The skeletal muscle fiber periphery: A nexus of mTOR-related anabolism

Cassidy T. Tinline-Goodfellow, Matthew J. Lees, Nathan Hodson

Sports Medicine and Health Science ›› 2023, Vol. 5 ›› Issue (1) : 10-19.

Sports Medicine and Health Science ›› 2023, Vol. 5 ›› Issue (1) : 10-19. DOI: 10.1016/j.smhs.2022.11.004
Review

The skeletal muscle fiber periphery: A nexus of mTOR-related anabolism

Author information +
History +

Abstract

Skeletal muscle anabolism is driven by numerous stimuli such as growth factors, nutrients (i.e., amino acids, glucose), and mechanical stress. These stimuli are integrated by the mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) signal transduction cascade. In recent years, work from our laboratory and elsewhere has sought to unravel the molecular mechanisms underpinning the mTOR-related activation of muscle protein synthesis (MPS), as well as the spatial regulation of these mechanisms within the skeletal muscle cell. These studies have suggested that the skeletal muscle fiber periphery is a region of central importance in anabolism (i.e., growth/MPS). Indeed, the fiber periphery is replete with the substrates, molecular machinery, and translational apparatus necessary to facilitate MPS. This review provides a summary of the mechanisms underpinning the mTOR-associated activation of MPS from cell, rodent, and human studies. It also presents an overview of the spatial regulation of mTORC1 in response to anabolic stimuli and outlines the factors that distinguish the periphery of the cell as a highly notable region of skeletal muscle for the induction of MPS. Future research should seek to further explore the nutrient-induced activation of mTORC1 at the periphery of skeletal muscle fibers.

Keywords

Skeletal muscle / mTOR / Periphery / Muscle protein synthesis / Hypertrophy / Translation

Cite this article

Download citation ▾
Cassidy T. Tinline-Goodfellow, Matthew J. Lees, Nathan Hodson. The skeletal muscle fiber periphery: A nexus of mTOR-related anabolism. Sports Medicine and Health Science, 2023, 5(1): 10‒19 https://doi.org/10.1016/j.smhs.2022.11.004

