Nrf2 modulates the benefits of evening exercise in type 2 diabetes

Babatunde Fasipe, Ismail Laher

Sports Medicine and Health Science ›› 2023, Vol. 5 ›› Issue (4) : 251-258. DOI: 10.1016/j.smhs.2023.09.001
Review

Nrf2 modulates the benefits of evening exercise in type 2 diabetes

Author information +
History +

Abstract

Exercise has well-characterized therapeutic benefits in the management of type 2 diabetes mellitus (T2DM). Most of the beneficial effects of exercise arise from the impact of nuclear factor erythroid 2 related factor-2 (Nrf2) activation of glucose metabolism. Nrf2 is an essential controller of cellular anti-oxidative capacity and circadian rhythms. The circadian rhythm of Nrf2 is influenced by circadian genes on its expression, where the timing of exercise effects the activation of Nrf2 and the rhythmicity of Nrf2 and signaling, such that the timing of exercise has differential physiological effects. Exercise in the evening has beneficial effects on diabetes management, such as lowering of blood glucose and weight. The mechanisms responsible for these effects have not yet been associated with the influence of exercise on the circadian rhythm of Nrf2 activity. A better understanding of exercise-induced Nrf2 activation on Nrf2 rhythm and signaling can improve our appreciation of the distinct effects of morning and evening exercise. This review hypothesizes that activation of Nrf2 by exercise in the morning, when Nrf2 level is already at high levels, leads to hyperactivation and decrease in Nrf2 signaling, while activation of Nrf2 in the evening, when Nrf2 levels are at nadir levels, improves Nrf2 signaling and lowers blood glucose levels and increases fatty acid oxidation. Exploring the effects of Nrf2 activators on rhythmic signaling could also provide valuable insights into the optimal timing of their application, while also holding promise for timed treatment of type 2 diabetes.

Cite this article

Download citation ▾
Babatunde Fasipe, Ismail Laher. Nrf2 modulates the benefits of evening exercise in type 2 diabetes. Sports Medicine and Health Science, 2023, 5(4): 251‒258 https://doi.org/10.1016/j.smhs.2023.09.001

