A novel non-invasive method for predicting bone mineral density and fracture risk using demographic and anthropometric measures

Justin Aflatooni, Steven Martin, Adib Edilbi, Pranav Gadangi, William Singer, Robert Loving, Shreya Domakonda, Nandini Solanki, Patrick C. McCulloch, Bradley Lambert

Sports Medicine and Health Science ›› 2023, Vol. 5 ›› Issue (4) : 308-313. DOI: 10.1016/j.smhs.2023.09.003
Original article

A novel non-invasive method for predicting bone mineral density and fracture risk using demographic and anthropometric measures

Author information +
History +

Abstract

Fractures are costly to treat and can significantly increase morbidity. Although dual-energy x-ray absorptiometry (DEXA) is used to screen at risk people with low bone mineral density (BMD), not all areas have access to one. We sought to create a readily accessible, inexpensive, high-throughput prediction tool for BMD that may identify people at risk of fracture for further evaluation. Anthropometric and demographic data were collected from 492 volunteers (♂275, ♀217; [44 ​± ​20] years; Body Mass Index (BMI) = [27.6 ​± ​6.0] kg/m2) in addition to total body bone mineral content (BMC, kg) and BMD measurements of the spine, pelvis, arms, legs and total body. Multiple-linear-regression with step-wise removal was used to develop a two-step prediction model for BMC followed by BMC. Model selection was determined by the highest adjusted R2, lowest error of estimate, and lowest level of variance inflation (α ​= ​0.05). Height (HTcm), age (years), sexm=1, f=0, %body fat (%fat), fat free mass (FFMkg), fat mass (FMkg), leg length (LLcm), shoulder width (SHWDTHcm), trunk length (TRNKLcm), and pelvis width (PWDTHcm) were observed to be significant predictors in the following two-step model (p ​< ​0.05). Step1: BMC (kg) = (0.006 3 × HT) ​+ ​(−0.002 4 × AGE) ​+ ​(0.171 2 × SEXm=1, f=0) ​+ ​(0.031 4 × FFM) ​+ ​(0.001 × FM) ​+ ​(0.008 9 × SHWDTH) ​+ ​(−0.014 5 × TRNKL) ​+ ​(−0.027 8 × PWDTH) - 0.507 3; R2 ​= ​0.819, SE ​± ​0.301. Step2: Total body BMD (g/cm2) = (−0.002 8 × HT) ​+ ​(−0.043 7 × SEXm=1, f=0) ​+ ​(0.000 8 × %FAT) ​+ ​(0.297 0 × BMC) ​+ ​(−0.002 3 × LL) ​+ ​(0.002 3 × SHWDTH) ​+ ​(−0.002 5 × TRNKL) ​+ ​(−0.011 3 × PWDTH) ​+ ​1.379; R2 ​= ​0.89, SE ​± ​0.054. Similar models were also developed to predict leg, arm, spine, and pelvis BMD (R2 ​= ​0.796-0.864, p ​< ​0.05). The equations developed here represent promising tools for identifying individuals with low BMD at risk of fracture who would benefit from further evaluation, especially in the resource or time restricted setting.

Keywords

Bone / Bone density / Fracture / Fracture risk / Assessment / Osteoporosis

Cite this article

Download citation ▾
Justin Aflatooni, Steven Martin, Adib Edilbi, Pranav Gadangi, William Singer, Robert Loving, Shreya Domakonda, Nandini Solanki, Patrick C. McCulloch, Bradley Lambert. A novel non-invasive method for predicting bone mineral density and fracture risk using demographic and anthropometric measures. Sports Medicine and Health Science, 2023, 5(4): 308‒313 https://doi.org/10.1016/j.smhs.2023.09.003

