Effects of high-/low-temperature and high-altitude hypoxic environments on gut microbiota of sports people: A retrospective analysis

Xue Geng, Chaoyi Qu, Lina Zhao, Jianhong Zhang, Peng Huang, Derun Gao, Qiangman Wei, Fei Qin, Jiexiu Zhao

Sports Medicine and Health Science ›› 2023, Vol. 5 ›› Issue (2) : 83-90. DOI: 10.1016/j.smhs.2023.03.003
Review

Effects of high-/low-temperature and high-altitude hypoxic environments on gut microbiota of sports people: A retrospective analysis

Author information +
History +

Abstract

As an invisible “endocrine organ”, gut microbiota is widely involved in the regulation of nervous system, endocrine system, circulatory system, and digestive system. It is also closely related to host health and the occurrence of many chronic diseases. Relevant literature shows that high temperature, low temperature, and high-altitude hypoxia may have negative effects on commensal microorganisms. The stimulation of exercise may aggravate this reaction, which is related to the occurrence of exercise-induced fever and gastrointestinal and respiratory diseases. The intervention of probiotics can alleviate the above problems to a certain extent. Therefore, this paper takes exercise in a special environment as the starting point, deeply analyses the intervention effect and potential mechanism of probiotics, and provides the theoretical basis and reference for follow-up research and application of probiotics in sports science.

eywords Probiotics; Exercise; High-/low-temperature environment; High-altitude hypoxia; Gut microbiota

Cite this article

Download citation ▾
Xue Geng, Chaoyi Qu, Lina Zhao, Jianhong Zhang, Peng Huang, Derun Gao, Qiangman Wei, Fei Qin, Jiexiu Zhao. Effects of high-/low-temperature and high-altitude hypoxic environments on gut microbiota of sports people: A retrospective analysis. Sports Medicine and Health Science, 2023, 5(2): 83‒90 https://doi.org/10.1016/j.smhs.2023.03.003