References

[[1]]
A. Cuadrado. Structural and functional characterization of Nrf2 degradation by glycogen synthase kinase 3/β-TrCP. Free Radic Biol Med, 88 (Pt B) ( 2015), pp. 147-157, DOI: 10.1016/j.freeradbiomed.2015.04.029
[[2]]
2.J.A. Hawley, M. Hargreaves, M.J. Joyner, J.R. Zierath. Integrative biology of exercise. Cell, 159 (4) ( 2014), pp. 738-749, DOI: 10.1016/j.cell.2014.10.029
[[3]]
Y.J. Heo, S.E. Choi, J.Y. Jeon, et al.. Visfatin induces inflammation and insulin resistance via the NF-κB and STAT3 signaling pathways in hepatocytes. J Diabetes Res, 2019 ( 2019), Article 4021623, DOI: 10.1155/2019/4021623
[[4]]
A. Dakroub, S. A Nasser, N. Younis, et al.. Visfatin: a possible role in cardiovasculo-metabolic disorders. Cells, 9 (11) ( 2020), p. 2444, DOI: 10.3390/cells9112444
[[5]]
D.G. Haider, J. Pleiner, M. Francesconi, G.F. Wiesinger, M. Müller, M. Wolzt.Exercise training lowers plasma visfatin concentrations in patients with type 1 diabetes. J Clin Endocrinol Metab, 91 (11) ( 2006), pp. 4702-4704, DOI: 10.1210/jc.2006-1013
[[6]]
F. He, L. Antonucci, M. Karin. Nrf 2 as a regulator of cell metabolism and inflammation in cancer. Carcinogenesis, 41 (4) ( 2020), pp. 405-416, DOI: 10.1093/carcin/bgaa039
[[7]]
N. Esteras, T.S. Blacker, E.A. Zherebtsov, et al.. Nrf2 regulates glucose uptake and metabolism in neurons and astrocytes. Redox Biol, 62 ( 2023), Article 102672, DOI: 10.1016/j.redox.2023.102672
[[8]]
E.A. Richter, N.B. Ruderman. AMPK and the biochemistry of exercise: implications for human health and disease. Biochem J, 418 (2) ( 2009), pp. 261-275, DOI: 10.1042/BJ20082055
[[9]]
W.L. Haskell, I.M. Lee, R.R. Pate, et al.. Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Med Sci Sports Exerc, 39 (8) ( 2007), pp. 1423-1434, DOI: 10.1249/mss.0b013e3180616b27
[[10]]
J.M. Jakicic, A.D. Otto. Treatment and prevention of obesity: what is the role of exercise?. Nutr Rev, 64 (2 Pt 2) ( 2006), pp. S57-S61, DOI: 10.1111/j.1753-4887.2006.tb00235.x
[[11]]
M. Doi. Circadian clock-deficient mice as a tool for exploring disease etiology. Biol Pharm Bull, 35 (9) ( 2012), pp. 1385-1391, DOI: 10.1248/bpb.b12-00364
[[12]]
M. Wilking, M. Ndiaye, H. Mukhtar, N. Ahmad. Circadian rhythm connections to oxidative stress: implications for human health. Antioxidants Redox Signal, 19 (2) ( 2013), pp. 192-208, DOI: 10.1089/ars.2012.4889
[[13]]
E.L. Kanabrocki, D. Murray, R.C. Hermida, et al.. Circadian variation in oxidative stress markers in healthy and type II diabetic men. Chronobiol Int, 19 (2) ( 2002), pp. 423-439, DOI: 10.1081/cbi-120002914
[[14]]
Y.Q. Xu, D. Zhang, T. Jin, et al.. Diurnal variation of hepatic antioxidant gene expression in mice. PLoS One, 7 (8) ( 2012), Article e44237, DOI: 10.1371/journal.pone.0044237
[[15]]
F. He, X. Ru, T. Wen.Nrf2, a transcription factor for stress response and beyond. Int J Mol Sci, 21 (13) ( 2020), p. 4777, DOI: 10.3390/ijms21134777
[[16]]
S. Tao, P. Liu, G. Luo, et al.. p97 negatively regulates Nrf 2 by extracting ubiquitylated Nrf2 from the KEAP1-CUL3 E3 complex. Mol Cell Biol, 37 (8) ( 2017), Article e00660, DOI: 10.1128/MCB.00660-16. 16
[[17]]
C. Tonelli, I.I.C. Chio, D.A. Tuveson. Transcriptional regulation by Nrf2. Antioxidants Redox Signal, 29 (17) ( 2018), pp. 1727-1745, DOI: 10.1089/ars.2017.7342
[[18]]
Q. Ma. Role of Nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol, 53 ( 2013), pp. 401-426, DOI: 10.1146/annurev-pharmtox-011112-140320
[[19]]
D.Y. Seo, S. Lee, N. Kim, et al.. Morning and evening exercise. Integr Med Res, 2 (4) ( 2013), pp. 139-144, DOI: 10.1016/j.imr.2013.10.003
[[20]]
D.W. Hill, J.A. Leiferman, N.A. Lynch, B.S. Dangelmaier, S.E. Burt. Temporal specificity in adaptations to high-intensity exercise training. Med Sci Sports Exerc, 30 (3) ( 1998), pp. 450-455, DOI: 10.1097/00005768-199803000-00017
[[21]]
