Going nuclear: Molecular adaptations to exercise mediated by myonuclei

Pieter J. Koopmans, Kevin A. Zwetsloot, Kevin A. Murach

Sports Medicine and Health Science ›› 2023, Vol. 5 ›› Issue (1) : 2-9.

Sports Medicine and Health Science ›› 2023, Vol. 5 ›› Issue (1) : 2-9. DOI: 10.1016/j.smhs.2022.11.005
Review

Going nuclear: Molecular adaptations to exercise mediated by myonuclei

Author information +
History +

Abstract

Muscle fibers are multinucleated, and muscle fiber nuclei (myonuclei) are believed to be post-mitotic and are typically situated near the periphery of the myofiber. Due to the unique organization of muscle fibers and their nuclei, the cellular and molecular mechanisms regulating myofiber homeostasis in unstressed and stressed conditions (e.g., exercise) are unique. A key role myonuclei play in regulating muscle during exercise is gene transcription. Only recently have investigators had the capability to identify molecular changes at high resolution exclusively in myonuclei in response to perturbations in vivo. The purpose of this review is to describe how myonuclei modulate their transcriptome, epigenetic status, mobility and shape, and microRNA expression in response to exercise in vivo. Given the relative paucity of high-fidelity information on myonucleus-specific contributions to exercise adaptation, we identify specific gaps in knowledge and provide perspectives on future directions of research.

Keywords

Skeletal muscle / Epigenetics / Muscle memory / Transcription / myomiR

Cite this article

Download citation ▾
Pieter J. Koopmans, Kevin A. Zwetsloot, Kevin A. Murach. Going nuclear: Molecular adaptations to exercise mediated by myonuclei. Sports Medicine and Health Science, 2023, 5(1): 2‒9 https://doi.org/10.1016/j.smhs.2022.11.005