References

[[1]]
A.L. Goldberg. Protein synthesis during work-induced growth of skeletal muscle. J Cell Biol, 36 (3) ( 1968), pp. 653-658, DOI: 10.1083/jcb.36.3.653
[[2]]
R.A. Saxton, D.M. Sabatini. mTOR signaling in growth, metabolism, and disease. Cell, 168 (6) ( 2017), pp. 960-976, DOI: 10.1016/j.cell.2017.02.004
[[3]]
K. Hara, Y. Maruki, X. Long, et al.. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell, 110 (2) ( 2002), pp. 177-189, DOI: 10.1016/s0092-8674(02)00833-4
[[4]]
D.H. Kim, D.D. Sarbassov, S.M. Ali, et al.. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell, 110 (2) ( 2002), pp. 163-175, DOI: 10.1016/s0092-8674(02)00808-5
[[5]]
D.H. Kim, D.D. Sarbassov, S.M. Ali, et al.. GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR. Mol Cell, 11 (4) ( 2003), pp. 895-904, DOI: 10.1016/s1097-2765(03)00114-x
[[6]]
Y. Sancak, C.C. Thoreen, T.R. Peterson, et al.. PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol Cell, 25 (6) ( 2007), pp. 903-915, DOI: 10.1016/j.molcel.2007.03.003
[[7]]
T.R. Peterson, M. Laplante, C.C. Thoreen, et al.. DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell, 137 (5) ( 2009), pp. 873-886, DOI: 10.1016/j.cell.2009.03.046
[[8]]
M.S. Yoon. The role of mammalian target of rapamycin (mTOR) in insulin signaling. Nutrients, 9 (11) ( 2017), p. 1176, DOI: 10.3390/nu9111176
[[9]]
X.M. Ma, J. Blenis. Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol, 10 (5) ( 2009), pp. 307-318, DOI: 10.1038/nrm2672
[[10]]
K. Baar, K. Esser. Phosphorylation of p70(S6k) correlates with increased skeletal muscle mass following resistance exercise. Am J Physiol, 276 (1) ( 1999), pp. C120-C127, DOI: 10.1152/ajpcell.1999.276.1.C120
[[11]]
T.A. Hornberger, R. Stuppard, K.E. Conley, et al.. Mechanical stimuli regulate rapamycin-sensitive signalling by a phosphoinositide 3-kinase-, protein kinase B- and growth factor-independent mechanism. Biochem J, 380 (Pt 3) ( 2004), pp. 795-804, DOI: 10.1042/bj20040274
[[12]]
C.A. Goodman, J.W. Frey, D.M. Mabrey, et al.. The role of skeletal muscle mTOR in the regulation of mechanical load-induced growth. J Physiol, 589 (Pt 22) ( 2011), pp. 5485-5501, DOI: 10.1113/jphysiol.2011.218255
[[13]]
T.A. Hornberger, K.B. Sukhija, X.R. Wang, S. Chien. mTOR is the rapamycin-sensitive kinase that confers mechanically-induced phosphorylation of the hydrophobic motif site Thr(389) in p70(S6k). FEBS Lett, 581 (24) ( 2007), pp. 4562-4566, DOI: 10.1016/j.febslet.2007.08.045
[[14]]
R. Ogasawara, S. Fujita, T.A. Hornberger, et al.. The role of mTOR signalling in the regulation of skeletal muscle mass in a rodent model of resistance exercise. Sci Rep, 6 ( 2016), p. 31142, DOI: 10.1038/srep31142
[[15]]
D.W. West, L.M. Baehr, G.R. Marcotte, et al.. Acute resistance exercise activates rapamycin-sensitive and -insensitive mechanisms that control translational activity and capacity in skeletal muscle. J Physiol, 594 (2) ( 2016), pp. 453-468, DOI: 10.1113/jp271365
[[16]]
M.J. Drummond, C.S. Fry, E.L. Glynn, et al.. Rapamycin administration in humans blocks the contraction-induced increase in skeletal muscle protein synthesis. J Physiol, 587 (Pt 7) ( 2009), pp. 1535-1546, DOI: 10.1113/jphysiol.2008.163816
[[17]]
