Post-exercise heart rate variability recovery after 800-m endurance run load among Cameroonian adolescent's males

Jerson Mekoulou Ndongo, Elysée Claude Bika Lele, Wiliam Richard Guessogo, Wiliam Mbang Mbian, Clarisse Noel Ayina Ayina, Jessica Guyot, Christian Ngongang Ouankou, Abdou Temfemo, Loick Pradel Kojom Foko, Ernest Tchoudjin, Louis-Georges Gassina, Bienvenu Bongue, Frederic Roche, Samuel Honoré Mandengue, Peguy Brice Assomo-Ndemba

Sports Medicine and Health Science ›› 2023, Vol. 5 ›› Issue (4) : 283-289. DOI: 10.1016/j.smhs.2023.09.008
Original article

Post-exercise heart rate variability recovery after 800-m endurance run load among Cameroonian adolescent's males

Author information +
History +

Abstract

The 800-m (m) run is part of Physical Education classes in Cameroon, after which arrhythmias may occur during recovery. Hence, this study aimed at determining relationship between 800-m run loads on cardiac autonomic recovery among school adolescents.

Forty-two male adolescents (aged [17 ​± ​1] years) performed 800-m. Post-exercise heart rate variability (HRV) was recorded during 5-min (min) (HRV5-min) and 15-min (HRV15-min) in time: Standard deviation of normal to normal (SDNN); Root mean square of successive differences (RMSSD) and frequency domain (LH: Low frequency, HF: High frequency, TP: Total power). Rating of Perceived Exertion (RPE) and blood lactate concentration (BLa) were measured after exercise. In HRV5-min, RPE was associated with SDNN (r ​= ​−0.44, p ​< ​0.01) and RMSSD (r ​= ​−0.38, p ​< ​0.05). BLa was correlated with SDNN (r ​= ​−0.38, p ​< ​0.05) and RMSSD (r ​= ​−0.56, p ​< ​0.001) in the time-domain, LF (r ​= ​−0.64, p ​< ​0.001), HF (r ​= ​−0.58, p ​< ​0.001) and TP (r ​= ​−0.61, p ​< ​0.001) in frequency-domain. Moreover, RPE was correlated with LF (r ​= ​−0.44, p ​< ​0.01), TP (r ​= ​−0.49, p ​< ​0.01) while exercise duration with HF (r ​= ​−0.38, p ​< ​0.05). In HRV15-min, BLa was correlated with RMSSD (r ​= ​−0.53, p ​< ​0.001) and SDNN (r ​= ​−0.68, p ​< ​0.001). RPE was negatively correlated SDNN (r ​= ​−0.53, p ​< ​0.01) and RMSSD (r ​= ​−0.44, p ​< ​0.01). BLa was associated with HF (r ​= ​−0.55, p ​< ​0.001), TP (r ​= ​−0.50, p ​< ​0.01) and RPE with LF (r ​= ​−0.51, p ​< ​0.01), HF (r ​= ​−0.50, p ​< ​0.01), TP (r ​= ​−0.49, p ​< ​0.01). In addition, exercise duration was negatively linked to HF (r ​= ​−0.36, p ​< ​0.05). This study outlined that in untrained adolescents an increase of 800-m loads is associated with a slow vagal indexes of HRV during the recovery.

Keywords

Heart rate variability / Recovery / 800-m load / Adolescents / Physical education classes

Cite this article

Download citation ▾
Jerson Mekoulou Ndongo, Elysée Claude Bika Lele, Wiliam Richard Guessogo, Wiliam Mbang Mbian, Clarisse Noel Ayina Ayina, Jessica Guyot, Christian Ngongang Ouankou, Abdou Temfemo, Loick Pradel Kojom Foko, Ernest Tchoudjin, Louis-Georges Gassina, Bienvenu Bongue, Frederic Roche, Samuel Honoré Mandengue, Peguy Brice Assomo-Ndemba. Post-exercise heart rate variability recovery after 800-m endurance run load among Cameroonian adolescent's males. Sports Medicine and Health Science, 2023, 5(4): 283‒289 https://doi.org/10.1016/j.smhs.2023.09.008