References

[[1]]
WR Frontera J. Ochala. Skeletal Muscle: a brief review of structure and function. Calcif Tissue Int, 96 (3) ( 2015), pp. 183-195. DOI: 10.1007/s00223-014-9915-y
[[2]]
F Demontis, R Piccirillo, AL Goldberg, N. Perrimon. The influence of skeletal muscle on systemic aging and lifespan. Aging Cell, 12 (6) ( 2013), pp. 943-949. DOI: 10.1111/acel.12126
[[3]]
J Jiao, F. Demontis. Skeletal muscle autophagy and its role in sarcopenia and organismal aging. Curr Opin Pharmacol, 34 ( 2017), pp. 1-6. DOI: 10.1016/j.coph.2017.03.009
[[4]]
J Pérez-Schindler, C. Handschin. Physiological regulation of skeletal muscle mass: resistance exercise-mediated muscle hypertrophy. S Walrand (Ed.), Nutrition and Skeletal Muscle, Academic Press ( 2019), pp. 139-150. DOI: 10.1016/B978-0-12-810422-4.00011-7
[[5]]
M McLeod, L Breen, DL Hamilton, A. Philp. Live strong and prosper: the importance of skeletal muscle strength for healthy ageing. Biogerontology, 17 (3) ( 2016), pp. 497-510. DOI: 10.1007/s10522-015-9631-7
[[6]]
GD Cartee, RT Hepple, MM Bamman, JR. Zierath. Exercise promotes healthy aging of skeletal muscle. Cell Metabol, 23 (6) ( 2016), pp. 1034-1047. DOI: 10.1016/j.cmet.2016.05.007
[[7]]
FW Booth,CK Roberts, MJ. Laye. Lack of exercise is a major cause of chronic diseases. R. Terjung (Ed.), Comprehensive Physiology (first ed.), Wiley ( 2012), pp. 1143-1211. DOI: 10.1002/cphy.c110025
[[8]]
E Anderson, JL. Durstine. Physical activity, exercise, and chronic diseases: a brief review. Sports Med Health Sci, 1 (1) ( 2019), pp. 3-10. DOI: 10.1016/j.smhs.2019.08.006
[[9]]
SF. Gilbert. Myogenesis: The Development of Muscle. Dev Biol. (sixth ed.) ( 2000). Published online.
[[10]]
JC Bruusgaard, K Liestøl, M Ekmark, K Kollstad, K. Gundersen. Number and spatial distribution of nuclei in the muscle fibres of normal mice studied in Vivo. J Physiol, 551 (2) ( 2003), pp. 467-478. DOI: 10.1113/jphysiol.2003.045328
[[11]]
TA. Partridge. Cells that participate in regeneration of skeletal muscle. Gene Ther, 9 (11) ( 2002), pp. 752-753. DOI: 10.1038/sj.gt.3301764
[[12]]
J Chal, O. Pourquié. Making muscle: skeletal myogenesis in vivo and in vitro. Dev Camb Engl, 144 (12) ( 2017), pp. 2104-2122. DOI: 10.1242/dev.151035
[[13]]
M Iwata, DA Englund, Y Wen, et al.. A novel tetracycline-responsive transgenic mouse strain for skeletal muscle-specific gene expression. Skeletal Muscle, 8 (1) ( 2018), p. 33. DOI: 10.1186/s13395-018-0181-y
[[14]]
F Von Walden, M Rea, CB Mobley, et al.. The myonuclear DNA methylome in response to an acute hypertrophic stimulus. Epigenetics, 15 (11) ( 2020), pp. 1151-1162. DOI: 10.1080/15592294.2020.1755581
[[15]]
M Dos Santos, S Backer, B Saintpierre, et al.. Single-nucleus RNA-seq and FISH identify coordinated transcriptional activity in mammalian myofibers. Nat Commun, 11 (1) ( 2020), p. 5102. DOI: 10.1038/s41467-020-18789-8
[[16]]
DW McKellar, LD Walter, LT Song, et al.. Large-scale integration of single-cell transcriptomic data captures transitional progenitor states in mouse skeletal muscle regeneration. Commun Biol, 4 (1) ( 2021), pp. 1-12. DOI: 10.1038/s42003-021-02810-x
[[17]]
Y Wen, DA Englund, BD Peck, KA Murach, JJ McCarthy, CA. Peterson. Myonuclear transcriptional dynamics in response to exercise following satellite cell depletion. iScience, 24 (8) ( 2021), p. 102838. DOI: 10.1016/j.isci.2021.102838
[[18]]
M Kim, V Franke, B Brandt, et al.. Single-nucleus transcriptomics reveals functional compartmentalization in syncytial skeletal muscle cells. Nat Commun, 11 (1) ( 2020), p. 6375. DOI: 10.1038/s41467-020-20064-9
[[19]]
T Moro, CR Brightwell, E Volpi, BB Rasmussen, CS. Fry. Resistance exercise training promotes fiber type-specific myonuclear adaptations in older adults. J Appl Physiol, 128 (4) ( 2020), pp. 795-804. DOI: 10.1152/japplphysiol.00723.2019
[[20]]