N. Kubica, D.R. Bolster, P.A. Farrell, S.R. Kimball, L.S. Jefferson. Resistance exercise increases muscle protein synthesis and translation of eukaryotic initiation factor 2Bepsilon mRNA in a mammalian target of rapamycin-dependent manner. J Biol Chem, 280 (9) ( 2005), pp. 7570-7580, DOI: 10.1074/jbc.M413732200
[[18]]
S.C. Bodine, T.N. Stitt, M. Gonzalez, et al.. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol, 3 (11) ( 2001), pp. 1014-1019, DOI: 10.1038/ncb1101-1014
[[19]]
D.J. Cuthbertson, J. Babraj, G. Leese, M. Siervo. Anabolic resistance does not explain sarcopenia in patients with type 2 diabetes mellitus, compared with healthy controls, despite reduced mTOR pathway activity. Clin Nutr, 36 (6) ( 2017), pp. 1716-1719, DOI: 10.1016/j.clnu.2016.11.012
[[20]]
X. Long, Y. Lin, S. Ortiz-Vega, K. Yonezawa, J. Avruch. Rheb binds and regulates the mTOR kinase. Curr Biol, 15 (8) ( 2005), pp. 702-713, DOI: 10.1016/j.cub.2005.02.053
[[21]]
S. Menon, C.C. Dibble, G. Talbott, et al.. Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC 1 at the lysosome. Cell, 156 (4) ( 2014), pp. 771-785, DOI: 10.1016/j.cell.2013.11.049
[[22]]
C. Buerger, B. DeVries, V. Stambolic. Localization of Rheb to the endomembrane is critical for its signaling function. Biochem Biophys Res Commun, 344 (3) ( 2006), pp. 869-880, DOI: 10.1016/j.bbrc.2006.03.220
[[23]]
A.B. Hanker, N. Mitin, R.S. Wilder, et al.. Differential requirement of CAAX-mediated posttranslational processing for Rheb localization and signaling. Oncogene, 29 (3) ( 2010), pp. 380-391, DOI: 10.1038/onc.2009.336
[[24]]
F. Hao, K. Kondo, T. Itoh, et al.. Rheb localized on the Golgi membrane activates lysosome-localized mTORC 1 at the Golgi-lysosome contact site. J Cell Sci, 131 (3) ( 2018), p. jcs208017, DOI: 10.1242/jcs.208017
[[25]]
X.J. Sun, P. Rothenberg, C.R. Kahn, et al.. Structure of the insulin receptor substrate IRS-1 defines a unique signal transduction protein. Nature, 352 (6330) ( 1991), pp. 73-77, DOI: 10.1038/352073a0
[[26]]
M.G. Myers Jr., J. M. Backer, X.J. Sun, et al.. IRS-1 activates phosphatidylinositol 3’-kinase by associating with src homology 2 domains of p85. Proc Natl Acad Sci U S A, 89 (21) ( 1992), pp. 10350-10354, DOI: 10.1073/pnas.89.21.10350
[[27]]
M. Frech, M. Andjelkovic, E. Ingley, K.K. Reddy, J.R. Falck, B.A. Hemmings. High affinity binding of inositol phosphates and phosphoinositides to the pleckstrin homology domain of RAC/protein kinase B and their influence on kinase activity. J Biol Chem, 272 (13) ( 1997), pp. 8474-8481, DOI: 10.1074/jbc.272.13.8474
[[28]]
D.R. Alessi, S.R. James, C.P. Downes, et al.. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol, 7 (4) ( 1997), pp. 261-269, DOI: 10.1016/s0960-9822(06)00122-9
[[29]]
D.D. Sarbassov, D.A. Guertin, S.M. Ali, D.M. Sabatini. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science, 307 (5712) ( 2005), pp. 1098-1101, DOI: 10.1126/science.1106148
[[30]]
K.S. Kovacina, G.Y. Park, S.S. Bae, et al.. Identification of a proline-rich Akt substrate as a 14-3- 3 binding partner. J Biol Chem, 278 (12) ( 2003), pp. 10189-10194, DOI: 10.1074/jbc.M210837200
[[31]]
B.D. Manning, A.R. Tee, M.N. Logsdon, J. Blenis, L.C. Cantley. Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol Cell, 10 (1) ( 2002), pp. 151-162, DOI: 10.1016/s1097-2765(02)00568-3
[[32]]
C.C. Dibble, W. Elis, S. Menon, et al.. TBC1D7 is a third subunit of the TSC1-TSC2 complex upstream of mTORC1. Mol Cell, 47 (4) ( 2012), pp. 535-546, DOI: 10.1016/j.molcel.2012.06.009