References

[[1]]
B. Kumar, R. Robinson, S. Till. Physical activity and health in adolescence. Clin Med, 15 (3) ( 2015), pp. 267-272, DOI: 10.7861/clinmedicine.15-3-267
[[2]]
2.W.M. Savin, D.M. Davidson, W.L. Haskell. Autonomic contribution to heart rate recovery from exercise in humans. J Appl Physiol Respir Environ Exerc Physiol, 53 (6) ( 1982), pp. 1572-1575, DOI: 10.1152/jappl.1982.53.6.1572
[[3]]
G.L. Pierpont, D.R. Stolpman, C.C. Gornick. Heart rate recovery post-exercise as an index of parasympathetic activity. J Auton Nerv Syst, 80 (3) ( 2000), pp. 169-174, DOI: 10.1016/s0165- 1838(00)00090-4
[[4]]
M.K. Lahiri, P.J. Kannankeril, J.J. Goldberger. Assessment of autonomic function in cardiovascular disease: physiological basis and prognostic implications. J Am Coll Cardiol, 51 (18) ( 2008), pp. 1725-1733, DOI: 10.1016/j.jacc.2008.01.038
[[5]]
H. Ohuchi, H. Suzuki, K. Yasuda, Y. Arakaki, S. Echigo, T. Kamiya. Heart rate recovery after exercise and cardiac autonomic nervous activity in children. Pediatr Res, 47 (3) ( 2000), pp. 329-335, DOI: 10.1203/00006450-200003000-00008
[[6]]
C. Orizio, R. Perini, A. Comandè, M. Castellano, M. Beschi, A. Veicsteinas. Plasma catecholamines and heart rate at the beginning of muscular exercise in man. Eur J Appl Physiol Occup Physiol, 57 (5) ( 1988), pp. 644-651, DOI: 10.1007/BF00418477
[[7]]
M.P. Tulppo, T.H. Mäkikallio, T.E. Takala, T. Seppänen, H.V. Huikuri. Quantitative beat-to-beat analysis of heart rate dynamics during exercise. Am J Physiol, 271 (1 Pt 2) ( 1996), pp. 244-252, DOI: 10.1152/ajpheart.1996.271.1.H244
[[8]]
G.E. Molina, C.J.G. Da Cruz, K.E. Fontana, E. M.K.V.K. Soares, L.G.G. Porto, L.F. Junqueira Jr.. Post-exercise heart rate recovery and its speed are associated with cardiac autonomic responsiveness following orthostatic stress test in men. Scand Cardiovasc J, 55 (4) ( 2021), pp. 220-226, DOI: 10.1080/14017431.2021.1879394
[[9]]
Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation, 93 (5) ( 1996), pp. 1043-1065
[[10]]
I.M. Bonilla, A.E. Belevych, A. Sridhar, et al.. Endurance exercise training normalizes repolarization and calcium-handling abnormalities, preventing ventricular fibrillation in a model of sudden cardiac death. J Appl Physiol, 113 (11) ( 2012), pp. 1772-1783, DOI: 10.1152/japplphysiol.00175.2012
[[11]]
A.C. Schomer, B.D. Nearing, S.C. Schachter, R.L. Verrier. Vagus nerve stimulation reduces cardiac electrical instability assessed by quantitative T-wave alternans analysis in patients with drug resistant focal epilepsy. Epilepsia, 55 (12) ( 2014), pp. 1996-2002, DOI: 10.1111/epi.12855
[[12]]
S. Qiu, X. Cai, Z. Sun, et al.. Heart rate recovery and risk of cardiovascular events and all-cause mortality: a meta-analysis of prospective cohort studies. J Am Heart Assoc, 6 (5) ( 2017), Article e005505, DOI: 10.1161/JAHA.117.005505
[[13]]
N. Sydo, T. Sydo, K.A. Gonzalez Carta, et al.. Prognostic performance of heart rate recovery on an exercise test in a primary prevention population. J Am Heart Assoc, 7 (7) ( 2018), Article e008143, DOI: 10.1161/JAHA.117.008143
[[14]]
R. Bailey. Physical education and sport in schools: a review of benefits and outcomes. J Sch Health, 76 (8) ( 2006), pp. 397-401, DOI: 10.1111/j.1746-1561.2006.00132.x
[[15]]
P.A.M. Cavalcante, M.S. Perilhão, A.A. Da Silva, A.J. Serra, A.F. Júnior, D.S. Bocalini. Cardiac remodeling and physical exercise: a brief review about concepts and adaptations. Int J Sports Sci, 6 (2) ( 2016), pp. 52-61, DOI: 10.5923/j.sports.20160602.06
[[16]]