BS Tseng, CE Kasper, VR. Edgerton. Cytoplasm-to-myonucleus ratios and succinate dehydrogenase activities in adult rat slow and fast muscle fibers. Cell Tissue Res, 275 (1) ( 1994), pp. 39-49. DOI: 10.1007/BF00305374
[[21]]
IG. Burleigh. Observations on the number of nuclei within the fibres of some red and white muscles. J Cell Sci, 23 (1) ( 1977), pp. 269-284. DOI: 10.1242/jcs.23.1.269
[[22]]
D Davey, S. Wong. Morphometric analysis of rat extensor digitorum longus and soleus muscles. Aust J Exp Biol Med Sci, 58 (3) ( 1980), pp. 213-230. DOI: 10.1038/icb.1980.22
[[23]]
R Zak, M Rabinowitz, C. Platt. Ribonucleic acids associated with myofibrils. Biochemistry, 6 (8) ( 1967), pp. 2493-2500. DOI: 10.1021/bi00860a028
[[24]]
S Frese, M Ruebner, F Suhr, et al.. Long-term Endurance Exercise in Humans Stimulates Cell Fusion of Myoblasts along with Fusogenic Endogenous Retroviral Genes in Vivo. PLoS One, 10 (7) ( 2015), p. e0132099. DOI: 10.1371/journal.pone.0132099
[[25]]
CS Fry, B Noehren, J Mula, et al.. Fibre type-specific satellite cell response to aerobic training in sedentary adults: fibre type satellite cell content increases with aerobic training. J Physiol, 592 (12) ( 2014), pp. 2625-2635. DOI: 10.1113/jphysiol.2014.271288
[[26]]
AI McKenzie, AC D’Lugos, MJ Saunders, KD Gworek, ND. Luden.Fiber type-specific satellite cell content in cyclists following heavy training with carbohydrate and carbohydrate-protein supplementation. Front Physiol, 7 ( 2016), p. 550. DOI: 10.3389/fphys.2016.00550
[[27]]
Q Goh, T Song, MJ Petrany, et al.. Myonuclear accretion is a determinant of exercise-induced remodeling in skeletal muscle. Elife, 8 ( 2019), p. e44876. DOI: 10.7554/eLife.44876
[[28]]
M Kurosaka, H Naito, Y Ogura, A Kojima, K Goto, S. Katamoto. Effects of voluntary wheel running on satellite cells in the rat plantaris muscle. J Sports Sci Med, 8 (1) ( 2009), pp. 51-57
[[29]]
HK Smith, L Maxwell, CD Rodgers, NH McKee, MJ. Plyley. Exercise-enhanced satellite cell proliferation and new myonuclear accretion in rat skeletal muscle. J Appl Physiol, 90 (4) ( 2001), pp. 1407-1414. DOI: 10.1152/jappl.2001.90.4.1407
[[30]]
T Bjørnsen, M Wernbom, A Løvstad, et al.. Delayed myonuclear addition, myofiber hypertrophy, and increases in strength with high-frequency low-load blood flow restricted training to volitional failure. J Appl Physiol, 126 (3) ( 2019), pp. 578-592. DOI: 10.1152/japplphysiol.00397.2018
[[31]]
CB Mobley, et al..AM Holland, WC Kephart, Progressive resistance-loaded voluntary wheel running increases hypertrophy and differentially affects muscle protein synthesis, ribosome biogenesis, and proteolytic markers in rat muscle. J Anim Physiol Anim Nutr, 102 (1) ( 2018), pp. 317-329. DOI: 10.1111/jpn.12691
[[32]]
T Snijders, JSJ Smeets, J van Kranenburg, AK Kies, LJC van Loon, LB. Verdijk. Changes in myonuclear domain size do not precede muscle hypertrophy during prolonged resistance-type exercise training. Acta Physiol, 216 (2) ( 2016), pp. 231-239. DOI: 10.1111/apha.12609
[[33]]
JK Petrella, J Kim, DL Mayhew, JM Cross, MM. Bamman. Potent myofiber hypertrophy during resistance training in humans is associated with satellite cell-mediated myonuclear addition: a cluster analysis. J Appl Physiol, 104 (6) ( 2008), pp. 1736-1742. DOI: 10.1152/japplphysiol.01215.2007
[[34]]
T Snijders, AM Holwerda, LJC Loon, LB. Verdijk. Myonuclear content and domain size in small versus larger muscle fibres in response to 12 weeks of resistance exercise rraining in older adults. Acta Physiol, 231(4):e13599 ( 2021). DOI: 10.1111/apha.13599
[[35]]
JC Bruusgaard, IB Johansen, IM Egner, ZA Rana, K. Gundersen. Myonuclei acquired by overload exercise precede hypertrophy and are not lost on detraining. Proc Natl Acad Sci USA, 107 (34) ( 2010), pp. 15111-15116. DOI: 10.1073/pnas.0913935107
[[36]]