[[33]]
K. Inoki, Y. Li, T. Xu, K.L. Guan. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev, 17 (15) ( 2003), pp. 1829-1834, DOI: 10.1101/gad.1110003
[[34]]
H. Yang, X. Jiang, B. Li, et al.. Mechanisms of mTORC 1 activation by RHEB and inhibition by PRAS40. Nature, 552 (7685) ( 2017), pp. 368-373, DOI: 10.1038/nature25023
[[35]]
M.A. Fawal, M. Brandt, N. Djouder. MCRS1 binds and couples Rheb to amino acid-dependent mTORC1 activation. Dev Cell, 33 (1) ( 2015), pp. 67-81, DOI: 10.1016/j.devcel.2015.02.010
[[36]]
K. Saito, Y. Araki, K. Kontani, H. Nishina, T. Katada. Novel role of the small GTPase Rheb: its implication in endocytic pathway independent of the activation of mammalian target of rapamycin. J Biochem, 137 (3) ( 2005), pp. 423-430, DOI: 10.1093/jb/mvi046
[[37]]
Y. Sancak, T.R. Peterson, Y.D. Shaul, et al.. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science, 320 (5882) ( 2008), pp. 1496-1501, DOI: 10.1126/science.1157535
[[38]]
Y. Sancak, L. Bar-Peled, R. Zoncu, A.L. Markhard, S. Nada, D.M. Sabatini. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell, 141 (2) ( 2010), pp. 290-303, DOI: 10.1016/j.cell.2010.02.024
[[39]]
L. Bar-Peled, L. Chantranupong, A.D. Cherniack, et al.. A Tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science, 340 (6136) ( 2013), pp. 1100-1106, DOI: 10.1126/science.1232044
[[40]]
L. Chantranupong, R.L. Wolfson, J.M. Orozco, et al.. The Sestrins interact with GATOR2 to negatively regulate the amino-acid-sensing pathway upstream of mTORC1. Cell Rep, 9 (1) ( 2014), pp. 1-8, DOI: 10.1016/j.celrep.2014.09.014
[[41]]
L. Chantranupong, S.M. Scaria, R.A. Saxton, et al.. The CASTOR proteins are arginine sensors for the mTORC1 pathway. Cell, 165 (1) ( 2016), pp. 153-164, DOI: 10.1016/j.cell.2016.02.035
[[42]]
X. Gu, J.M. Orozco, R.A. Saxton, et al.. SAMTOR is an S-adenosylmethionine sensor for the mTORC1 pathway. Science, 358 (6364) ( 2017), pp. 813-818, DOI: 10.1126/science.aao3265
[[43]]
L. Bar-Peled, L.D. Schweitzer, R. Zoncu, D.M. Sabatini. Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1. Cell, 150 (6) ( 2012), pp. 1196-1208, DOI: 10.1016/j.cell.2012.07.032
[[44]]
K. Shen, D.M. Sabatini. Ragulator and SLC38A9 activate the Rag GTPases through noncanonical GEF mechanisms. Proc Natl Acad Sci U S A, 115 (38) ( 2018), pp. 9545-9550, DOI: 10.1073/pnas.1811727115
[[45]]
Z.Y. Tsun, L. Bar-Peled, L. Chantranupong, et al.. The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1. Mol Cell, 52 (4) ( 2013), pp. 495-505, DOI: 10.1016/j.molcel.2013.09.016
[[46]]
B.M. Castellano, A.M. Thelen, O. Moldavski, et al.. Lysosomal cholesterol activates mTORC1 via an SLC38A9-Niemann-Pick C1 signaling complex. Science, 355 (6331) ( 2017), pp. 1306-1311, DOI: 10.1126/science.aag1417
[[47]]
M. Abu-Remaileh, G.A. Wyant, C. Kim, et al.. Lysosomal metabolomics reveals V-ATPase- and mTOR-dependent regulation of amino acid efflux from lysosomes. Science, 358 (6364) ( 2017), pp. 807-813, DOI: 10.1126/science.aan6298
[[48]]
R. Zoncu, L. Bar-Peled, A. Efeyan, S. Wang, Y. Sancak, D.M. Sabatini. mTORC 1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Science, 334 (6056) ( 2011), pp. 678-683, DOI: 10.1126/science.1207056
[[49]]