N.J. Mekoulou, A. Temfemo, P.B. Assomo Ndemba, et al.. Is there an effect of the order of realization of sprint and endurance for intermittent test?. JPES, 16 ( 2016), pp. 982-987, DOI: 10.7752/jpes.2016.03155
[[17]]
D.S. Siscovick, N.S. Weiss, R.H. Fletcher, et al.. The incidence of primary cardiac arrest during vigorous exercise. N Engl J Med, 311 (14) ( 1984), pp. 874-877, DOI: 10.1056/NEJM198410043111402
[[18]]
P. Coumel. Paroxysmal atrial fibrillation: a disorder of autonomic tone?. Eur Heart J, 15 (Suppl A) ( 1994), pp. 9-16, DOI: 10.1093/eurheartj/15.suppl_a.9
[[19]]
H.V. Huikuri. Heart rate dynamics as a marker of vulnerability to atrial fibrillation. J Cardiovasc Electrophysiol, 19 (9) ( 2008), pp. 913-914, DOI: 10.1111/j.1540-8167.2008.01197.x
[[20]]
S. Von Klot, M.A. Mittleman, D.W. Dockery, et al.. Intensity of physical exertion and triggering of myocardial infarction: a case-crossover study. Eur Heart J, 29 (15) ( 2008), pp. 1881-1888, DOI: 10.1093/eurheartj/ehn235
[[21]]
Mekoulou Ndongo J., Assomo Ndemba P.B., Temfemo A., et al. Pre- and post-exercise electrocardiogram pattern modifications in apparently healthy school adolescents in Cameroon. Int J Adolesc Med Health. 2017; 31(6): /j/ijamh.2019.31.issue-6/ijamh-2017-0071/ijamh-2017-0071.xml. doi:10.1515/ijamh-2017-0071.
[[22]]
C.R. Cole, E.H. Blackstone, F.J. Pashkow, C.E. Snader, M.S. Lauer. Heart-rate recovery immediately after exercise as a predictor of mortality. N Engl J Med, 341 (18) ( 1999), pp. 1351-1357, DOI: 10.1056/NEJM199910283411804
[[23]]
C.R. Cole, J.M. Foody, E.H. Blackstone, M.S. Lauer. Heart rate recovery after submaximal exercise testing as a predictor of mortality in a cardiovascularly healthy cohort. Ann Intern Med, 132 (7) ( 2000), pp. 552-555, DOI: 10.7326/0003-4819-132-7-200004040-00007
[[24]]
X. Jouven, J.P. Empana, P.J. Schwartz, M. Desnos, D. Courbon, P. Ducimetière. Heart-rate profile during exercise as a predictor of sudden death. N Engl J Med, 352 (19) ( 2005), pp. 1951-1958, DOI: 10.1056/NEJMoa043012
[[25]]
F.E. Dewey, J.V. Freeman, G. Engel, et al.. Novel predictor of prognosis from exercise stress testing: heart rate variability response to the exercise treadmill test. Am Heart J, 153 (2) ( 2007), pp. 281-288, DOI: 10.1016/j.ahj.2006.11.001
[[26]]
Y.J. Van de Vegte, P. Van der Harst, N. Verweij. Heart rate recovery 10 seconds after cessation of exercise predicts death. J Am Heart Assoc, 5; 7 (8) ( 2018), Article e008341, DOI: 10.1161/JAHA.117.008341
[[27]]
B.Q. Farah, M.V. Barros, B. Balagopal, R.M. Ritti-Dias. Heart rate variability and cardiovascular risk factors in adolescent boys. J Pediatr, 165 (5) ( 2014), pp. 945-950, DOI: 10.1016/j.jpeds.2014.06.065
[[28]]
N.C. Wang, A. Chicos, S. Banthia, et al.. Persistent sympathoexcitation long after submaximal exercise in subjects with and without coronary artery disease. Am J Physiol Heart Circ Physiol, 301 (3) ( 2011), pp. 912-920, DOI: 10.1152/ajpheart.00148.2011
[[29]]
L.L. Smith, M. Kukielka, G.E. Billman. Heart rate recovery after exercise: a predictor of ventricular fibrillation susceptibility after myocardial infarction. Am J Physiol Heart Circ Physiol, 288 (4) ( 2005), pp. 1763-1769, DOI: 10.1152/ajpheart.00785.2004
[[30]]
K.V.V. Lieve, V. Dusi, C. Van der Werf, et al.. Heart rate recovery after exercise is associated with arrhythmic events in patients with catecholaminergic polymorphic ventricular tachycardia. Circ Arrhythm Electrophysiol, 13 (3) ( 2020), Article e007471, DOI: 10.1161/CIRCEP.119.007471
[[31]]
M.J. Reed, C.E. Robertson, P.S. Addison. Heart rate variability measurements and the prediction of ventricular arrhythmias. QJM, 98 (2) ( 2005), pp. 87-95, DOI: 10.1093/qjmed/hci018