CM Dungan, C Brightwell, Y Wen, et al.. Muscle-specific cellular and molecular adaptations to late-life voluntary concurrent exercise. Function, 3 (4) ( 2022), p. zqac027. DOI: 10.1093/function/zqac027
[[37]]
Y Wen, CM Dungan, CB Mobley, T Valentino, F von Walden, KA. Murach. Nucleus type-specific DNA methylomics reveals epigenetic “memory” of prior adaptation in skeletal muscle. Function, 2 (5) ( 2021), p. zqab038. DOI: 10.1093/function/zqab038
[[38]]
KA Murach, CS Fry, EE Dupont-Versteegden,JJ McCarthy, CA. Peterson. Fusion and beyond: satellite cell contributions to loading-induced skeletal muscle adaptation. Faseb J, 35 (10) ( 2021), p. e21893. DOI: 10.1096/fj.202101096R
[[39]]
E Masschelein, G D’Hulst, J Zvick, et al.. Exercise promotes satellite cell contribution to myofibers in a load-dependent manner. Skeletal Muscle, 10 (1) ( 2020), p. 21. DOI: 10.1186/s13395-020-00237-2
[[40]]
KA Murach, BD Peck, RA Policastro, et al.. Early satellite cell communication creates a permissive environment for long-term muscle growth. iScience, 24 (4) ( 2021), p. 102372. DOI: 10.1016/j.isci.2021.102372
[[41]]
KA Murach, CM Dungan, F von Walden, Y. Wen. Epigenetic evidence for distinct contributions of resident and acquired myonuclei during long-term exercise adaptation using timed in vivo myonuclear labeling. Am J Physiol Cell Physiol, 322 (1) ( 2022), pp. C86-C93. DOI: 10.1152/ajpcell.00358.2021
[[42]]
KA Hansson, AV Solbrå, K Gundersen, JC. Bruusgaard. Computational assessment of transport distances in living skeletal muscle fibers studied in situ. Biophys J, 119 (11) ( 2020), pp. 2166-2178. DOI: 10.1016/j.bpj.2020.10.016
[[43]]
TJ Kirby, RM Patel, TS McClintock, EE Dupont-Versteegden, CA Peterson, JJ. McCarthy. Myonuclear transcription is responsive to mechanical load and DNA content but uncoupled from cell size during hypertrophy. Marshall W. Mol Biol Cell, 27 (5) ( 2016), pp. 788-798. DOI: 10.1091/mbc.E15-08-0585
[[44]]
AL Mackey M. Kjaer.The breaking and making of healthy adult human skeletal muscle in vivo. Skeletal Muscle, 7 (1) ( 2017), p. 24. DOI: 10.1186/s13395-017-0142-x
[[45]]
VC Figueiredo, Y Wen, B Alkner, et al.. Genetic and epigenetic regulation of skeletal muscle ribosome biogenesis with exercise. J Physiol, 599 (13) ( 2021), pp. 3363-3384. DOI: 10.1113/JP281244
[[46]]
Y Wen, AP Alimov, JJ. McCarthy. Ribosome biogenesis is necessary for skeletal muscle hypertrophy. Exerc Sport Sci Rev, 44 (3) ( 2016), pp. 110-115. DOI: 10.1249/JES.0000000000000082
[[47]]
VC Figueiredo JJ. McCarthy. Regulation of ribosome biogenesis in skeletal muscle hypertrophy. Physiology, 34 (1) ( 2019), pp. 30-42. DOI: 10.1152/physiol.00034.2018
[[48]]
F. von Walden. Ribosome biogenesis in skeletal muscle: coordination of transcription and translation. J Appl Physiol, 127 (2) ( 2019), pp. 591-598. DOI: 10.1152/japplphysiol.00963.2018
[[49]]
KA Murach, Z Liu, B Jude, et al.. Multi-transcriptome analysis following an acute skeletal muscle growth stimulus yields tools for discerning global and MYC regulatory networks. J Biol Chem., 298(11) ( 2022), p. 102515. DOI: 10.1016/j.jbc.2022.102515
[[50]]
DA Englund, VC Figueiredo, CM Dungan, et al.. Satellite cell depletion disrupts transcriptional coordination and muscle adaptation to exercise. Function, 2 (1) ( 2021), p. zqaa033. DOI: 10.1093/function/zqaa033
[[51]]
U Raue, D Slivka, B Jemiolo, C Hollon, S. Trappe.Myogenic gene expression at rest and after a bout of resistance exercise in young (18-30 yr) and old (80-89 yr) women. J Appl Physiol, 101 (1) ( 2006), pp. 53-59. DOI: 10.1152/japplphysiol.01616.2005
[[52]]
U Raue, TA Trappe, ST Estrem, et al.. Transcriptome signature of resistance exercise adaptations: mixed muscle and fiber type specific profiles in young and old adults. J Appl Physiol, 112 (10) ( 2012), pp. 1625-1636. DOI: 10.1152/japplphysiol.00435.2011
[[53]]
CA Greig, C Gray, D Rankin, et al.. Blunting of adaptive responses to resistance exercise training in women over 75y. Exp Gerontol, 46 (11) ( 2011), pp. 884-890. DOI: 10.1016/j.exger.2011.07.010
