Non-enzymatic antioxidant blood plasma profile in the period of high training loads of elite speed skaters in the altitude

Elena Proskurnina, Dmitry Martynov, Andrey Yakushkin, Irina Zelenkova

Sports Medicine and Health Science ›› 2023, Vol. 5 ›› Issue (2) : 120-127. DOI: 10.1016/j.smhs.2023.02.002
Original article

Non-enzymatic antioxidant blood plasma profile in the period of high training loads of elite speed skaters in the altitude

Author information +
History +

Abstract

At the altitude, hypoxia and training load are key factors in the development of oxidative stress. Altitude-induced oxidative stress is developed due to the depletion of antioxidant potential. In the current study, we examined the non-enzymatic antioxidant profile of blood plasma in 7 males and 5 females specializing in speed skating at a 21-day training camp at 1 850 ​m above sea level. Training included: cycling, roller skating, ice skating, strength training, and special training. At the start point and the endpoint, total hemoglobin mass (tHb-mass), hemoglobin concentration, and circulating blood volume were determined. Antioxidant profiles, hypoxic doses, hypoxic impulses, and training impulses were assessed at 3, 6, 10, 14, and 18 days. Antioxidant profiles consisting of “urate” and “thiol” parts were registered with chemiluminometry. In the training dynamics, antioxidant parameters changed individually, but in total there was a decrease in the “urate” capacity by a factor of 1.6 (p ​= ​0.001) and an increase in the “thiol” capacity by a factor of 1.8 (p ​= ​0.013). The changes in “urate” capacity positively correlated (rS ​= ​0.40) and the changes in “thiol” capacity negatively correlated (rS ​= ​−0.45) with changes in tHb-mass. Both exercise and hypoxic factors affect the antioxidant parameters bidirectionally. They correlated with a decrease in thiol capacity and with an increase in urate capacity. The assessment of the non-enzymatic antioxidant profile can be a simple and useful addition to screening the reactive oxygen species homeostasis and can help choose the personalized training schedule, individualize recovery and ergogenic support.

Keywords

Elite athletes / High training loads / Oxidative stress / Blood antioxidants / Redox homeostasis / Altitude training / Speed skating

Cite this article

Download citation ▾
Elena Proskurnina, Dmitry Martynov, Andrey Yakushkin, Irina Zelenkova. Non-enzymatic antioxidant blood plasma profile in the period of high training loads of elite speed skaters in the altitude. Sports Medicine and Health Science, 2023, 5(2): 120‒127 https://doi.org/10.1016/j.smhs.2023.02.002