M. Savikj, B.M. Gabriel, P.S. Alm, et al.. Afternoon exercise is more efficacious than morning exercise at improving blood glucose levels in individuals with type 2 diabetes: a randomised crossover trial. Diabetologia, 62 (2) ( 2019), pp. 233-237, DOI: 10.1007/s00125-018-4767-z
[[22]]
U.A. Syeda, D. Battillo, A. Visaria, S.K. Malin.The importance of exercise for glycemic control in type 2 diabetes. Am J Med Open, 9 ( 2023), Article 100031, DOI: 10.1016/j.ajmo.2023.100031
[[23]]
S.A. Creasy, L. Wayland, S.L. Panter, et al.. Effect of morning and evening exercise on energy balance: a pilot study. Nutrients, 14 (4) ( 2022), p. 816, DOI: 10.3390/nu14040816
[[24]]
T. Moholdt, E.B. Parr, B.L. Devlin, J. Debik, G. Giskeødegård, J.A. Hawley. The effect of morning vs evening exercise training on glycaemic control and serum metabolites in overweight/obese men: a randomised trial. Diabetologia, 64 (9) ( 2021), pp. 2061-2076, DOI: 10.1007/s00125-021-05477-5
[[25]]
S.R. Toghi-Eshghi, J.E. Yardley. Morning (Fasting) vs afternoon resistance exercise in individuals with type 1 diabetes: a randomized crossover study. J Clin Endocrinol Metab, 104 (11) ( 2019), pp. 5217-5224, DOI: 10.1210/jc.2018-02384
[[26]]
J.H.P.M. van der Velde, S.C. Boone, E. Winters-van Eekelen, et al.. Timing of physical activity in relation to liver fat content and insulin resistance. Diabetologia, 66 (3) ( 2023), pp. 461-471, DOI: 10.1007/s00125-022-05813-3
[[27]]
R. Mancilla, B. Brouwers, V.B. Schrauwen-Hinderling, M.K.C. Hesselink, J. Hoeks, P. Schrauwen. Exercise training elicits superior metabolic effects when performed in the afternoon compared to morning in metabolically compromised humans. Physiol Rep, 8 (24) ( 2021), Article e14669, DOI: 10.14814/phy2.14669
[[28]]
H.K. Kim, S. Furuhashi, M. Takahashi, et al.. Late-afternoon endurance exercise is more effective than morning endurance exercise at improving 24-h glucose and blood lipid levels. Front Endocrinol, 13 ( 2022), Article 957239, DOI: 10.3389/fendo.2022.957239
[[29]]
M.I. Schmidt, A. Hadji-Georgopoulos, M. Rendell, S. Margolis, A. Kowarski. The dawn phenomenon, an early morning glucose rise: implications for diabetic intraday blood glucose variation. Diabetes Care, 4 (6) ( 1981), pp. 579-585, DOI: 10.2337/diacare.4.6.579
[[30]]
J.A. Kanaley, J.Y. Weltman, K.S. Pieper, A. Weltman, M.L. Hartman. Cortisol and growth hormone responses to exercise at different times of day. J Clin Endocrinol Metab, 86 (6) ( 2001), pp. 2881-2889, DOI: 10.1210/jcem.86.6.7566
[[31]]
W. Fan, W. Waizenegger, C.S. Lin, et al.. PPARδ promotes running endurance by preserving glucose. Cell Metabol, 25 (5) ( 2017), pp. 1186-1193.e4, DOI: 10.1016/j.cmet.2017.04.006
[[32]]
R.P. Robertson.Nrf2 and antioxidant response in animal models of type 2 diabetes. Int J Mol Sci, 24 (4) ( 2023), p. 3082, DOI: 10.3390/ijms24043082
[[33]]
J.A. David, W.J. Rifkin, P.S. Rabbani, D.J. Ceradini. The Nrf2/Keap1/ARE pathway and oxidative stress as a therapeutic target in type II diabetes mellitus. J Diabetes Res, 2017 ( 2017), Article 4826724, DOI: 10.1155/2017/4826724
[[34]]
J.B. de Haan. Nrf 2 activators as attractive therapeutics for diabetic nephropathy. Diabetes, 60 (11) ( 2011), pp. 2683-2684. 10.2337/db11-1072
[[35]]
A.S. Jiménez-Osorio, S. González-Reyes, J. Pedraza-Chaverri.Natural Nrf 2 activators in diabetes. Clin Chim Acta, 448 ( 2015), pp. 182-192, DOI: 10.1016/j.cca.2015.07.009
[[36]]
S. Crunkhorn.Deal watch: abbott boosts investment in Nrf 2 activators for reducing oxidative stress. Nat Rev Drug Discov, 11 (2) ( 2012), p. 96, DOI: 10.1038/nrd3655
[[37]]
L. Torrente, G.M. DeNicola. Targeting Nrf2 and its downstream processes: opportunities and challenges. Annu Rev Pharmacol Toxicol, 62 ( 2022), pp. 279-300, DOI: 10.1146/annurev-pharmtox-052220-104025
[[38]]
J.A. Mohawk, C.B. Green, J.S. Takahashi. Central and peripheral circadian clocks in mammals. Annu Rev Neurosci, 35 ( 2012), pp. 445-462, DOI: 10.1146/annurev-neuro-060909-153128
[[39]]