[[54]]
S Welle, S Totterman, C. Thornton. Effect of age on muscle hypertrophy induced by resistance training. J Gerontol A Biol Sci Med Sci, 51A (6) ( 1996), pp. M270-M275. DOI: 10.1093/gerona/51A.6.M270
[[55]]
J Tarum, M Folkesson, PJ Atherton, F. Kadi. Electrical pulse stimulation: an in vitro exercise model for the induction of human skeletal muscle cell hypertrophy. A proof-of-concept study. Exp Physiol, 102 (11) ( 2017), pp. 1405-1413. DOI: 10.1113/EP086581
[[56]]
DC Turner, PP Gorski, RA Seaborne, et al.. Mechanical loading of bioengineered skeletal muscle in vitro recapitulates gene expression signatures of resistance exercise in vivo. J Cell Physiol, 236 (9) ( 2021), pp. 6534-6547. DOI: 10.1002/jcp.30328
[[57]]
N Nikolić, SW Görgens, GH Thoresen, V Aas, J Eckel, K. Eckardt. Electrical pulse stimulation of cultured skeletal muscle cells as a model for in vitro exercise - possibilities and limitations. Acta Physiol, 220 (3) ( 2017), pp. 310-331. DOI: 10.1111/apha.12830
[[58]]
H Taylor-Weiner, CL Grigsby, DMS Ferreira, et al.. Modeling the transport of nuclear proteins along single skeletal muscle cells. Proc Natl Acad Sci USA, 117 (6) ( 2020), pp. 2978-2986. DOI: 10.1073/pnas.1919600117
[[59]]
YH Son, SM Lee, SH Lee, et al.. Comparative molecular analysis of endurance exercise in vivo with electrically stimulated in vitro myotube contraction. J Appl Physiol Bethesda Md 1985, 127 (6) ( 2019), pp. 1742-1753. DOI: 10.1152/japplphysiol.00091.2019
[[60]]
M Scheler, M Irmler, S Lehr, et al.. Cytokine response of primary human myotubes in an in vitro exercise model. Am J Physiol Cell Physiol, 305 (8) ( 2013), pp. C877-C886. DOI: 10.1152/ajpcell.00043.2013
[[61]]
T Kurdiova, M Balaz, A Mayer, et al.. Exercise-mimicking treatment fails to increase FNDC 5 mRNA & irisin secretion in primary human myotubes. Peptides, 56 ( 2014), pp. 1-7. DOI: 10.1016/j.peptides.2014.03.003
[[62]]
K Naumann, D. Pette. Effects of chronic stimulation with different impulse patterns on the expression of myosin isoforms in rat myotube cultures. Differentiation, 55 (3) ( 1994), pp. 203-211. DOI: 10.1046/j.1432-0436.1994.5530203.x
[[63]]
R Barrès, J Yan, B Egan, et al.. Acute exercise remodels promoter methylation in human skeletal muscle. Cell Metabol, 15 (3) ( 2012), pp. 405-411. DOI: 10.1016/j.cmet.2012.01.001
[[64]]
TR Koves, P Li, J An, et al.. Peroxisome proliferator-activated receptor-γ co-activator 1α-mediated metabolic remodeling of skeletal myocytes mimics exercise training and reverses lipid-induced mitochondrial inefficiency. J Biol Chem, 280 (39) ( 2005), pp. 33588-33598. DOI: 10.1074/jbc.M507621200
[[65]]
J Lin, H Wu, PT Tarr, et al.. Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature, 418 (6899) ( 2002), pp. 797-801. DOI: 10.1038/nature00904
[[66]]
AP Russell, J Feilchenfeldt, S Schreiber, et al.. Endurance training in humans leads to fiber type-specific increases in levels of peroxisome proliferator-activated receptor-gamma coactivator-1 and peroxisome proliferator-activated receptor-alpha in skeletal muscle. Diabetes, 52 (12) ( 2003), pp. 2874-2881. DOI: 10.2337/diabetes.52.12.2874
[[67]]
MJ Holness, A Kraus, RA Harris, MC. Sugden. Targeted upregulation of pyruvate dehydrogenase kinase (PDK)-4 in slow-twitch skeletal muscle underlies the stable modification of the regulatory characteristics of PDK induced by high-fat feeding. Diabetes, 49 (5) ( 2000), pp. 775-781. DOI: 10.2337/diabetes.49.5.775
[[68]]
M Azevedo, MK. Baylies. Getting into position: nuclear movement in muscle cells. Trends Cell Biol, 30 (4) ( 2020), pp. 303-316. DOI: 10.1016/j.tcb.2020.01.002
[[69]]
TJ Kirby J. Lammerding. Emerging views of the nucleus as a cellular mechanosensor. Nat Cell Biol, 20 (4) ( 2018), pp. 373-381. DOI: 10.1038/s41556-018-0038-y