References

[[1]]
H Sies, DP. Jones. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol, 21 (7) ( 2020), pp. 363-383, DOI: 10.1038/s41580-020-0230-3
[[2]]
B D’Autreaux, MB. Toledano. ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol, 8 (10) ( 2007), pp. 813-824, DOI: 10.1038/nrm2256
[[3]]
PD Ray, BW Huang Y. Tsuji. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal, 24 (5) ( 2012), pp. 981-990, DOI: 10.1016/j.cellsig.2012.01.008
[[4]]
Y Wei, S Jia, Y Ding, S Xia, S. Giunta. Balanced basal-levels of ROS (redox-biology), and very-low-levels of pro-inflammatory cytokines (cold-inflammaging), as signaling molecules can prevent or slow-down overt-inflammaging, and the aging-associated decline of adaptive-homeostasis. Exp Gerontol, 172 ( 2022), Article 112067, DOI: 10.1016/j.exger.2022.112067
[[5]]
H Sies, VV Belousov, NS Chandel, et al.. Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat Rev Mol Cell Biol, 23 (7) ( 2022), pp. 499-515, DOI: 10.1038/s41580-022-00456-z
[[6]]
H. Sies. Oxidative eustress: on constant alert for redox homeostasis. Redox Biol, 41 ( 2021), Article 101867, DOI: 10.1016/j.redox.2021.101867
[[7]]
H. Sies. Role of metabolic H2O2 generation: redox signaling and oxidative stress. J Biol Chem, 289 (13) ( 2014), pp. 8735-8741, DOI: 10.1074/jbc.R113.544635
[[8]]
K Le Gal, EE Schmidt, VI Sayin. Cellular redox homeostasis. Antioxidants, 10 (9) ( 2021), p. 1377, DOI: 10.3390/antiox10091377
[[9]]
H Sies, C Berndt, DP. Jones. Oxidative stress. Annu Rev Biochem, 86 ( 2017), pp. 715-748, DOI: 10.1146/annurev-biochem-061516-045037
[[10]]
Y Sun, Y Lu, J Saredy, et al.. ROS systems are a new integrated network for sensing homeostasis and alarming stresses in organelle metabolic processes. Redox Biol, 37 ( 2020), Article 101696, DOI: 10.1016/j.redox.2020.101696
[[11]]
CE Cooper, NB Vollaard, T Choueiri, MT. Wilson. Exercise, free radicals and oxidative stress. Biochem Soc Trans, 30 (2) ( 2002), pp. 280-285
[[12]]
J Finaud, G Lac, E. Filaire. Oxidative stress : relationship with exercise and training. Sports Med, 36 (4) ( 2006), pp. 327-358, DOI: 10.2165/00007256-200636040-00004
[[13]]
K Fisher-Wellman, RJ. Bloomer.Acute exercise and oxidative stress: a 30 year history. Dyn Med, 8 ( 2009), p. 1, DOI: 10.1186/1476-5918-8-1
[[14]]
M Finkler, D Lichtenberg, I. Pinchuk. The relationship between oxidative stress and exercise. J Basic Clin Physiol Pharmacol, 25 (1) ( 2014), pp. 1-11, DOI: 10.1515/jbcpp-2013-0082
[[15]]
SK Powers, Z Radak, LL. Ji. Exercise-induced oxidative stress: past, present and future. J Physiol, 594 (18) ( 2016), pp. 5081-5092, DOI: 10.1113/JP270646
[[16]]
T Kawamura, I. Muraoka. Exercise-induced oxidative stress and the effects of antioxidant intake from a physiological viewpoint. Antioxidants, 7 (9) ( 2018), p. 119, DOI: 10.3390/antiox7090119
[[17]]
V Conti, G Russomanno, G Corbi, et al.. Aerobic training workload affects human endothelial cells redox homeostasis. Med Sci Sports Exerc, 45 (4) ( 2013), pp. 644-653, DOI: 10.1249/MSS.0b013e318279fb59
[[18]]
J Kruk, HY Aboul-Enein, A Kladna, JE. Bowser. Oxidative stress in biological systems and its relation with pathophysiological functions: the effect of physical activity on cellular redox homeostasis. Free Radic Res, 53 (5) ( 2019), pp. 497-521, DOI: 10.1080/10715762.2019.1612059
[[19]]
S Luti, A Modesti, PA. Modesti. Inflammation, peripheral signals and redox homeostasis in athletes who practice different sports. Antioxidants, 9 (11) ( 2020), p. 1065, DOI: 10.3390/antiox9111065
[[20]]
A Hadzovic-Dzuvo, A Valjevac, O Lepara, S Pjanic, A Hadzimuratovic, A. Mekic. Oxidative stress status in elite athletes engaged in different sport disciplines. Bosn J Basic Med Sci, 14 (2) ( 2014), pp. 56-62, DOI: 10.17305/bjbms.2014.2262