T.K. O’Neil, L.R. Duffy, J.W. Frey, T.A. Hornberger. The role of phosphoinositide 3-kinase and phosphatidic acid in the regulation of mammalian target of rapamycin following eccentric contractions. J Physiol, 587 (Pt 14) ( 2009), pp. 3691-3701, DOI: 10.1113/jphysiol.2009.173609
[[50]]
J.S. You, H.C. Lincoln, C.R. Kim, et al.. The role of diacylglycerol kinase zeta and phosphatidic acid in the mechanical activation of mammalian target of rapamycin (mTOR) signaling and skeletal muscle hypertrophy. J Biol Chem, 289 (3) ( 2014), pp. 1551-1563, DOI: 10.1074/jbc.M113.531392
[[51]]
M.S. Yoon, Y. Sun, E. Arauz, Y. Jiang, J. Chen. Phosphatidic acid activates mammalian target of rapamycin complex 1 (mTORC1) kinase by displacing FK506 binding protein 38 (FKBP38) and exerting an allosteric effect. J Biol Chem, 286 (34) ( 2011), pp. 29568-29574, DOI: 10.1074/jbc.M111.262816
[[52]]
B.L. Jacobs, R.M. McNally, K.J. Kim, et al.. Identification of mechanically regulated phosphorylation sites on tuberin (TSC2) that control mechanistic target of rapamycin (mTOR) signaling. J Biol Chem, 292 (17) ( 2017), pp. 6987-6997, DOI: 10.1074/jbc.M117.777805
[[53]]
B.L. Jacobs, J.S. You, J.W. Frey, C.A. Goodman, D.M. Gundermann, T.A. Hornberger. Eccentric contractions increase the phosphorylation of tuberous sclerosis complex-2 (TSC2) and alter the targeting of TSC2 and the mechanistic target of rapamycin to the lysosome. J Physiol, 591 (18) ( 2013), pp. 4611-4620, DOI: 10.1113/jphysiol.2013.256339
[[54]]
J.S. You, R.M. McNally, B.L. Jacobs, et al.. The role of raptor in the mechanical load-induced regulation of mTOR signaling, protein synthesis, and skeletal muscle hypertrophy. Faseb J, 33 (3) ( 2019), pp. 4021-4034, DOI: 10.1096/fj.201801653RR
[[55]]
R. Ogasawara, T. Suginohara. Rapamycin-insensitive mechanistic target of rapamycin regulates basal and resistance exercise-induced muscle protein synthesis. Faseb J ( 2018), DOI: 10.1096/fj.201701422R. fj201701422R
[[56]]
V.I. Korolchuk, S. Saiki, M. Lichtenberg, et al.. Lysosomal positioning coordinates cellular nutrient responses. Nat Cell Biol, 13 (4) ( 2011), pp. 453-460, DOI: 10.1038/ncb2204
[[57]]
Z. Song, D.R. Moore, N. Hodson, et al.. Resistance exercise initiates mechanistic target of rapamycin (mTOR) translocation and protein complex co-localisation in human skeletal muscle. Sci Rep, 7 (1) ( 2017), p. 5028, DOI: 10.1038/s41598-017-05483-x
[[58]]
N. Hodson, M. Mazzulla, M.N.H. Holowaty, D. Kumbhare, D.R. Moore. RPS 6 phosphorylation occurs to a greater extent in the periphery of human skeletal muscle fibers, near focal adhesions, after anabolic stimuli. Am J Physiol Cell Physiol, 322 (1) ( 2022), pp. C94-C110, DOI: 10.1152/ajpcell.00357.2021
[[59]]
N. Hodson, C. McGlory, S.Y. Oikawa, et al.. Differential localization and anabolic responsiveness of mTOR complexes in human skeletal muscle in response to feeding and exercise. Am J Physiol Cell Physiol, 313 (6) ( 2017), pp. C604-C611, DOI: 10.1152/ajpcell.00176.2017
[[60]]
N. Hodson, A. Philp. The importance of mTOR trafficking for human skeletal muscle translational control. Exerc Sport Sci Rev, 47 (1) ( 2019), pp. 46-53, DOI: 10.1249/jes.0000000000000173
[[61]]
N. Hodson, J.R. Dent, Z. Song, et al.. Protein-carbohydrate ingestion alters Vps 34 cellular localization independent of changes in kinase activity in human skeletal muscle. Exp Physiol, 105 (12) ( 2020), pp. 2178-2189, DOI: 10.1113/ep088805
[[62]]