References

[[1]]
N.C. Wright, A.C. Looker, K.G. Saag, et al.. The recent prevalence of osteoporosis and low bone mass in the United States based on bone mineral density at the femoral neck or lumbar spine. J Bone Miner Res, 29 (11) ( 2014), pp. 2520-2526, DOI: 10.1002/jbmr.2269
[[2]]
F. Cosman, S.J. de Beur, M. LeBoff, et al.. Clinician's guide to prevention and treatment of osteoporosis. Osteoporos Int, 25 (10) ( 2014), pp. 2359-2381, DOI: 10.1007/s00198-014-2794-2
[[3]]
R. Burge, B. Dawson-Hughes, D.H. Solomon, J.B. Wong, A. King, A. Tosteson. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005-2025. J Bone Miner Res, 22 (3) ( 2007), pp. 465-475, DOI: 10.1359/jbmr.061113
[[4]]
J.M. Kling, B.L. Clarke, N.P. Sandhu. Osteoporosis prevention, screening, and treatment: a review. J Wom Health, 23 (7) ( 2014), pp. 563-572, DOI: 10.1089/jwh.2013.4611
[[5]]
N. Prasad, D. Sunderamoorthy, J. Martin, J. Murray. Secondary prevention of fragility fractures: are we following the guidelines? Closing the audit loop. Ann R Coll Surg Engl, 88 (5) ( 2006), pp. 470-474, DOI: 10.1308/003588406X116891
[[6]]
N.E. Lane. Epidemiology, etiology, and diagnosis of osteoporosis. Am J Obstet Gynecol, 194 (2) ( 2006), pp. S3-S11, DOI: 10.1016/j. ajog.2005.08.047
[[7]]
B.S. Lambert, M.T. Cain, T. Heimdal, et al.. Physiological parameters of bone health in elite ballet dancers. Med Sci Sports Exerc, 52 (8) ( 2020), pp. 1668-1678, DOI: 10.1249/MSS.0000000000002296
[[8]]
A.F. Carbuhn, D. Yu, L.M. Magee, P.C. McCulloch, B.S. Lambert. Anthropometric factors associated with bone stress injuries in collegiate distance runners: new risk metrics and screening tools?. Orthop J Sports Med, 10 (2) ( 2022), Article 23259671211070308. 23259671211070308
[[9]]
J.C. MacDermid, J.H. Roth, R. McMurtry. Predictors of time lost from work following a distal radius fracture. J Occup Rehabil, 17 (1) ( 2007), pp. 47-62, DOI: 10.1007/s10926-007-9069-0
[[10]]
A.R. Wheeler, J.C. Wenke. Military fractures: overtraining, accidents, casualties, and fragility. Clin Rev Bone Miner Metabol, 16 (4) ( 2018), pp. 103-115
[[11]]
S.T. Stanelle, S.F. Crouse, T.R. Heimdal, S.E. Riechman, A.L. Remy, B.S. Lambert. Predicting muscular strength using demographics, skeletal dimensions, and body composition measures. Sports Med Health Sci, 3 (1) ( 2021), pp. 34-39, DOI: 10.1016/j.smhs.2021.02.001
[[12]]
A.C. Looker, L.G. Borrud, J.P. Hughes, B. Fan, J.A. Shepherd, M. Sherman. Total body bone area, bone mineral content, and bone mineral density for individuals aged 8 years and over: United States, 1999-2006. Vital Health Stat, 11 (253) ( 2013), pp. 1-78
[[13]]
R. Carpenter, S. Sigurdsson, S. Zhao, et al.. Effects of age and sex on the strength and cortical thickness of the femoral neck. Bone, 48 (4) ( 2011), pp. 741-747, DOI: 10.1016/j.bone.2010.12.004
[[14]]
L.M. Havill, M.C. Mahaney, T. L Binkley, B. L Specker. Effects of genes, sex, age, and activity on BMC, bone size, and areal and volumetric BMD. J Bone Miner Res, 22 (5) ( 2007), pp. 737-746, DOI: 10.1359/jbmr.070213
[[15]]
E. Curtis, A. Litwic, C. Cooper, E. Dennison. Determinants of muscle and bone aging. J Cell Physiol, 230 (11) ( 2015), pp. 2618-2625, DOI: 10.1002/jcp.25001
[[16]]