I. Rabinovich-Nikitin, B. Lieberman, T.A. Martino, L.A. Kirshenbaum. Circadian-regulated cell death in cardiovascular diseases. Circulation, 139 (7) ( 2019), pp. 965-980, DOI: 10.1161/CIRCULATIONAHA.118.036550
[[40]]
Y. Tahara, S. Aoyama, S. Shibata. The mammalian circadian clock and its entrainment by stress and exercise. J Physiol Sci, 67 (1) ( 2017), pp. 1-10, DOI: 10.1007/s12576-016-0450-7
[[41]]
Q. Sun, C. Zeng, L. Du, C. Dong.Mechanism of circadian regulation of the Nrf2/ARE pathway in renal ischemia-reperfusion. Exp Ther Med, 21 (3) ( 2021), p. 190, DOI: 10.3892/etm.2021.9622
[[42]]
S. Bevinakoppamath, S.C. Ramachandra, A.K. Yadav, V. Basavaraj, P. Vishwanath, A. Prashant. Understanding the emerging link between circadian rhythm, Nrf 2 pathway, and breast cancer to overcome drug resistance. Front Pharmacol, 12 ( 2022), Article 719631, DOI: 10.3389/fphar.2021.719631
[[43]]
I. Chaves, G.T. van der Horst, R. Schellevis, et al.. Insulin-FOXO 3 signaling modulates circadian rhythms via regulation of clock transcription. Curr Biol, 24 (11) ( 2014), pp. 1248-1255, DOI: 10.1016/j.cub.2014.04.018
[[44]]
Early Jo D. Menon C.A. Wyse, et al.. Circadian clock protein BMAL 1 regulates IL-1β in macrophages via Nrf2. Proc Natl Acad Sci U S A, 115 (36) ( 2018), pp. E8460-E8468, DOI: 10.1073/pnas.1800431115
[[45]]
G. Asher, D. Gatfield, M. Stratmann, et al.. SIRT 1 regulates circadian clock gene expression through PER2 deacetylation. Cell, 134 (2) ( 2008), pp. 317-328, DOI: 10.1016/j.cell.2008.06.050
[[46]]
T. Kitakaze, A. Makiyama, Y. Yamashita, H. Ashida. Low dose of luteolin activates Nrf2 in the liver of mice at start of the active phase but not that of the inactive phase. PLoS One, 15 (4) ( 2020), Article e0231403, DOI: 10.1371/journal.pone.0231403
[[47]]
V. Pekovic-Vaughan, J. Gibbs, H. Yoshitane, et al.. The circadian clock regulates rhythmic activation of the NRF2/glutathione-mediated antioxidant defense pathway to modulate pulmonary fibrosis. Genes Dev, 28 (6) ( 2014), pp. 548-560, DOI: 10.1101/gad.237081.113
[[48]]
A. Daiber, K. Frenis, M. Kuntic, et al.. Redox regulatory changes of circadian rhythm by the environmental risk factors traffic noise and air pollution. Antioxidants Redox Signal, 37 (10-12) ( 2022), pp. 679-703, DOI: 10.1089/ars.2021.0272
[[49]]
M.D. Li, C.M. Li, Z. Wang. The role of circadian clocks in metabolic disease. Yale J Biol Med, 85 (3) ( 2012), pp. 387-401
[[50]]
Y. Yagishita, T. Fukutomi, A. Sugawara, et al.. Nrf 2 protects pancreatic β-cells from oxidative and nitrosative stress in diabetic model mice. Diabetes, 63 (2) ( 2014), pp. 605-618, DOI: 10.2337/db13-0909
[[51]]
A. Uruno, Y. Yagishita, F. Katsuoka, et al.. Nrf2-mediated regulation of skeletal muscle glycogen metabolism. Mol Cell Biol, 36 (11) ( 2016), pp. 1655-1672, DOI: 10.1128/MCB.01095-15
[[52]]
S. Glund, A. Deshmukh, Y.C. Long, et al.. Interleukin-6 directly increases glucose metabolism in resting human skeletal muscle. Diabetes, 56 (6) ( 2007), pp. 1630-1637, DOI: 10.2337/db06-1733
[[53]]
S. Herzig, R.A.M.P.K. Shaw. Guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol, 19 (2) ( 2018), pp. 121-135, DOI: 10.1038/nrm.2017.95
[[54]]
Y. Tanaka, T. Ikeda, K. Yamamoto, H. Ogawa, T. Kamisako. Dysregulated expression of fatty acid oxidation enzymes and iron-regulatory genes in livers of Nrf2-null mice. J Gastroenterol Hepatol, 27 (11) ( 2012), pp. 1711-1717, DOI: 10.1111/j.1440-1746.2012.07180.x
[[55]]
T. Varga, Z. Czimmerer, L. Nagy. PPARs are a unique set of fatty acid regulated transcription factors controlling both lipid metabolism and inflammation. Biochim Biophys Acta, 1812 (8) ( 2011), pp. 1007-1022, DOI: 10.1016/j.bbadis.2011.02.014
[[56]]
M. Pawlak, P. Lefebvre, B. Staels. Molecular mechanism of PPARα action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. J Hepatol, 62 (3) ( 2015), pp. 720-733, DOI: 10.1016/j.jhep.2014.10.039
[[57]]