[[21]]
E Varamenti, D Tod, SA. Pullinger.Redox homeostasis and inflammation responses to training in adolescent athletes: a systematic review and meta-analysis. Sports Med Open, 6 (1) ( 2020), p. 34, DOI: 10.1186/s40798-020-00262-x
[[22]]
I Dimauro, MP Paronetto, D. Caporossi. Exercise, redox homeostasis and the epigenetic landscape. Redox Biol, 35 ( 2020), Article 101477, DOI: 10.1016/j.redox.2020.101477
[[23]]
Y Dundar, R. Aslan. Antioxidative stress. E J Med, 5 ( 2000), pp. 45-47
[[24]]
B Poljsak, I. Milisav. The neglected significance of “antioxidative stress”. Oxid Med Cell Longev, 2012 ( 2012), Article 480895, DOI: 10.1155/2012/480895
[[25]]
P Venditti, G Napolitano, D Barone, E Pervito, S. Di Meo. Vitamin E-enriched diet reduces adaptive responses to training determining respiratory capacity and redox homeostasis in rat heart. Free Radic Res, 50 (1) ( 2016), pp. 56-67, DOI: 10.3109/10715762.2015.1106530
[[26]]
A Antonioni, C Fantini, I Dimauro, D. Caporossi. Redox homeostasis in sport: do athletes really need antioxidant support?. Res Sports Med, 27 (2) ( 2019), pp. 147-165, DOI: 10.1080/15438627.2018.1563899
[[27]]
JA Wadley,SI Svendsen, M. Gleeson. Heightened exercise-induced oxidative stress at simulated moderate level altitude vs. Sea level in trained cyclists. Int J Sport Nutr Exerc Metabol, 27 (2) ( 2017), pp. 97-104, DOI: 10.1123/ijsnem.2015-0345
[[28]]
LE Miller, GR McGinnis, B Kliszczewicz, et al.. Blood oxidative-stress markers during a high-altitude trek. Int J Sport Nutr Exerc Metabol, 23 (1) ( 2013), pp. 65-72, DOI: 10.1123/ijsnem.23.1.65
[[29]]
H. Sies. Total antioxidant capacity: appraisal of a concept. J Nutr, 137 (6) ( 2007), pp. 1493-1495, DOI: 10.1093/jn/137.6.1493
[[30]]
R Faiss, B Leger, JM Vesin, et al.. Significant molecular and systemic adaptations after repeated sprint training in hypoxia. PLoS One, 8 (2) ( 2013), Article e56522, DOI: 10.1371/journal.pone.0056522
[[31]]
I Mujika, AP Sharma, T. Stellingwerff. Contemporary periodization of altitude training for elite endurance athletes: a narrative review. Sports Med, 49 (11) ( 2019), pp. 1651-1669, DOI: 10.1007/s40279-019-01165-y
[[32]]
O Girard, F Brocherie, GP. Millet. Effects of altitude/hypoxia on single- and multiple-sprint performance: a comprehensive review. Sports Med, 47 (10) ( 2017), pp. 1931-1949, DOI: 10.1007/s40279-017-0733-z
[[33]]
GP Millet, B Roels, L Schmitt, X Woorons, JP. Richalet. Combining hypoxic methods for peak performance. Sports Med, 40 (1) ( 2010), pp. 1-25, DOI: 10.2165/11317920-000000000-00000
[[34]]
JP Morton NT. Cable. Effects of intermittent hypoxic training on aerobic and anaerobic performance. Ergonomics, 48 (11-14) ( 2005), pp. 1535-1546, DOI: 10.1080/00140130500100959
[[35]]
P de Paula, J. Niebauer. Effects of high altitude training on exercise capacity: fact or myth. Sleep Breath, 16 (1) ( 2012), pp. 233-239, DOI: 10.1007/s11325-010-0445-1
[[36]]
G Flaherty, R O’Connor, N. Johnston. Altitude training for elite endurance athletes: a review for the travel medicine practitioner. Trav Med Infect Dis, 14 (3) ( 2016), pp. 200-211, DOI: 10.1016/j.tmaid.2016.03.015
[[37]]
M Michalczyk, M Czuba, G Zydek, A Zajac, J. Langfort. Dietary recommendations for cyclists during altitude training. Nutrients, 8 (6) ( 2016), p. 377, DOI: 10.3390/nu8060377
[[38]]
C Lundby, P. Robach. Does “altitude training” increase exercise performance in elite athletes?. Exp Physiol, 101 (7) ( 2016), pp. 783-788, DOI: 10.1113/EP085579
[[39]]