S.C. Manolagas, A.M. Parfitt. What old means to bone. Trends Endocrinol Metab, 21 (6) ( 2010), pp. 369-374, DOI: 10.1016/j.tem.2010.01.010
[[17]]
L. Cianferotti, M.L. Brandi. Muscle-bone interactions: basic and clinical aspects. Endocrine, 45 (2) ( 2014), pp. 165-177, DOI: 10.1007/s12020-013-0026-8
[[18]]
J.L. Ferretti, G.R. Cointry, R.F. Capozza, H.M. Frost. Bone mass, bone strength, muscle-bone interactions, osteopenias and osteoporoses. Mech Ageing Dev, 124 (3) ( 2003), pp. 269-279, DOI: 10.1016/s0047-6374(02)00194-x
[[19]]
A.C. Looker, T.J. Beck, E.S. Orwoll. Does body size account for gender differences in femur bone density and geometry?. J Bone Miner Res, 16 (7) ( 2001), pp. 1291-1299, DOI: 10.1359/jbmr.2001.16.7.1291
[[20]]
J.-H. Chen, C. Liu, L. You, C.A. Simmons. Boning up on Wolff's Law: mechanical regulation of the cells that make and maintain bone. J Biomech, 43 (1) ( 2010), pp. 108-118, DOI: 10.1016/j.jbiomech.2009.09.016
[[21]]
S.L. Watson, B.K. Weeks, L.J. Weis, A.T. Harding, S.A. Horan, B.R. Beck. High-intensity resistance and impact training improves bone mineral density and physical function in postmenopausal women with osteopenia and osteoporosis: the LIFTMOR randomized controlled trial. J Bone Miner Res, 33 (2) ( 2018), pp. 211-220, DOI: 10.1002/jbmr.3284
[[22]]
Y.-S. Kim, J.-J. Han, J. Lee, H.S. Choi, J.H. Kim, T. Lee. The correlation between bone mineral density/trabecular bone score and body mass index, height, and weight. Osteoporos Sarcopenia, 3 (2) ( 2017), pp. 98-103, DOI: 10.1016/j.afos.2017.02.001
[[23]]
E.F. Morgan, G.U. Unnikrisnan, A.I. Hussein. Bone mechanical properties in healthy and diseased states. Annu Rev Biomed Eng, 20 ( 2018), pp. 119-143, DOI: 10.1146/annurev-bioeng-062117-121139
[[24]]
B. Zhang, C.N. Coon. The relationship of various tibia bone measurements in hens. Poultry Sci, 76 (12) ( 1997), pp. 1698-1701, DOI: 10.1093/ps/76.12.1698
[[25]]
S.A. Williams, B. Chastek, K. Sundquist, et al.. Economic burden of osteoporotic fractures in US managed care enrollees. Am J Manag Care, 26 (5) ( 2020), pp. e142-e149, DOI: 10.37765/ajmc.2020.43156
[[26]]
J. Compston. Reducing the treatment gap in osteoporosis. Lancet Diabetes Endocrinol, 8 (1) ( 2020), pp. 7-9, DOI: 10.1016/S2213-8587(19)30378-X
[[27]]
S.J. Curry, A.H. Krist, D.K. Owens, et al.. Screening for osteoporosis to prevent fractures: US Preventive Services Task Force recommendation statement. JAMA, 319 (24) ( 2018), pp. 2521-2531, DOI: 10.1001/jama.2018.7498
[[28]]
Statistics NCFH. Research NCFHS. Health,United States. ( 2013)
[[29]]
R. Durdin, C.M. Parsons, E. Dennison, N.C. Harvey, C. Cooper, K. Ward. Ethnic differences in bone microarchitecture. Curr Osteoporos Rep ( 2020), pp. 1-8, DOI: 10.1007/s11914-020-00642-y
[[30]]
M.S. Yau, A.L. Kuipers, R. Price, et al.. A meta-analysis of the transferability of bone mineral density genetic loci associations from European to African ancestry populations. J Bone Miner Res, 36 (3) ( 2020), pp. 469-479, DOI: 10.1002/jbmr.4220
[[31]]
L. Bulathsinhala, J.M. Hughes, C.J. McKinnon, et al.. Risk of stress fracture varies by race/ethnic origin in a cohort study of 1.3 million US Army soldiers. J Bone Miner Res, 32 (7) ( 2017), pp. 1546-1553, DOI: 10.1002/jbmr.3131

Accesses

Citations

Detail

Sections
Recommended

/