References

[[1]]
Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature, 486 (7402) ( 2012), pp. 207-214, DOI: 10.1038/nature11234
[[2]]
LV Hooper, DR Littman, AJ. Macpherson. Interactions between the microbiota and the immune system. Science, 336 (6086) ( 2012), pp. 1268-1273, DOI: 10.1126/science.1223490
[[3]]
R Sender, S Fuchs, R. Milo. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell, 164 (3) ( 2016), pp. 337-340, DOI: 10.1016/j.cell.2016.01.013
[[4]]
A Zhernakova, A Kurilshikov, MJ Bonder, et al.. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science, 352 (6285) ( 2016), pp. 565-569, DOI: 10.1126/science.aad3369
[[5]]
CM Shing, JM Peake, CL Lim, et al.. Effects of probiotics supplementation on gastrointestinal permeability, inflammation and exercise performance in the heat. Eur J Appl Physiol, 114 (1) ( 2014), pp. 93-103, DOI: 10.1007/s00421-013-2748-y
[[6]]
Y Komano, K Shimada, H Naito, et al.. Efficacy of heat-killed lactococcus lactis jcm 5805 on immunity and fatigue during consecutive high intensity exercise in male athletes: a randomized, placebo-controlled, double-blinded trial. J Int Soc Sports Nutr, 15 (1) ( 2018), p. 39, DOI: 10.1186/s12970-018-0244-9
[[7]]
NP West, DB Pyne, AW Cripps, et al.. Lactobacillus fermentum (pcc®) supplementation and gastrointestinal and respiratory-tract illness symptoms: a randomised control trial in athletes. Nutr J, 10 ( 2011), p. 30, DOI: 10.1186/1475-2891-10-30
[[8]]
LB. Rowell. Human cardiovascular adjustments to exercise and thermal stress. Physiol Rev, 54 (1) ( 1974), pp. 75-159, DOI: 10.1152/physrev.1974.54.1.75
[[9]]
W Pires, CE Veneroso, SP Wanner, et al.. Association between exercise-induced hyperthermia and intestinal permeability: a systematic review. Sports Med, 47 (7) ( 2017), pp. 1389-1403, DOI: 10.1007/s40279-016-0654-2
[[10]]
P Lian, S Braber, S Varasteh, HJ Wichers, G. Folkerts. Hypoxia and heat stress affect epithelial integrity in a caco-2/ht-29 co-culture. Sci Rep, 11 (1) ( 2021), Article 13186, DOI: 10.1038/s41598-021-92574-5
[[11]]
YH. Wang. Current progress of research on intestinal bacterial translocation. Microb Pathog, 152 ( 2021), Article 104652, DOI: 10.1016/j.micpath.2020.104652
[[12]]
S Chen, Y Zheng, Y Zhou, et al.. Gut dysbiosis with minimal enteritis induced by high temperature and humidity. Sci Rep, 9 (1) ( 2019), Article 18686, DOI: 10.1038/s41598-019-55337-x
[[13]]
AD Soares, KA Costa, SP Wanner, et al.. Dietary glutamine prevents the loss of intestinal barrier function and attenuates the increase in core body temperature induced by acute heat exposure. Br J Nutr, 112 (10) ( 2014), pp. 1601-1610, DOI: 10.1017/S0007114514002608
[[14]]
XJ Lin, YJ Li, ZL Li, F Zou, MT. Lin. Pre-existing lipopolysaccharide may increase the risk of heatstroke in rats. Am J Med Sci, 337 (4) ( 2009), pp. 265-270, DOI: 10.1097/MAJ.0b013e31818b0fa2
[[15]]
CL. Lim. Heat sepsis precedes heat toxicity in the pathophysiology of heat stroke-a new paradigm on an ancient disease. Antioxidants, 7 (11) ( 2018), p. 149, DOI: 10.3390/antiox7110149
[[16]]
M Zuhl, S Schneider, K Lanphere, C Conn, K Dokladny, P. Moseley. Exercise regulation of intestinal tight junction proteins. Br J Sports Med, 48 (12) ( 2014), pp. 980-986, DOI: 10.1136/bjsports-2012-091585
[[17]]
JH Guy GE. Vincent.Nutrition and supplementation considerations to limit endotoxemia when exercising in the heat. Sports (Basel), 6 (1) ( 2018), p. 12, DOI: 10.3390/sports6010012
[[18]]
KA Costa, AD Soares, SP Wanner, et al.. L-arginine supplementation prevents increases in intestinal permeability and bacterial translocation in male swiss mice subjected to physical exercise under environmental heat stress. J Nutr, 144 (2) ( 2014), pp. 218-223, DOI: 10.3945/jn.113.183186
[[19]]
LE Armstrong, JM Anderson, DJ Casa, EC. Johnson. Exertional heat stroke and the intestinal microbiome. Scand J Med Sci Sports, 22 (4) ( 2012), pp. 581-582, DOI: 10.1111/j.1600-0838.2012.01493.x
[[20]]