W Schmidt, N. Prommer. The optimised CO-rebreathing method: a new tool to determine total haemoglobin mass routinely. Eur J Appl Physiol, 95 (5-6) ( 2005), pp. 486-495, DOI: 10.1007/s00421-005-0050-3
[[40]]
GP Millet, T Debevec, F Brocherie,D Malatesta, O. Girard. Therapeutic use of exercising in hypoxia: promises and limitations. Front Physiol, 7 ( 2016), p. 224, DOI: 10.3389/fphys.2016.00224
[[41]]
LA Garvican-Lewis, K Sharpe, CJ. Gore. Time for a new metric for hypoxic dose?. J Appl Physiol ( 1985), 121 (1) ( 2016), pp. 352-355, DOI: 10.1152/japplphysiol.00579.2015
[[42]]
J Borresen, MI. Lambert. The quantification of training load, the training response and the effect on performance. Sports Med, 39 (9) ( 2009), pp. 779-795, DOI: 10.2165/11317780-000000000-00000
[[43]]
AV Alekseev, EV Proskurnina, YA. Vladimirov. Determination of antioxidants by sensitized chemiluminescence using 2,2’_azo_bis(2_amidinopropane). Moscow Univ Chem Bull, 67 (3) ( 2012), pp. 127-132, DOI: 10.3103/S0027131412030029
[[44]]
E Lissi, M Salim-Hanna, C Pascual, MD. del Castillo. Evaluation of total antioxidant potential (TRAP) and total antioxidant reactivity from luminol-enhanced chemiluminescence measurements. Free Radic Biol Med, 18 (2) ( 1995), pp. 153-158, DOI: 10.1016/0891-5849(94)00117-3
[[45]]
EV Proskurnina, KM Liaukovich, LS Bychkovskaya, et al.. Salivary antioxidant capacity and magnesium in generalized anxiety disorder. Metabolites, 13 ( 2023), p. 73, DOI: 10.3390/metabo13010073
[[46]]
YO Schumacher, T Pottgiesser, C Ahlgrim, S Ruthardt, HH Dickhuth, K. Roecker. Haemoglobin mass in cyclists during stage racing. Int J Sports Med, 29 (5) ( 2008), pp. 372-378, DOI: 10.1055/s-2007-965335
[[47]]
VA. Convertino. Blood volume: its adaptation to endurance training. Med Sci Sports Exerc, 23 (12) ( 1991), pp. 1338-1348
[[48]]
W Schmidt, B Biermann, P Winchenbach, S Lison, D. Boning. How valid is the determination of hematocrit values to detect blood manipulations?. Int J Sports Med, 21 (2) ( 2000), pp. 133-138, DOI: 10.1055/s-2000-8871
[[49]]
WS Waring, A Convery, V Mishra, A Shenkin, DJ Webb, SR. Maxwell. Uric acid reduces exercise-induced oxidative stress in healthy adults. Clin Sci, 105 (4) ( 2003), pp. 425-430, DOI: 10.1042/CS20030149
[[50]]
C Groussard, G Machefer, F Rannou, et al.. Physical fitness and plasma non-enzymatic antioxidant status at rest and after a wingate test. Can J Appl Physiol, 28 (1) ( 2003), pp. 79-92, DOI: 10.1139/h03-007
[[51]]
O Neubauer, D Konig, N Kern, L Nics, KH. Wagner. No indications of persistent oxidative stress in response to an ironman triathlon. Med Sci Sports Exerc, 40 (12) ( 2008), pp. 2119-2128, DOI: 10.1249/MSS.0b013e3181824dab
[[52]]
FD Brites, PA Evelson, MG Christiansen, et al.. Soccer players under regular training show oxidative stress but an improved plasma antioxidant status. Clin Sci, 96 (4) ( 1999), pp. 381-385
[[53]]
G Bjelakovic, D Nikolova, LL Gluud, RG Simonetti, C. Gluud. Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: systematic review and meta-analysis. JAMA, 297 (8) ( 2007), pp. 842-857, DOI: 10.1001/jama.297.8.842
[[54]]
C. Lauridsen. From oxidative stress to inflammation: redox balance and immune system. Poultry Sci, 98 (10) ( 2019), pp. 4240-4246, DOI: 10.3382/ps/pey407
[[55]]
TK Tong, Z Kong, H Lin, et al.. Effects of 12-week endurance training at natural low altitude on the blood redox homeostasis of professional adolescent athletes: a quasi-experimental field trial. Oxid Med Cell Longev, 2016 ( 2016), Article 4848015, DOI: 10.1155/2016/4848015
[[56]]
A Zembron-Lacny, M Slowinska-Lisowska, A. Ziemba. Integration of the thiol redox status with cytokine response to physical training in professional basketball players. Physiol Res, 59 (2) ( 2010), pp. 239-245, DOI: 10.33549/physiolres.931774