[[32]]
Y. Ye, T.K. Tong, Z. Kong, E.D. Tao, X. Ying, J. Nie. Cardiac autonomic disturbance following sprint-interval exercise in untrained young males: does exercise volume matter?. J Exerc Sci Fit, 20 (1) ( 2022), pp. 32-39, DOI: 10.1016/j.jesf.2021.10.002
[[33]]
T. Peçanha, M. De Paula-Ribeiro, O. Nasario-Junior, J.R. de Lima. Post-exercise heart rate variability recovery: a time-frequency analysis. Acta Cardiol, 68 (6) ( 2013), pp. 607-613, DOI: 10.1080/ac.68.6.8000008
[[34]]
S. Michael, K.S. Graham, Davis GM. Oam. Cardiac autonomic responses during exercise and post-exercise recovery using heart rate variability and systolic time intervals-a review. Front Physiol, 29 (8) ( 2017), p. 301, DOI: 10.3389/fphys.2017.00301
[[35]]
S. Michael, O. Jay, M. Halaki, K. Graham, G.M. Davis. Submaximal exercise intensity modulates acute post-exercise heart rate variability. Eur J Appl Physiol, 116 (4) ( 2016), pp. 697-706, DOI: 10.1007/s00421-016-3327-9
[[36]]
U. Wiklund, M. Karlsson, M. Oström, T. Messner. Influence of energy drinks and alcohol on post-exercise heart rate recovery and heart rate variability. Clin Physiol Funct Imag, 29 (1) ( 2009), pp. 74-80, DOI: 10.1111/j.1475-097X.2008.00837.x
[[37]]
M.P. Barbosa, N.T. da Silva, F.M. de Azevedo, C.M. Pastre, L.C. Vanderlei. Comparison of Polar® RS800G3™ heart rate monitor with Polar® S810i™ and electrocardiogram to obtain the series of RR intervals and analysis of heart rate variability at rest. Clin Physiol Funct Imag, 36 (2) ( 2016), pp. 112-117, DOI: 10.1111/cpf.12203
[[38]]
M.P. Tarvainen, J.P. Niskanen, J.A. Lipponen, P.O. Ranta-Aho, P.A. Karjalainen. Kubios HRV-heart rate variability analysis software. Comput Methods Progr Biomed, 113 (1) ( 2014), pp. 210-220, DOI: 10.1016/j.cmpb.2013.07.024
[[39]]
G.A. Borg. Psychophysical bases of perceived exertion. Med Sci Sports Exerc, 14 (5) ( 1982), pp. 377-381
[[40]]
J.R. Lacour, E. Bouvat, J.C. Barthélemy. Post-competition blood lactate concentrations as indicators of anaerobic energy expenditure during 400-m and 800-m races. Eur J Appl Physiol Occup Physiol, 61 (3-4) ( 1990), pp. 172-176, DOI: 10.1007/BF00357594
[[41]]
J.F. Casties, D. Mottet, D. Le Gallais. Non-linear analyses of heart rate variability during heavy exercise and recovery in cyclists. Int J Sports Med, 27 (10) ( 2006), pp. 780-785, DOI: 10.1055/s-2005-872968
[[42]]
S. Seiler, O. Haugen, E. Kuffel. Autonomic recovery after exercise in trained athletes: intensity and duration effects. Med Sci Sports Exerc, 39 (8) ( 2007), pp. 1366-1373, DOI: 10.1249/mss.0b013e318060f17d
[[43]]
K. Martinmäki, H. Rusko. Time-frequency analysis of heart rate variability during immediate recovery from low and high intensity exercise. Eur J Appl Physiol, 102 (3) ( 2008), pp. 353-360, DOI: 10.1007/s00421-007-0594-5
[[44]]
P. Kaikkonen, H. Rusko, K. Martinmäki. Post-exercise heart rate variability of endurance athletes after different high-intensity exercise interventions. Scand J Med Sci Sports, 18 (4) ( 2008), pp. 511-519, DOI: 10.1111/j.1600-0838.2007.00728.x
[[45]]
P. Kaikkonen, E. Hynynen, T. Mann, H. Rusko, A. Nummela. Can HRV be used to evaluate training load in constant load exercises?. Eur J Appl Physiol, 108 (3) ( 2010), pp. 435-442, DOI: 10.1007/s00421-009-1240-1
[[46]]
P. Kaikkonen, E. Hynynen, T. Mann, H. Rusko, A. Nummela. Heart rate variability is related to training load variables in interval running exercises. Eur J Appl Physiol, 112 (3) ( 2012), pp. 829-838, DOI: 10.1007/s00421-011-2031-z