K Lundgren-Kownacki, M Dahl, C Gao, et al.. Exploring how a traditional diluted yoghurt drink may mitigate heat strain during medium-intensity intermittent work: a multidisciplinary study of occupational heat strain. Ind Health, 56 (2) ( 2018), pp. 106-121, DOI: 10.2486/indhealth.2017-0030
[[21]]
CJ Bennett, R Henry, RMJ Snipe, RJS. Costa. Is the gut microbiota bacterial abundance and composition associated with intestinal epithelial injury, systemic inflammatory profile, and gastrointestinal symptoms in response to exertional-heat stress?. J Sci Med Sport, 23 (12) ( 2020), pp. 1141-1153, DOI: 10.1016/j.jsams.2020.06.002
[[22]]
WP Cheshire Jr.. Thermoregulatory disorders and illness related to heat and cold stress. Auton Neurosci, 196 ( 2016), pp. 91-104, DOI: 10.1016/j.autneu.2016.01.001
[[23]]
H Wakabayashi, J Oksa, MJ. Tipton. Exercise performance in acute and chronic cold exposure. J Phys Fitness Sports Med, 4 (2) ( 2015), pp. 177-185, DOI: 10.7600/jpfsm.4.177
[[24]]
TM. Ikäheimo. Cardiovascular diseases, cold exposure and exercise. Temperature (Austin), 5 (2) ( 2018), pp. 123-146, DOI: 10.1080/23328940.2017.1414014
[[25]]
C Chevalier, O Stojanović, DJ Colin, et al.. Gut microbiota orchestrates energy homeostasis during cold. Cell, 163 (6) ( 2015), pp. 1360-1374, DOI: 10.1016/j.cell.2015.11.004
[[26]]
S Gomez de la Torre Canny, JF. Rawls. Baby, it’s cold outside: host-microbiota relationships drive temperature adaptations. Cell Host Microbe, 18 (6) ( 2015), pp. 635-636, DOI: 10.1016/j.chom.2015.11.009
[[27]]
Y Zhang, L Sun, R Zhu, et al.. Porcine gut microbiota in mediating host metabolic adaptation to cold stress. NPJ Biofilms Microbiomes, 8 (1) ( 2022), p. 18, DOI: 10.1038/s41522-022-00283-2
[[28]]
Y Meng, L Chen, W Lin, H Wang, G Xu, X. Weng.Exercise reverses the alterations in gut microbiota upon cold exposure and promotes cold-induced weight loss. Front Physiol, 11 ( 2020), p. 311, DOI: 10.3389/fphys.2020.00311
[[29]]
H Sasaki, H Miyakawa, A Watanabe, et al.. Evening rather than morning increased physical activity alters the microbiota in mice and is associated with increased body temperature and sympathetic nervous system activation. Biochim Biophys Acta, Mol Basis Dis, 1868 (6) ( 2022), Article 166373, DOI: 10.1016/j.bbadis.2022.166373
[[30]]
NT Vargas, CL Chapman, BD Johnson,R Gathercole, ZJ. Schlader. Thermal behavior during exercise alleviates thermal discomfort despite exacerbating increases in core temperature. Faseb J, 33 (S1) ( 2019), p. 838.24, DOI: 10.1096/fasebj.2019.33.1_supplement.838.24
[[31]]
SP Wanner, KA Costa, AD Soares, VN Cardoso, CC. Coimbra. Physical exercise-induced changes in the core body temperature of mice depend more on ambient temperature than on exercise protocol or intensity. Int J Biometeorol, 58 (6) ( 2014), pp. 1077-1085, DOI: 10.1007/s00484-013-0699-y
[[32]]
MCK Severinsen BK. Pedersen. Muscle-organ crosstalk: the emerging roles of myokines. Endocr Rev, 41 (4) ( 2020), pp. 594-609, DOI: 10.1210/endrev/bnaa016
[[33]]
R Manickam, K Duszka, W. Wahli.PPARs and microbiota in skeletal muscle health and wasting. Int J Mol Sci, 21 (21) ( 2020), p. 8056, DOI: 10.3390/ijms21218056
[[34]]
P Chen, Y Liu, W Liu, Y Wang, Z Liu, M. Rong. Impact of high-altitude hypoxia on bone defect repair: a review of molecular mechanisms and therapeutic implications. Front Med, 9 ( 2022), Article 842800, DOI: 10.3389/fmed.2022.842800
[[35]]
X Bai, G Liu, J Yang, et al.. Changes in the gut microbiota of rats in high-altitude hypoxic environments. Microbiol Spectr, 10 (6) ( 2022), Article e0162622, DOI: 10.1128/spectrum.01626-22
[[36]]
JP Karl, CE Berryman, AJ Young, et al.. Associations between the gut microbiota and host responses to high altitude. Am J Physiol Gastrointest Liver Physiol, 315 (6) ( 2018), pp. G1003-G1015, DOI: 10.1152/ajpgi.00253.2018
[[37]]
B Zeng, S Zhang, H Xu, et al.. Gut microbiota of tibetans and Tibetan pigs varies between high and low altitude environments. Microbiol Res, 235 ( 2020), Article 126447, DOI: 10.1016/j.micres.2020.126447
[[38]]