[[57]]
A Arsic, V Vucic, M Glibetic, et al.. Redox balance in elite female athletes: differences based on sport types. J Sports Med Phys Fit, 56 (1-2) ( 2016), pp. 1-8
[[58]]
K Papanikolaou, AS Veskoukis, D Draganidis, et al.. Redox-dependent regulation of satellite cells following aseptic muscle trauma: implications for sports performance and nutrition. Free Radic Biol Med, 161 ( 2020), pp. 125-138, DOI: 10.1016/j.freeradbiomed.2020.10.001
[[59]]
MM Soliman, A Aldhahrani, F Althobaiti, et al.. Characterization of the impacts of living at high altitude in taif: oxidative stress biomarker alterations and immunohistochemical changes. Curr Issues Mol Biol, 44 (4) ( 2022), pp. 1610-1625, DOI: 10.3390/cimb44040110
[[60]]
JA Jefferson, J Simoni, E Escudero, et al.. Increased oxidative stress following acute and chronic high altitude exposure. High Alt Med Biol, 5 (1) ( 2004), pp. 61-69, DOI: 10.1089/152702904322963690
[[61]]
A Dosek, H Ohno, Z Acs, AW Taylor, Z. Radak. High altitude and oxidative stress. Respir Physiol Neurobiol, 158 (2-3) ( 2007), pp. 128-131, DOI: 10.1016/j.resp.2007.03.013
[[62]]
AG Vij, R Dutta NK. Satija. Acclimatization to oxidative stress at high altitude. High Alt Med Biol, 6 (4) ( 2005), pp. 301-310, DOI: 10.1089/ham.2005.6.301
[[63]]
AJ Janocha, SAA Comhair, B Basnyat, et al.. Antioxidant defense and oxidative damage vary widely among high-altitude residents. Am J Hum Biol, 29 (6) ( 2017), Article 10.1002, DOI: 10.1002/ajhb.23039
[[64]]
J Quindry, C Dumke, D Slivka, B. Ruby. Impact of extreme exercise at high altitude on oxidative stress in humans. J Physiol, 594 (18) ( 2016), pp. 5093-5104, DOI: 10.1113/JP270651
[[65]]
G McGinnis, B Kliszczewiscz, M Barberio, et al.. Acute hypoxia and exercise-induced blood oxidative stress. Int J Sport Nutr Exerc Metabol, 24 (6) ( 2014), pp. 684-693, DOI: 10.1123/ijsnem.2013-0188
[[66]]
J Leon-Lopez, C Calderon-Soto, M Perez-Sanchez, et al.. Oxidative stress in elite athletes training at moderate altitude and at sea level. Eur J Sport Sci, 18 (6) ( 2018), pp. 832-841, DOI: 10.1080/17461391.2018.1453550
[[67]]
A Cordova Martinez, M Martorell Pons, A Sureda Gomila, JA Tur Mari, A. Pons Biescas. Changes in circulating cytokines and markers of muscle damage in elite cyclists during a multi-stage competition. Clin Physiol Funct Imag, 35 (5) ( 2015), pp. 351-358, DOI: 10.1111/cpf.12170
[[68]]
AW Subudhi, KA Jacobs, TA Hagobian, et al.. Antioxidant supplementation does not attenuate oxidative stress at high altitude. Aviat Space Environ Med, 75 (10) ( 2004), pp. 881-888
[[69]]
AE Koivisto, T Olsen, I Paur, et al.. Effects of antioxidant-rich foods on altitude-induced oxidative stress and inflammation in elite endurance athletes: a randomized controlled trial. PLoS One, 14 (6) ( 2019), Article e0217895, DOI: 10.1371/journal.pone.0217895
[[70]]
R Vani, CS Reddy, S. Asha Devi. Oxidative stress in erythrocytes: a study on the effect of antioxidant mixtures during intermittent exposures to high altitude. Int J Biometeorol, 54 (5) ( 2010), pp. 553-562, DOI: 10.1007/s00484-010-0304-6
[[71]]
AR Biuomy, FSH Oraby, EA Khalifa, HA El-Sherif, J Hussein, Y. Abdel-Latif.Hypoxia-induced oxidative stress in high altitude population: impact of coenzyme Q10 supplementation. J Compl Integr Med, 18 (3) ( 2020), pp. 621-626, DOI: 10.1515/jcim-2020-0077

The authors are sincerely grateful to Victoria Gogotova, Director of the High Achievements Sports of the Russian Skating Union, for the opportunity to carry out this research and for her support.

Accesses

Citations

Detail

Sections
Recommended

/