[[47]]
H. Al Haddad, P.B. Laursen, S. Ahmaidi, M. Buchheit. Nocturnal heart rate variability following supramaximal intermittent exercise. Int J Sports Physiol Perform, 4 (4) ( 2009), pp. 435-447, DOI: 10.1123/ijspp.4.4.435
[[48]]
E. Hynynen, V. Vesterinen, H. Rusko, A. Nummela. Effects of moderate and heavy endurance exercise on nocturnal HRV. Int J Sports Med, 31 (6) ( 2010), pp. 428-432, DOI: 10.1055/s-0030-1249625
[[49]]
P. Terziotti, F. Schena, G. Gulli, A. Cevese. Post-exercise recovery of autonomic cardiovascular control: a study by spectrum and cross-spectrum analysis in humans. Eur J Appl Physiol, 84 (3) ( 2001), pp. 187-194, DOI: 10.1007/s004210170003
[[50]]
A. Parekh, C.M. Lee. Heart rate variability after isocaloric exercise bouts of different intensities. Med Sci Sports Exerc, 37 (4) ( 2005), pp. 599-605, DOI: 10.1249/01.mss.0000159139.29220.9a
[[51]]
J.H. Coote. Recovery of heart rate following intense dynamic exercise. Exp Physiol, 95 (3) ( 2010), pp. 431-440, DOI: 10.1113/expphysiol.2009.047548
[[52]]
T.H. Niemela, A.M. Kiviniemi, A.J. Hautala, J.A. Salmi, V. Linnamo, M.P. Tulppo. Recovery pattern of baroreflex sensitivity after exercise. Med Sci Sports Exerc, 40 (5) ( 2008), pp. 864-870, DOI: 10.1249/MSS.0b013e3181666f08
[[53]]
M.I. Stuckey, N. Tordi, L. Mourot, et al.. Autonomic recovery following sprint interval exercise. Scand J Med Sci Sports, 22 (6) ( 2012), pp. 756-763, DOI: 10.1111/j.1600-0838.2011.01320.x
[[54]]
V.F. Gladwell, G.R. Sandercock, S.L. Birch. Cardiac vagal activity following three intensities of exercise in humans. Clin Physiol Funct Imag, 30 (1) ( 2010), pp. 17-22, DOI: 10.1111/j.1475-097X.2009.00899.x
[[55]]
D.S. Miles, M.N. Sawka, D.E. Hanpeter, J.E. Foster Jr. B. M. Doerr, M.A. Frey. Central hemodynamics during progressive upper- and lower-body exercise and recovery. J Appl Physiol Respir Environ Exerc Physiol, 57 (2) ( 1984), pp. 366-370, DOI: 10.1152/jappl.1984.57.2.366
[[56]]
G.D. Plotnick, L.C. Becker, M.L. Fisher. Changes in left ventricular function during recovery from upright bicycle exercise in normal persons and patients with coronary artery disease. Am J Cardiol, 58 (3) ( 1986), pp. 247-251, DOI: 10.1016/0002-9149(86)90056-1
[[57]]
Y. Arai, J.P. Saul, P. Albrecht, et al.. Modulation of cardiac autonomic activity during and immediately after exercise. Am J Physiol, 256 (1 Pt 2) ( 1989), pp. 132-141, DOI: 10.1152/ajpheart.1989.256.1.H132
[[58]]
D.S. O'Leary. Autonomic mechanisms of muscle metaboreflex control of heart rate. J Appl Physiol, 4 (4) ( 1993), pp. 1748-1754, DOI: 10.1152/jappl.1993.74.4.1748
[[59]]
E. Oida, T. Moritani, Y. Yamori. Tone-entropy analysis on cardiac recovery after dynamic exercise. J Appl Physiol, 82 (6) ( 1997), pp. 1794-1801, DOI: 10.1152/jappl.1997.82.6.1794
[[60]]
P.J. Kannankeril, F.K. Le, A.H. Kadish, J.J. Goldberger. Parasympathetic effects on heart rate recovery after exercise. J Invest Med, 52 (6) ( 2004), pp. 394-401, DOI: 10.1136/jim-52-06-34
[[61]]
O.F. Barak, D.G. Jakovljevic, J.Z. Popadic Gacesa, Z.B. Ovcin, D.A. Brodie, N.G. Grujic. Heart rate variability before and after cycle exercise in relation to different body positions. J Sports Sci Med, 9 (2) ( 2010), pp. 176-182

We thank the administrative staff and sport and physical education teachers of government secondary school of Cite des Palmiers. We also extend our acknowledgments to all the schoolchildren who accepted to participate in this study as well as their parents/guardians who gave their approval.

Accesses

Citations

Detail

Sections
Recommended

/