K Khanna, KP Mishra, L Ganju, B Kumar, SB. Singh. High-altitude-induced alterations in gut-immune axis: a review. Int Rev Immunol, 37 (2) ( 2018), pp. 119-126, DOI: 10.1080/08830185.2017.1407763
[[39]]
B Kleessen, W Schroedl, M Stueck, A Richter, O Rieck, M. Krueger. Microbial and immunological responses relative to high-altitude exposure in mountaineers. Med Sci Sports Exerc, 37 (8) ( 2005), pp. 1313-1318, DOI: 10.1249/01.mss.0000174888.22930.e0
[[40]]
M Li, T Han, W Zhang, W Li, Y Hu, SK. Lee. Simulated altitude exercise training damages small intestinal mucosa barrier in the rats. J Exerc Rehabil, 14 (3) ( 2018), pp. 341-348, DOI: 10.12965/jer.1835128.064
[[41]]
P Machado, A Caris, S Santos, et al.. Moderate exercise increases endotoxin concentration in hypoxia but not in normoxia: a controlled clinical trial. Medicine (Baltim), 96 (4) ( 2017), Article e5504, DOI: 10.1097/MD.0000000000005504
[[42]]
A Khalyfa, A Ericsson, Z Qiao, I Almendros, R Farré D. Gozal. Circulating exosomes and gut microbiome induced insulin resistance in mice exposed to intermittent hypoxia: effects of physical activity. EBioMedicine, 64 ( 2021), Article 103208, DOI: 10.1016/j.ebiom.2021.103208
[[43]]
R Šket, T Debevec, S Kublik, et al.. Intestinal metagenomes and metabolomes in healthy young males: inactivity and hypoxia generated negative physiological symptoms precede microbial dysbiosis. Front Physiol, 9 ( 2018), p. 198, DOI: 10.3389/fphys.2018.00198
[[44]]
MA King, I Rollo, LB. Baker. Nutritional considerations to counteract gastrointestinal permeability during exertional heat stress. J Appl Physiol, 130 (6) ( 2021), pp. 1754-1765, DOI: 10.1152/japplphysiol.00072.2021
[[45]]
HM Binkley, J Beckett, DJ Casa, et al.. National athletic trainers’ association position statement: exertional heat illnesses. J Athl Train, 37 (3) ( 2002), pp. 329-343, DOI: 10.4085/1062-6050-50.9.07
[[46]]
SK Gill, DM Allerton, P Ansley-Robson, K Hemmings, M Cox, RJ. Costa. Does short-term high dose probiotic supplementation containing lactobacillus casei attenuate exertional-heat stress induced endotoxaemia and cytokinaemia?. Int J Sport Nutr Exerc Metabol, 26 (3) ( 2016), pp. 268-275, DOI: 10.1123/ijsnem.2015-0186
[[47]]
SK Gill, AM Teixeira, F Rosado, M Cox, RJ. Costa. High-dose probiotic supplementation containing lactobacillus casei for 7 days does not enhance salivary antimicrobial protein responses to exertional heat stress compared with placebo. Int J Sport Nutr Exerc Metabol, 26 (2) ( 2016), pp. 150-160, DOI: 10.1123/ijsnem.2015-0171
[[48]]
M Gleeson, NC. Bishop. Uri in athletes: are mucosal immunity and cytokine responses key risk factors?. Exerc Sport Sci Rev, 41 (3) ( 2013), pp. 148-153, DOI: 10.1097/JES.0b013e3182956ead
[[49]]
NP Walsh, M Gleeson, RJ Shephard, et al.. Position statement. Part one: immune function and exercise. Exerc Immunol Rev, 17 ( 2011), pp. 6-63
[[50]]
K Kim, JY Jang, G Moon, et al.. Experiences of the emergency department at the pyeongchang polyclinic during the 2018 pyeongchang winter olympic games. Yonsei Med J, 60 (5) ( 2019), pp. 474-480, DOI: 10.3349/ymj.2019.60.5.474
[[51]]
AJ Cox, DB Pyne, PU Saunders PA. Fricker. Oral administration of the probiotic lactobacillus fermentum vri-003 and mucosal immunity in endurance athletes. Br J Sports Med, 44 (4) ( 2010), pp. 222-226, DOI: 10.1136/bjsm.2007.044628
[[52]]
M Gleeson, NC Bishop, M Oliveira, P. Tauler. Daily probiotic’s (lactobacillus casei shirota) reduction of infection incidence in athletes. Int J Sport Nutr Exerc Metabol, 21 (1) ( 2011), pp. 55-64, DOI: 10.1123/ijsnem.21.1.55
[[53]]
B Strasser, D Geiger, M Schauer, et al.. Probiotic supplements beneficially affect tryptophan-kynurenine metabolism and reduce the incidence of upper respiratory tract infections in trained athletes: a randomized, double-blinded, placebo-controlled trial. Nutrients, 8 (11) ( 2016), p. 752, DOI: 10.3390/nu8110752
[[54]]
G Flaherty, R O’Connor, N. Johnston. Altitude training for elite endurance athletes: a review for the travel medicine practitioner. Trav Med Infect Dis, 14 (3) ( 2016), pp. 200-211, DOI: 10.1016/j.tmaid.2016.03.015