[[70]]
ES Folker MK. Baylies.Nuclear positioning in muscle development and disease. Front Physiol, 4 ( 2013), p. 363. DOI: 10.3389/fphys.2013.00363
[[71]]
U Proske, DL. Morgan. Muscle damage from eccentric exercise: mechanism, mechanical signs, adaptation and clinical applications. J Physiol, 537 (Pt 2) ( 2001), pp. 333-345. DOI: 10.1111/j.1469-7793.2001.00333.x
[[72]]
KA Murach, CB Mobley, CJ Zdunek, et al.. Muscle memory: myonuclear accretion, maintenance, morphology, and miRNA levels with training and detraining in adult mice. J Cachexia Sarcopenia Muscle, 11 (6) ( 2020), pp. 1705-1722. DOI: 10.1002/jcsm.12617
[[73]]
W Roman, H Pinheiro, MR Pimentel, et al.. Muscle repair after physiological damage relies on nuclear migration for cellular reconstruction. Science, 374 (6565) ( 2021), pp. 355-359. DOI: 10.1126/science.abe5620
[[74]]
E Ralston, Z Lu, N Biscocho, et al.. Blood vessels and desmin control the positioning of nuclei in skeletal muscle fibers. J Cell Physiol, 209 (3) ( 2006), pp. 874-882. DOI: 10.1002/jcp.20780
[[75]]
B Glancy, LY Hsu, L Dao, et al.. In vivo microscopy reveals extensive embedding of capillaries within the sarcolemma of skeletal muscle fibers. Microcirculation. 21 (2) ( 2014), pp. 131-147. DOI: 10.1111/micc.12098
[[76]]
T.B. Willingham, P.T. Ajayi, B. Glancy. Subcellular specialization of mitochondrial form and function in skeletal muscle cells. Front Cell Dev Biol., 9 ( 2021), p. 757305. DOI: 10.3389/fcell.2021.757305
[[77]]
KH Buckley,AL Nestor-Kalinoski, FX. Pizza. Positional context of myonuclear transcription during injury-induced muscle regeneration. Front Physiol, 13 ( 2022), p. 845504. DOI: 10.3389/fphys.2022.845504
[[78]]
KA Murach, CB Mobley, CJ Zdunek, et al.. Muscle memory: myonuclear accretion, maintenance, morphology, and miRNA levels with training and detraining in adult mice. J Cachexia Sarcopenia Muscle, 11 (6) ( 2020), pp. 1705-1722. DOI: 10.1002/jcsm.12617
[[79]]
EP Rader BA. Baker.Elevated muscle mass accompanied by transcriptional and nuclear alterations several months following cessation of resistance-type training in rats. Physiol Rep, 10 (20) ( 2022), p. e15476. DOI: 10.14814/phy2.15476
[[80]]
JA Ross, A Pearson, Y Levy, B Cardel, C Handschin, J. Ochala. Exploring the role of PGC-1α in defining nuclear organisation in skeletal muscle fibres. J Cell Physiol, 232 (6) ( 2017), pp. 1270-1274. DOI: 10.1002/jcp.25678
[[81]]
MR Fabian, N Sonenberg, W. Filipowicz. Regulation of mRNA translation and stability by micrornas. Annu Rev Biochem, 79 (1) ( 2010), pp. 351-379. DOI: 10.1146/annurev-biochem-060308-103103
[[82]]
J. Mccarthy. MicroRNA-206: the skeletal muscle-specific myomiR. Biochim Biophys Acta BBA - Gene Regul Mech, 1779 (11) ( 2008), pp. 682-691. DOI: 10.1016/j.bbagrm.2008.03.001
[[83]]
S Nielsen, C Scheele, C Yfanti, et al.. Muscle specific microRNAs are regulated by endurance exercise in human skeletal muscle: muscle specific microRNAs and exercise. J Physiol, 588 (20) ( 2010), pp. 4029-4037. DOI: 10.1113/jphysiol.2010.189860
[[84]]
E Giagnorio, C Malacarne, R Mantegazza, S Bonanno, S. Marcuzzo.MyomiRs and their multifaceted regulatory roles in muscle homeostasis and amyotrophic lateral sclerosis. J Cell Sci, 134 (12) ( 2021), p. jcs258349. DOI: 10.1242/jcs.258349
[[85]]
A Kovanda, T Režen, B. Rogelj. MicroRNA in skeletal muscle development, growth, atrophy, and disease: functions of miRNA in skeletal muscle. Wiley Interdiscip Rev RNA, 5 (4) ( 2014), pp. 509-525. DOI: 10.1002/wrna.1227
[[86]]
M Horak, J Novak, J. Bienertova-Vasku. Muscle-specific microRNAs in skeletal muscle development. Dev Biol, 410 (1) ( 2016), pp. 1-13. DOI: 10.1016/j.ydbio.2015.12.013
[[87]]
L Elia, R Contu, M Quintavalle, et al.. Reciprocal regulation of microRNA-1 and insulin-like growth factor-1 signal transduction cascade in cardiac and skeletal muscle in physiological and pathological conditions. Circulation, 120 (23) ( 2009), pp. 2377-2385. DOI: 10.1161/CIRCULATIONAHA.109.879429