N. de Hart, Z.S. Mahmassani, P.T. Reidy, et al.. Acute effects of cheddar cheese consumption on circulating amino acids and human skeletal muscle. Nutrients, 13 (2) ( 2021), p. 614, DOI: 10.3390/nu13020614
[[63]]
J.E. Tang, D.R. Moore, G.W. Kujbida, M.A. Tarnopolsky, S.M. Phillips. Ingestion of whey hydrolysate, casein, or soy protein isolate: effects on mixed muscle protein synthesis at rest and following resistance exercise in young men. J Appl Physiol ( 1985), 107 (3) ( 2009), pp. 987-992, DOI: 10.1152/japplphysiol.00076.2009
[[64]]
S.J. Hannaian, N. Hodson, S. Abou Sawan, et al.. Leucine-enriched amino acids maintain peripheral mTOR-Rheb localization independent of myofibrillar protein synthesis and mTORC 1 signaling postexercise. J Appl Physiol ( 1985), 129 (1) ( 2020), pp. 133-143, DOI: 10.1152/japplphysiol.00241.2020
[[65]]
T.A. Churchward-Venne, N.A. Burd, S.M. Phillips.Nutritional regulation of muscle protein synthesis with resistance exercise: strategies to enhance anabolism. Nutr Metab, 9 (1) ( 2012), p. 40, DOI: 10.1186/1743-7075-9-40
[[66]]
S. Abou Sawan, S. van Vliet, D.W.D. West, et al.. Whole egg, but not egg white, ingestion induces mTOR colocalization with the lysosome after resistance exercise. Am J Physiol Cell Physiol, 315 (4) ( 2018), pp. C537-C543, DOI: 10.1152/ajpcell.00225.2018
[[67]]
A.C. D’Lugos, S.H. Patel, J.C. Ormsby, et al.. Prior acetaminophen consumption impacts the early adaptive cellular response of human skeletal muscle to resistance exercise. J Appl Physiol ( 1985), 124 (4) ( 2018), pp. 1012-1024, DOI: 10.1152/japplphysiol.00922.2017
[[68]]
T. Moro, C.R. Brightwell, R.R. Deer, et al.. Muscle protein anabolic resistance to essential amino acids does not occur in healthy older adults before or after resistance exercise training. J Nutr, 148 (6) ( 2018), pp. 900-909, DOI: 10.1093/jn/nxy064
[[69]]
S. Abou Sawan, N. Hodson, J.M. Malowany, et al.. Trained integrated post-exercise myofibrillar protein synthesis rates correlate with hypertrophy in young males and females. Med Sci Sports Exerc, 54 (6) ( 2022), pp. 953-964, DOI: 10.1249/mss.0000000000002878
[[70]]
N. Hodson, A. Philp. The importance of mTOR trafficking for human skeletal muscle translational control. Exerc Sport Sci Rev, 47 (1) ( 2019), pp. 46-53, DOI: 10.1249/JES.0000000000000173
[[71]]
C.A. Goodman, D.M. Mabrey, J.W. Frey, et al.. Novel insights into the regulation of skeletal muscle protein synthesis as revealed by a new nonradioactive in vivo technique. Faseb J, 25 (3) ( 2011), pp. 1028-1039, DOI: 10.1096/fj.10-168799
[[72]]
Z. Horne, J. Hesketh. Increased association of ribosomes with myofibrils during the skeletal-muscle hypertrophy induced either by the beta-adrenoceptor agonist clenbuterol or by tenotomy. Biochem J, 272 (3) ( 1990), pp. 831-833, DOI: 10.1042/bj2720831
[[73]]
S. Abou Sawan, N. Hodson, C. Tinline-Goodfellow, et al.. Incorporation of dietary amino acids into myofibrillar and sarcoplasmic proteins in free-living adults is influenced by sex, resistance exercise, and training status. J Nutr, 151 (11) ( 2021), pp. 3350-3360, DOI: 10.1093/jn/nxab261
[[74]]
S. Broer, A. Broer. Amino acid homeostasis and signalling in mammalian cells and organisms. Biochem J, 474 (12) ( 2017), pp. 1935-1963, DOI: 10.1042/bcj20160822
[[75]]