K. Ito, A. Carracedo, D. Weiss, et al.. A PML-PPAR-δ pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance. Nat Med, 18 (9) ( 2012), pp. 1350-1358, DOI: 10.1038/nm.2882
[[58]]
T. Tanaka, J. Yamamoto, S. Iwasaki, et al.. Activation of peroxisome proliferator-activated receptor delta induces fatty acid beta-oxidation in skeletal muscle and attenuates metabolic syndrome. Proc Natl Acad Sci U S A, 100 (26) ( 2003), pp. 15924-15929, DOI: 10.1073/pnas.0306981100
[[59]]
S.L. Slocum, J.J. Skoko, N. Wakabayashi, et al.. Keap1/Nrf2 pathway activation leads to a repressed hepatic gluconeogenic and lipogenic program in mice on a high-fat diet. Arch Biochem Biophys, 591 ( 2016), pp. 57-65, DOI: 10.1016/j.abb.2015.11.040
[[60]]
B.S.A. Silva, J.S. Uzeloto, F.S. Lira, et al.. Exercise as a peripheral circadian clock resynchronizer in vascular and skeletal muscle aging. Int J Environ Res Publ Health, 18 (24) ( 2021), Article 12949, DOI: 10.3390/ijerph182412949
[[61]]
B.M. Gabriel, J.R. Zierath. Circadian rhythms and exercise - re-setting the clock in metabolic disease. Nat Rev Endocrinol, 15 (4) ( 2019), pp. 197-206, DOI: 10.1038/s41574-018-0150-x
[[62]]
S. Aoyama, S. Shibata.Time-of-day-dependent physiological responses to meal and exercise. Front Nutr, 7 ( 2020), p. 18, DOI: 10.3389/fnut.2020.00018
[[63]]
H.J. Blazer, C.L. Jordan, J.A. Pederson, et al.. Effects of time-of-day training preference on resistance-exercise performance. Res Q Exerc Sport, 92 (3) ( 2021), pp. 492-499, DOI: 10.1080/02701367.2020.1751032
[[64]]
R.A. Martin, K.A. Esser. Time for exercise? Exercise and its influence on the skeletal muscle clock. J Biol Rhythm, 37 (6) ( 2022), pp. 579-592, DOI: 10.1177/07487304221122662
[[65]]
L.S. Chow, R.E. Gerszten, J.M. Taylor, et al.. Exerkines in health, resilience and disease. Nat Rev Endocrinol, 18 (5) ( 2022), pp. 273-289, DOI: 10.1038/s41574-022-00641-2
[[66]]
S. Saha, B. Buttari, E. Panieri, E. Profumo, L. Saso. An overview of Nrf2 signaling pathway and its role in inflammation. Molecules, 25 (22) ( 2020), p. 5474, DOI: 10.3390/molecules25225474
[[67]]
N.J. Hoffman, B.L. Parker, R. Chaudhuri, et al.. Global phosphoproteomic analysis of human skeletal muscle reveals a network of exercise-regulated kinases and AMPK substrates. Cell Metabol, 22 (5) ( 2015), pp. 922-935, DOI: 10.1016/j.cmet.2015.09.001
[[68]]
H. Ellingsgaard, I. Hauselmann, B. Schuler, et al.. Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells. Nat Med, 17 (11) ( 2011), pp. 1481-1489, DOI: 10.1038/nm.2513
[[69]]
H. Ellingsgaard, J.A. Ehses, E.B. Hammar, et al.. Interleukin-6 regulates pancreatic alpha-cell mass expansion. Proc Natl Acad Sci U S A, 105 (35) ( 2008), pp. 13163-13168, DOI: 10.1073/pnas.0801059105
[[70]]
M. Daval, F. Foufelle, P. Ferré. Functions of AMP-activated protein kinase in adipose tissue. J Physiol, 574 (Pt 1) ( 2006), pp. 55-62, DOI: 10.1113/jphysiol.2006.111484
[[71]]
Y.C. Long, J.R. Zierath. AMP-activated protein kinase signaling in metabolic regulation. J Clin Invest, 116 (7) ( 2006), pp. 1776-1783, DOI: 10.1172/JCI29044
[[72]]
K. Zimmermann, J. Baldinger, B. Mayerhofer, A.G. Atanasov, V.M. Dirsch, E.H. Heiss. Activated AMPK boosts the Nrf2/HO-1 signaling axis--A role for the unfolded protein response. Free Radic Biol Med, 88 (Pt B) ( 2015), pp. 417-426, DOI: 10.1016/j.freeradbiomed.2015.03.030
[[73]]
S. Ezagouri, Z. Zwighaft, J. Sobel, et al.. Physiological and molecular dissection of daily variance in exercise capacity. Cell Metabol, 30 (1) ( 2019), pp. 78-91.e4, DOI: 10.1016/j.cmet.2019.03.012
[[74]]
R.A. Srivastava, S.L. Pinkosky, S. Filippov, J.C. Hanselman, C.T. Cramer, R.S. Newton. AMP-activated protein kinase: an emerging drug target to regulate imbalances in lipid and carbohydrate metabolism to treat cardio-metabolic diseases. J Lipid Res, 53 (12) ( 2012), pp. 2490-2514, DOI: 10.1194/jlr.R025882
[[75]]
S. Jäger, C. Handschin, J. St-Pierre, B.M. Spiegelman. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc Natl Acad Sci U S A, 104 (29) ( 2007), pp. 12017-12022, DOI: 10.1073/pnas.0705070104