[[88]]
A Singh, C Happel, SK Manna, et al.. Transcription factor NRF 2 regulates miR-1 and miR-206 to drive tumorigenesis. J Clin Invest, 123 (7) ( 2013), pp. 2921-2934. DOI: 10.1172/JCI66353
[[89]]
T Valentino, VC Figueiredo, CB Mobley, JJ McCarthy,IJ Vechetti Jr.. Evidence of myomiR regulation of the pentose phosphate pathway during mechanical load-induced hypertrophy. Phys Rep, 9 (23) ( 2021), p. e15137. DOI: 10.14814/phy2.15137
[[90]]
JJ McCarthy KA. Esser. MicroRNA-1 and microRNA-133a expression are decreased during skeletal muscle hypertrophy. J Appl Physiol, 102 (1) ( 2007), pp. 306-313. DOI: 10.1152/japplphysiol.00932.2006
[[91]]
M Mueller, FA Breil, G Lurman, et al.. Different molecular and structural adaptations with eccentric and conventional strength training in elderly men and women. Gerontology, 57 (6) ( 2011), pp. 528-538. DOI: 10.1159/000323267
[[92]]
MJ Drummond, JJ McCarthy, CS Fry, KA Esser, BB. Rasmussen. Aging differentially affects human skeletal muscle microRNA expression at rest and after an anabolic stimulus of resistance exercise and essential amino acids. Am J Physiol Endocrinol Metab, 295 (6) ( 2008), pp. E1333-E1340. DOI: 10.1152/ajpendo.90562.2008
[[93]]
IJ Vechetti, T Valentino, CB Mobley, JJ. McCarthy. The role of extracellular vesicles in skeletal muscle and systematic adaptation to exercise. J Physiol, 599 (3) ( 2021), pp. 845-861. DOI: 10.1113/JP278929
[[94]]
T Chaillou, JD Lee, JH England, KA Esser, JJ. McCarthy. Time course of gene expression during mouse skeletal muscle hypertrophy. J Appl Physiol, 115 (7) ( 2013), pp. 1065-1074. DOI: 10.1152/japplphysiol.00611.2013
[[95]]
AP Russell, S Lamon, H Boon, et al.. Regulation of miRNAs in human skeletal muscle following acute endurance exercise and short-term endurance training. J Physiol, 591 (18) ( 2013), pp. 4637-4653. DOI: 10.1113/jphysiol.2013.255695
[[96]]
JJ McCarthy, KA Esser, FH. Andrade. MicroRNA-206 is overexpressed in the diaphragm but not the hindlimb muscle of mdx mouse. Am J Physiol Cell Physiol, 293 (1) ( 2007), pp. C451-C457. DOI: 10.1152/ajpcell.00077.2007
[[97]]
KA Murach, BD Peck, RA Policastro, et al.. Early satellite cell communication creates a permissive environment for long-term muscle growth. iScience, 24 (4) ( 2021), p. 102372. DOI: 10.1016/j.isci.2021.102372
[[98]]
M Sandonà, S Consalvi, L Tucciarone, et al.. HDAC inhibitors tune miRNAs in extracellular vesicles of dystrophic muscle-resident mesenchymal cells. EMBO Rep, 21 (9) ( 2020), p. e50863. DOI: 10.15252/embr.202050863
[[99]]
CS Fry, TJ Kirby, K Kosmac, JJ McCarthy CA. Peterson. Myogenic progenitor cells control extracellular matrix production by fibroblasts during skeletal muscle hypertrophy. Cell Stem Cell, 20 (1) ( 2017), pp. 56-69. DOI: 10.1016/j.stem.2016.09.010
[[100]]
KA Murach, et al..IJ Vechetti Jr., DW Van Pelt, Fusion-independent satellite cell communication to muscle fibers during load-induced hypertrophy. Function, 1 (1) ( 2020), p. zqaa009. DOI: 10.1093/function/zqaa009
[[101]]
MN Wosczyna, et al..EE Perez Carbajal, MW Wagner, Targeting microRNA-mediated gene repression limits adipogenic conversion of skeletal muscle mesenchymal stromal cells. Cell Stem Cell, 28 (7) ( 2021), pp. 1323-1334. e8.. DOI: 10.1016/j.stem.2021.04.008
[[102]]
ER Gibney CM. Nolan. Epigenetics and gene expression. Heredity, 105 (1) ( 2010), pp. 4-13. DOI: 10.1038/hdy.2010.54
[[103]]
DE Handy, R Castro, J. Loscalzo. Epigenetic modifications: basic mechanisms and role in cardiovascular disease. Circulation, 123 (19) ( 2011), pp. 2145-2156. DOI: 10.1161/CIRCULATIONAHA.110.956839
[[104]]
B Alaskhar Alhamwe, R Khalaila, J Wolf, et al.. Histone modifications and their role in epigenetics of atopy and allergic diseases. Allergy Asthma Clin Immunol, 14 (1) ( 2018), p. 39. DOI: 10.1186/s13223-018-0259-4