[[55]]
AC Anand, VK Sashindran, L. Mohan. Gastrointestinal problems at high altitude. Trop Gastroenterol, 27 (4) ( 2006), pp. 147-153
[[56]]
R Derby, K. deWeber. The athlete and high altitude. Curr Sports Med Rep, 9 (2) ( 2010), pp. 79-85, DOI: 10.1249/JSR.0b013e3181d404ac
[[57]]
ZJ McKenna, F Gorini Pereira, TL Gillum, FT Amorim, MR Deyhle, CM. Mermier. High-altitude exposures and intestinal barrier dysfunction. Am J Physiol Regul Integr Comp Physiol, 322 (3) ( 2022), pp. R192-R203, DOI: 10.1152/ajpregu.00270.2021
[[58]]
M Gleeson, NC Bishop, L. Struszczak. Effects of lactobacillus casei shirota ingestion on common cold infection and herpes virus antibodies in endurance athletes: a placebo-controlled, randomized trial. Eur J Appl Physiol, 116 (8) ( 2016), pp. 1555-1563, DOI: 10.1007/s00421-016-3415-x
[[59]]
YH Ding, LY Qian, J Pang, et al.. The regulation of immune cells by lactobacilli: a potential therapeutic target for anti-atherosclerosis therapy. Oncotarget, 8 (35) ( 2017), pp. 59915-59928, DOI: 10.18632/oncotarget.18346
[[60]]
JM Evans, LS Morris, JR. Marchesi. The gut microbiome: the role of a virtual organ in the endocrinology of the host. J Endocrinol, 218 (3) ( 2013), pp. R37-R47, DOI: 10.1530/JOE-13-0131
[[61]]
RJS Costa, RMJ Snipe, CM Kitic, PR. Gibson. Systematic review: exercise-induced gastrointestinal syndrome-implications for health and intestinal disease. Aliment Pharmacol Ther, 46 (3) ( 2017), pp. 246-265, DOI: 10.1111/apt.14157
[[62]]
C Colbey, AJ Cox, DB Pyne, P Zhang, AW Cripps, NP. West. Upper respiratory symptoms, gut health and mucosal immunity in athletes. Sports Med, 48 (Suppl 1) ( 2018), pp. 65-77, DOI: 10.1007/s40279-017-0846-4
[[63]]
T Kokubo, Y Komano, R Tsuji, D Fujiwara, T Fujii, O. Kanauchi. The effects of plasmacytoid dendritic cell-stimulative lactic acid bacteria, lactococcus lactis strain plasma, relieves exercise-induced fatigue and aids recovery via immuno-modulatory action. Int J Sport Nutr Exerc Metabol, 29 (4) ( 2019), pp. 1-19, DOI: 10.1123/ijsnem.2018-0377
[[64]]
J Gao, K Xu, H Liu, et al.. Impact of the gut microbiota on intestinal immunity mediated by tryptophan metabolism. Front Cell Infect Microbiol, 8 ( 2018), p. 13, DOI: 10.3389/fcimb.2018.00013
[[65]]
T Okamoto, K Morino, S Ugi, et al.. Microbiome potentiates endurance exercise through intestinal acetate production. Am J Physiol Endocrinol Metab, 316 (5) ( 2019), pp. E956-E966. DOI: 10.1152/ajpendo.00510.2018
[[66]]
M Wang, Y Chen, Y Wang, et al.. Beneficial changes of gut microbiota and metabolism in weaned rats with lactobacillus acidophilus ncfm and bifidobacterium lactis bi-07 supplementation. J Funct Foods, 48 ( 2018), pp. 252-265, DOI: 10.1016/j.jff.2018.07.008
[[67]]
Y Usui, Y Kimura, T Satoh, et al.. Effects of long-term intake of a yogurt fermented with lactobacillus delbrueckii subsp. Bulgaricus 2038 and streptococcus thermophilus 1131 on mice. Int Immunol, 30 (7) ( 2018), pp. 319-331, DOI: 10.1093/intimm/dxy035
[[68]]
Q Sun, CT Ho, X Zhang, Y Liu, R Zhang, Z. Wu. Strategies for circadian rhythm disturbances and related psychiatric disorders: a new cue based on plant polysaccharides and intestinal microbiota. Food Funct, 13 (3) ( 2022), pp. 1048-1061, DOI: 10.1039/d1fo02716f
[[69]]
D Michalickova, R Minic, N Dikic, et al.. Lactobacillus helveticus lafti l 10 supplementation reduces respiratory infection duration in a cohort of elite athletes: a randomized, double-blind, placebo-controlled trial. Appl Physiol Nutr Metabol, 41 (7) ( 2016), pp. 782-789, DOI: 10.1139/apnm-2015-0541
[[70]]
G Berg, D Rybakova, D Fischer, et al.. Microbiome definition re-visited: old concepts and new challenges. Microbiome, 8 (1) ( 2020), p. 103, DOI: 10.1186/s40168-020-00875-0
[[71]]
JR Marchesi J. Ravel. The vocabulary of microbiome research: a proposal. Microbiome, 3 ( 2015), p. 31, DOI: 10.1186/s40168-015-0094-5
Funding
National Natural Science Foundation of China(11775059); National Key Technology R&D Program of China(2019YFF0301600)

Accesses

Citations

Detail

Sections
Recommended

/