[[76]]
Y. Liu, J.K. Colby, X. Zuo, J. Jaoude, D. Wei, I. Shureiqi.The role of PPAR-δ in metabolism, inflammation, and cancer: many characters of a critical transcription factor. Int J Mol Sci, 19 (11) ( 2018), p. 3339, DOI: 10.3390/ijms19113339
[[77]]
D. Holst, S. Luquet, V. Nogueira, K. Kristiansen, X. Leverve, P.A. Grimaldi. Nutritional regulation and role of peroxisome proliferator-activated receptor delta in fatty acid catabolism in skeletal muscle. Biochim Biophys Acta, 1633 (1) ( 2003), pp. 43-50, DOI: 10.1016/s1388- 1981(03)00071-4
[[78]]
J. Iglesias, S. Barg, D. Vallois, et al.. PPARβ/δ affects pancreatic β cell mass and insulin secretion in mice. J Clin Invest, 122 (11) ( 2012), pp. 4105-4117, DOI: 10.1172/JCI42127
[[79]]
T. Tang, M.J. Abbott, M. Ahmadian, A.B. Lopes, Y. Wang, H.S. Sul. Desnutrin/ATGL activates PPARδ to promote mitochondrial function for insulin secretion in islet β cells. Cell Metabol, 18 (6) ( 2013), pp. 883-895, DOI: 10.1016/j.cmet.2013.10.012
[[80]]
L. Li, T. Li, Y. Zhang, et al.. Peroxisome proliferator-activated receptorβ/δ activation is essential for modulating p-Foxo1/Foxo 1 status in functional insulin-positive cell differentiation. Cell Death Dis, 6 (4) ( 2015), Article e1715, DOI: 10.1038/cddis.2015.88
[[81]]
C.H. Lee, P. Olson, A. Hevener, et al.. PPARdelta regulates glucose metabolism and insulin sensitivity. Proc Natl Acad Sci U S A, 103 (9) ( 2006), pp. 3444-3449, DOI: 10.1073/pnas.0511253103
[[82]]
A. Peeters, M. Baes. Role of PPARα in hepatic carbohydrate metabolism. PPAR Res, 2010 ( 2010), Article 572405, DOI: 10.1155/2010/572405
[[83]]
K. Ravnskjaer, F. Frigerio, M. Boergesen, T. Nielsen, P. Maechler, S. Mandrup. PPARdelta is a fatty acid sensor that enhances mitochondrial oxidation in insulin-secreting cells and protects against fatty acid-induced dysfunction. J Lipid Res, 51 (6) ( 2010), pp. 1370-1379, DOI: 10.1194/jlr.M001123
[[84]]
B. Fasipe, S. Li, I. Laher. Harnessing the cardiovascular benefits of exercise: are Nrf2 activators useful?. Sports Med Health Sci, 3 (2) ( 2021), pp. 70-79, DOI: 10.1016/j.smhs.2021.04.002
[[85]]
A.J. Done, T. Traustadóttir. Nrf 2 mediates redox adaptations to exercise. Redox Biol, 10 ( 2016), pp. 191-199, DOI: 10.1016/j.redox.2016.10.003
[[86]]
Y. Kitaoka. The role of Nrf2 in skeletal muscle on exercise capacity. Antioxidants, 10 (11) ( 2021), p. 1712, DOI: 10.3390/antiox10111712
[[87]]
J. Lee, M. Moulik, Z. Fang, et al.. Bmal1 and β-cell clock are required for adaptation to circadian disruption, and their loss of function leads to oxidative stress-induced β-cell failure in mice. Mol Cell Biol, 33 (11) ( 2013), pp. 2327-2338, DOI: 10.1128/MCB.01421-12
[[88]]
B. Chhunchha, E. Kubo, D.P. Singh. Clock Protein Bmal1 and Nrf2 cooperatively control aging or oxidative response and redox homeostasis by regulating rhythmic expression of Prdx6. Cells, 9 (8) ( 2020), p. 1861, DOI: 10.3390/cells9081861
[[89]]
Y. Tanaka, H. Ogata, M. Kayaba, et al.. Effect of a single bout of exercise on clock gene expression in human leukocyte. J Appl Physiol. ( 1985), 128 (4) ( 2020), pp. 847-854, DOI: 10.1152/japplphysiol.00891.2019
[[90]]
C.Y. Lian, B.X. Chu, W.H. Xia, Z.Y. Wang, R.F. Fan, L. Wang. Persistent activation of Nrf2 in a p62-dependent non-canonical manner aggravates lead-induced kidney injury by promoting apoptosis and inhibiting autophagy. J Adv Res, 46 ( 2023), pp. 87-100, DOI: 10.1016/j.jare.2022.04.016
[[91]]
R.F. Fan, K.K. Tang, Z.Y. Wang, L. Wang. Persistent activation of Nrf2 promotes a vicious cycle of oxidative stress and autophagy inhibition in cadmium-induced kidney injury. Toxicology, 464 ( 2021), Article 152999, DOI: 10.1016/j.tox.2021.152999
[[92]]
L.J.M. Bischoff, I.A. Kuijper, J.P. Schimming, et al.. A systematic analysis of Nrf 2 pathway activation dynamics during repeated xenobiotic exposure. Arch Toxicol, 93 (2) ( 2019), pp. 435-451, DOI: 10.1007/s00204-018-2353-2