[[105]]
I Ohsawa, F. Kawano.Chronic exercise training activates histone turnover in mouse skeletal muscle fibers. Faseb J, 35 (4) ( 2021), p. e21453. DOI: 10.1096/fj.202002027RR
[[106]]
F Solagna, L Nogara, KA Dyar, et al.. Exercise-dependent increases in protein synthesis are accompanied by chromatin modifications and increased MRTF-SRF signalling. Acta Physiol, 230 (1) ( 2020), p. e13496. DOI: 10.1111/apha.13496
[[107]]
RS Staron, MJ Leonardi, DL Karapondo, et al.. Strength and skeletal muscle adaptations in heavy-resistance-trained women after detraining and retraining. J Appl Physiol, 70 (2) ( 1991), pp. 631-640. DOI: 10.1152/jappl.1991.70.2.631
[[108]]
K. Gundersen. Muscle memory and a new cellular model for muscle atrophy and hypertrophy. J Exp Biol, 219 (2) ( 2016), pp. 235-242. DOI: 10.1242/jeb.124495
[[109]]
Rahmati M, McCarthy JJ, Malakoutinia F. Myonuclear permanence in skeletal muscle memory: a systematic review and meta-analysis of human and animal studies. J Cachexia Sarcopenia Muscle. 2022; 13:2276-2297. https://doi.org/10.1002/jcsm.13043.
[[110]]
T Snijders, T Aussieker, A Holwerda, G Parise, LJC Loon, LB. Verdijk.The concept of skeletal muscle memory: evidence from animal and human studies. Acta Physiol, 229 (3) ( 2020), p. e13465. DOI: 10.1111/apha.13465
[[111]]
LM. Schwartz.Skeletal muscles do not undergo apoptosis during either atrophy or programmed cell death-revisiting the myonuclear domain hypothesis. Front Physiol, 9 ( 2019), p. 1887. DOI: 10.3389/fphys.2018.01887
[[112]]
LM Schwartz K. Gundersen. Cross talk opposing view: myonuclei do not undergo apoptosis during skeletal muscle atrophy. J Physiol, 600 (9) ( 2022), pp. 2081-2084. DOI: 10.1113/JP282381
[[113]]
L Schwartz, K. Gundersen. Cross talk rebuttal: schwartz and gundersen. J Physiol, 600 (9) ( 2022), pp. 2087-2088. DOI: 10.1113/JP283001
[[114]]
TJ Kirby EE. Dupont-Versteegden. Cross talk proposal: myonuclei are lost with ageing and atrophy. J Physiol, 600 (9) ( 2022), pp. 2077-2080. DOI: 10.1113/JP282380
[[115]]
TJ Kirby EE. Dupont-Versteegden. Cross talk rebuttal: kirby and dupont-versteegden. J Physiol, 600 (9) ( 2022), pp. 2085-2086. DOI: 10.1113/JP283000
[[116]]
S Blocquiaux, T Gorski, E Van Roie, et al.. The effect of resistance training, detraining and retraining on muscle strength and power, myofibre size, satellite cells and myonuclei in older men. Exp Gerontol, 133 ( 2020), p. 110860. DOI: 10.1016/j.exger.2020.110860
[[117]]
RA Seaborne, J Strauss, M Cocks, et al.. Human skeletal muscle possesses an epigenetic memory of hypertrophy. Sci Rep, 8 (1) ( 2018), p. 1898. DOI: 10.1038/s41598-018-20287-3
[[118]]
RA Seaborne, J Strauss, M Cocks, et al.. Methylome of human skeletal muscle after acute & chronic resistance exercise training. Detrain Retrain. Sci Data., 5 (1) ( 2018), p. 180213. DOI: 10.1038/sdata.2018.213
[[119]]
WG Zhu, JE Hibbert, KH Lin, et al.. Weight pulling: a novel mouse model of human progressive resistance exercise. Cells, 10 (9) ( 2021), p. 2459. DOI: 10.3390/cells10092459
[[120]]
KA Murach, JJ McCarthy, CA Peterson, CM. Dungan. Making mice mighty: recent advances in translational models of load-induced muscle hypertrophy. J Appl Physiol, 129 (3) ( 2020), pp. 516-521. DOI: 10.1152/japplphysiol.00319.2020
[[121]]
IM Winje, M Bengtsen, E Eftestøl, I Juvkam,JC Bruusgaard, K. Gundersen. Specific labelling of myonuclei by an antibody against pericentriolar material 1 on skeletal muscle tissue sections. Acta Physiol, 223 (4) ( 2018), p. e13034. DOI: 10.1111/apha.13034
[[122]]
MR Viggars, DJ Owens, C Stewart, C Coirault, AL Mackey, JC. Jarvis.PCM1 labelling reveals myonuclear and nuclear dynamics in skeletal muscle across species. Am J Physiol Cell Physiol ( 2022), p. 2022. DOI: 10.1152/ajpcell.00285.02022

Accesses

Citations

Detail

Sections
Recommended

/