tonson, Y. Le Fur, P. Cozzone, D. Bendahan. Comparative analysis of skeletal muscle oxidative capacity in children and adults: a 31P-MRS study. Appl Physiol Nutr Metabol, 33 (4) ( 2008), pp. 720-727, DOI: 10.1139/H08-039
[[51]]
R.L. Washington, J.C. van Gundy, C. Cohen, H.M. Sondheimer, R.R. Wolfe. Normal aerobic and anaerobic exercise data for North American school-age children. J Pediatr, 112 (2) ( 1988), pp. 223-233, DOI: 10.1016/S0022-3476(88)80059-3
[[52]]
Z. Nováková, N. Honzíková, E. Závodná, H. Hrstková, P. Václavková. Baroreflex sensitivity and body growth parameters in children and adolescents. Exp Clin Cardiol, 6 (1) ( 2001), pp. 35-37
[[53]]
M.T. La Rovere. Baroreflex sensitivity as a new marker for risk stratification. Z Kardiol, 89 (Suppl 3) ( 2000), pp. 44-50, DOI: 10.1007/s003920070082
[[54]]
A. Kardos, G. Watterich, R. de Menezes, M. Csanády, B. Casadei, L. Rudas. Determinants of spontaneous baroreflex sensitivity in a healthy working population. Hypertension, 37 (3) ( 2001), pp. 911-916, DOI: 10.1161/01.HYP.37.3.911
[[55]]
J. Tank, R.M. Baevski, A. Fender, et al.. Reference values of indices of spontaneous baroreceptor reflex sensitivity. Am J Hypertens, 13 (3) ( 2000), pp. 268-275, DOI: 10.1016/S0895-7061(99)00172-7
[[56]]
D.P. Veerman, B.P. Imholz, W. Wieling, J.M. Karemaker, G.A. van Montfrans. Effects of aging on blood pressure variability in resting conditions. Hypertension, 24 (1) ( 1994), pp. 120-130, DOI: 10.1161/01.HYP.24.1.120
[[57]]
Z. Lenard, P. Studinger, B. Mersich, L. Kocsis, M. Kollai. Maturation of cardiovagal autonomic function from childhood to young adult age. Circulation, 110 (16) ( 2004), pp. 2307-2312, DOI: 10.1161/01.CIR.0000145157.07881.A3
[[58]]
P. Franco, B. Putois, A. Guyon, et al.. Sleep during development: sex and gender differences. Sleep Med Rev, 51 ( 2020), Article 101276, DOI: 10.1016/j.smrv.2020.101276
[[59]]
A. Sadeh, R.E. Dahl, G. Shahar, S. Rosenblat-Stein. Sleep and the transition to adolescence: a longitudinal study. Sleep, 32 (12) ( 2009), pp. 1602-1609, DOI: 10.1093/sleep/32.12.1602
[[60]]
Z.Y. Zhang, I.G. Campbell, P. Dhayagude, H.C. Espino, I. Feinberg. Longitudinal analysis of sleep spindle maturation from childhood through late adolescence. J Neurosci, 41 (19) ( 2021), pp. 4253-4261, DOI: 10.1523/JNEUROSCI.2370-20.2021
[[61]]
A.B.M. Ferreira, B.L.L. Ribeiro, E.D.S. Batista, M.P. Dantas, A.L. Mortatti. The influence of different training load magnitudes on sleep pattern, perceived recovery, and stress tolerance in young soccer players. J Strength Condit Res, 37 (2) ( 2023), pp. 351-357, DOI: 10.1519/JSC.0000000000004235

Accesses

Citations

Detail

Sections
Recommended

/