[[93]]
M. Xue, H. Momiji, N. Rabbani, et al.. Frequency modulated translocational oscillations of Nrf 2 mediate the antioxidant response element cytoprotective transcriptional response. Antioxidants Redox Signal, 23 (7) ( 2015), pp. 613-629, DOI: 10.1089/ars.2014.5962
[[94]]
M.Z. Liang, T.L. Ke, L. Chen. Mitochondrial protein PGAM5 emerges as a new regulator in neurological diseases. Front Mol Neurosci, 14 ( 2021), Article 730604, DOI: 10.3389/fnmol.2021.730604
[[95]]
Y.S. Wang, P. Yu, Y. Wang, et al.. AMP-activated protein kinase protects against necroptosis via regulation of Keap1-PGAM5 complex. Int J Cardiol, 259 ( 2018), pp. 153-162, DOI: 10.1016/j.ijcard.2018.01.036
[[96]]
L. Parker, A. Trewin, I. Levinger, C.S. Shaw, N.K. Stepto. Exercise-intensity dependent alterations in plasma redox status do not reflect skeletal muscle redox-sensitive protein signaling. J Sci Med Sport, 21 (4) ( 2018), pp. 416-421, DOI: 10.1016/j.jsams.2017.06.017
[[97]]
A.V. Souza, J.S. Giolo, R.R. Teixeira, et al.. Salivary and plasmatic antioxidant profile following continuous, resistance, and high-Intensity interval exercise: preliminary study. Oxid Med Cell Longev, 2019 ( 2019), Article 5425021, DOI: 10.1155/2019/5425021
[[98]]
C.J. Wruck, K. Streetz, G. Pavic, et al.. Nrf 2 induces interleukin-6 (IL-6) expression via an antioxidant response element within the IL-6 promoter. J Biol Chem, 286 (6) ( 2011), pp. 4493-4499, DOI: 10.1074/jbc.M110.162008
[[99]]
T. Jansen, M. Kvandová, I. Schmal, et al.. Lack of Endothelial α1AMPK reverses the vascular protective effects of exercise by causing eNOS uncoupling. Antioxidants, 10 (12) ( 2021). 1974. DOI: 10.3390/antiox10121974
[[100]]
H.M. O'Neill. AMPK and exercise: glucose uptake and insulin sensitivity. Diabetes Metab J, 37 (1) ( 2013), pp. 1-21, DOI: 10.4093/dmj.2013.37.1.1
[[101]]
M. Matzinger, K. Fischhuber, D. Pölöske, K. Mechtler, E.H. Heiss.AMPK leads to phosphorylation of the transcription factor Nrf2, tuning transactivation of selected target genes. Redox Biol, 29 ( 2020), Article 101393, DOI: 10.1016/j.redox.2019.101393
[[102]]
E. Petsouki, S.N.S. Cabrera, E.H. Heiss. AMPK and Nrf2: interactive players in the same team for cellular homeostasis?. Free Radic Biol Med, 190 ( 2022), pp. 75-93, DOI: 10.1016/j.freeradbiomed.2022.07.014
[[103]]
R.J. Jarrett, H. Keen. Diurnal variation of oral glucose tolerance: a possible pointer to the evolution of diabetes mellitus. Br Med J, 2 (5653) ( 1969), pp. 341-344, DOI: 10.1136/bmj.2.5653.341
[[104]]
E. Poggiogalle, H. Jamshed, C.M. Peterson. Circadian regulation of glucose, lipid, and energy metabolism in humans. Metabolism, 84 ( 2018), pp. 11-27, DOI: 10.1016/j.metabol.2017.11.017
[[105]]
J. Qian, C. Dalla Man, C.J. Morris, C. Cobelli, F.A.J.L. Scheer. Differential effects of the circadian system and circadian misalignment on insulin sensitivity and insulin secretion in humans. Diabetes Obes Metabol, 20 (10) ( 2018), pp. 2481-2485, DOI: 10.1111/dom.13391
[[106]]
R.J. Jarrett, I.A. Baker, H. Keen, N.W. Oakley. Diurnal variation in oral glucose tolerance: blood sugar and plasma insulin levels morning, afternoon, and evening. Br Med J, 1 (5794) ( 1972), pp. 199-201, DOI: 10.1136/bmj.1.5794.199
[[107]]
K.F. Carroll, P.J. Nestel. Diurnal variation in glucose tolerance and in insulin secretion in man. Diabetes, 22 (5) ( 1973), pp. 333-348, DOI: 10.2337/diab.22.5.333
[[108]]
E. Van Cauter, K.S. Polonsky, A.J. Scheen. Roles of circadian rhythmicity and sleep in human glucose regulation. Endocr Rev, 18 (5) ( 1997), pp. 716-738, DOI: 10.1210/edrv.18.5.0317
[[109]]
N. Seshadri, C.A. Doucette. Circadian regulation of the pancreatic beta cell. Endocrinology, 162 (9) ( 2021), p. bqab089, DOI: 10.1210/endocr/bqab089
[[110]]
A.N. Rigas, A.H. Bittles, D.R. Hadden, D.A. Montgomery. Circadian variation of glucose, insulin, and free fatty acids during long-term use of oral hypoglycaemic agents in diabetes mellitus. Br Med J, 4 (5622) ( 1968), pp. 25-28
[[111]]
C. Malherbe, M. De Gasparo, R. De Hertogh, J.J. Hoet. Circadian variations of blood sugar and plasma insulin levels in man. Diabetologia, 5 (6) ( 1969), pp. 397-404, DOI: 10.1007/BF00427978
[[112]]
S. Panda, M.P. Antoch, B.H. Miller, et al.. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell, 109 (3) ( 2002), pp. 307-320, DOI: 10.1016/s0092-8674(02)00722-5
[[113]]
Y.Q. Xu, D. Zhang, T. Jin, et al.. Diurnal variation of hepatic antioxidant gene expression in mice. PLoS One, 7 (8) ( 2012), Article e44237, DOI: 10.1371/journal.pone.0044237
[[114]]
E. Gurgul-Convey, I. Mehmeti, T. Plötz, A. Jörns, S. Lenzen. Sensitivity profile of the human EndoC-βH1 beta cell line to proinflammatory cytokines. Diabetologia, 59 (10) ( 2016), pp. 2125-2133, DOI: 10.1007/s00125-016-4060-y
[[115]]
S. Baumel-Alterzon, L.S. Katz, G. Brill, A. Garcia-Ocaña, D.K. Scott.Nrf2: the master and captain of beta cell fate. Trends Endocrinol Metab, 32 (1) ( 2021), pp. 7-19, DOI: 10.1016/j.tem.2020.11.002
[[116]]
G. Boden, J. Ruiz, J.L. Urbain, X. Chen. Evidence for a circadian rhythm of insulin secretion. Am J Physiol, 271 (2 Pt 1) ( 1996), pp. E246-E252, DOI: 10.1152/ajpendo.1996.271.2.E246
[[117]]
S. Bona, S.A. Fernandes, A.C.J. Moreira, et al.. Melatonin restores zinc levels, activates the Keap1/Nrf 2 pathway, and modulates endoplasmic reticular stress and HSP in rats with chronic hepatotoxicity. World J Gastrointest Pharmacol Therapeut, 13 (2) ( 2022), pp. 11-22, DOI: 10.4292/wjgpt.v13.i2.11
[[118]]
S. Sharma, H. Singh, N. Ahmad, P. Mishra, A. Tiwari. The role of melatonin in diabetes: therapeutic implications. Arch Endocrinol Metab, 59 (5) ( 2015), pp. 391-399, DOI: 10.1590/2359-3997000000098
[[119]]
T. Mohan, K.K.S. Narasimhan, D.B. Ravi, et al.. Role of Nrf2 dysfunction in the pathogenesis of diabetic nephropathy: therapeutic prospect of epigallocatechin-3-gallate. Free Radic Biol Med, 160 ( 2020), pp. 227-238, DOI: 10.1016/j.freeradbiomed.2020.07.037
[[120]]
X. Wang, Y. Chen, D. Abdelkader, W. Hassan, H. Sun, J. Liu. Combination therapy with oleanolic acid and metformin as a synergistic treatment for diabetes. J Diabetes Res, 2015 ( 2015), Article 973287, DOI: 10.1155/2015/973287
[[121]]
P. Neerati, R. Devde, A.K. Gangi. Evaluation of the effect of curcumin capsules on glyburide therapy in patients with type-2 diabetes mellitus. Phytother Res, 28 (12) ( 2014), pp. 1796-1800, DOI: 10.1002/ptr.5201
[[122]]
R. Kumar, P.S. Negi, B. Singh, G. Ilavazhagan, K. Bhargava, N.K. Sethy. Cordyceps sinensis promotes exercise endurance capacity of rats by activating skeletal muscle metabolic regulators. J Ethnopharmacol, 136 (1) ( 2011), pp. 260-266, DOI: 10.1016/j.jep.2011.04.040
[[123]]
G. Rahimi, S. Heydari, B. Rahimi, et al.. A combination of herbal compound (SPTC) along with exercise or metformin more efficiently alleviated diabetic complications through down-regulation of stress oxidative pathway upon activating Nrf2-Keap1 axis in AGE rich diet-induced type 2 diabetic mice. Nutr Metab, 18 (1) ( 2021), p. 14, DOI: 10.1186/s12986-021-00543-6
[[124]]
X. Bai, Y. Chen, X. Hou, M. Huang, J. Jin. Emerging role of Nrf2 in chemoresistance by regulating drug-metabolizing enzymes and efflux transporters. Drug Metab Rev, 48 (4) ( 2016), pp. 541-567, DOI: 10.1080/03602532.2016.1197239
[[125]]
M. Matzinger, K. Fischhuber, E.H. Heiss. Activation of Nrf2 signaling by natural products-can it alleviate diabetes?. Biotechnol Adv, 36 (6) ( 2018), pp. 1738-1767, DOI: 10.1016/j.biotechadv.2017.12.015
[[126]]
T.N. Bonten, A. Saris, M.J. van Oostrom, et al.. Effect of aspirin intake at bedtime versus on awakening on circadian rhythm of platelet reactivity. A randomised cross-over trial. Thromb Haemost, 112 (6) ( 2014), pp. 1209-1218, DOI: 10.1160/TH14-05-0453

Accesses

Citations

Detail

Sections
Recommended

/