P.A. Roberson, C.B. Mobley, M.A. Romero, et al.. LAT 1 protein content increases following 12 Weeks of resistance exercise training in human skeletal muscle. Front Nutr, 7 ( 2020), p. 628405, DOI: 10.3389/fnut.2020.628405
[[76]]
M.S. Kilberg, Y.X. Pan, H. Chen, V. Leung-Pineda. Nutritional control of gene expression: how mammalian cells respond to amino acid limitation. Annu Rev Nutr, 25 ( 2005), pp. 59-85, DOI: 10.1146/annurev.nutr.24.012003.132145
[[77]]
G. Biolo, K.D. Tipton, S. Klein, R.R. Wolfe. An abundant supply of amino acids enhances the metabolic effect of exercise on muscle protein. Am J Physiol, 273 (1 Pt 1) ( 1997), pp. E122-E129, DOI: 10.1152/ajpendo.1997.273.1.E122
[[78]]
K.D. Tipton, B.E. Gurkin, S. Matin, R.R. Wolfe. Nonessential amino acids are not necessary to stimulate net muscle protein synthesis in healthy volunteers. J Nutr Biochem, 10 (2) ( 1999), pp. 89-95, DOI: 10.1016/s0955-2863(98)00087-4
[[79]]
N. Collao, P. Akohene-Mensah, J. Nallabelli, et al.. The role of L-type amino acid transporter 1 (Slc7a5) during in vitro myogenesis. Am J Physiol Cell Physiol, 323 (2) ( 2022), pp. C595-C605, DOI: 10.1152/ajpcell.00162.2021
[[80]]
J.M. Dickinson, B.B. Rasmussen. Amino acid transporters in the regulation of human skeletal muscle protein metabolism. Curr Opin Clin Nutr Metab Care, 16 (6) ( 2013), pp. 638-644, DOI: 10.1097/MCO.0b013e3283653ec5
[[81]]
R. Hyde, E.L. Cwiklinski, K. MacAulay, P.M. Taylor, H.S. Hundal. Distinct sensor pathways in the hierarchical control of SNAT2, a putative amino acid transceptor, by amino acid availability. J Biol Chem, 282 (27) ( 2007), pp. 19788-19798, DOI: 10.1074/jbc.M611520200
[[82]]
J. Pinilla, J.C. Aledo, E. Cwiklinski, R. Hyde, P.M. Taylor, H.S. Hundal. SNAT 2 transceptor signalling via mTOR: a role in cell growth and proliferation?. Front Biosci (Elite Ed)., 3 ( 2011), pp. 1289-1299, DOI: 10.2741/e332
[[83]]
P.M. Taylor. Role of amino acid transporters in amino acid sensing. Am J Clin Nutr, 99 (1) ( 2014), pp. 223S-230S, DOI: 10.3945/ajcn.113.070086
[[84]]
D. Dickens, G.N. Chiduza, G.S.A. Wright, M. Pirmohamed, S.V. Antonyuk, S.S. Hasnain.Modulation of LAT 1 (SLC7A5) transporter activity and stability by membrane cholesterol. Sci Rep, 7 ( 2017), p. 43580, DOI: 10.1038/srep43580
[[85]]
P.A. Roberson, C.B. Mobley, M.A. Romero, et al.. LAT 1 protein content increases following 12 Weeks of resistance exercise training in human skeletal muscle. Front Nutr, 7 ( 2021), p. 628405, DOI: 10.3389/fnut.2020.628405
[[86]]
P.J. Atherton, K. Smith, T. Etheridge, D. Rankin, M.J. Rennie. Distinct anabolic signalling responses to amino acids in C2C12 skeletal muscle cells. Amino Acids, 38 (5) ( 2010), pp. 1533-1539, DOI: 10.1007/s00726-009-0377-x
[[87]]
N. Hodson, D.W.D. West, A. Philp, N.A. Burd, D.R. Moore. Molecular regulation of human skeletal muscle protein synthesis in response to exercise and nutrients: a compass for overcoming age-related anabolic resistance. Am J Physiol Cell Physiol, 317 (6) ( 2019), pp. C1061-C1078, DOI: 10.1152/ajpcell.00209.2019
[[88]]
N. Poncet, F.E. Mitchell, A.F. Ibrahim, et al.. The catalytic subunit of the system L 1 amino acid transporter ( slc7a5) facilitates nutrient signalling in mouse skeletal muscle. PLoS One, 9 (2) ( 2014), p. e89547, DOI: 10.1371/journal.pone.0089547
[[89]]
N. Hodson, T. Brown, S. Joanisse, et al.. Characterisation of L-type amino acid transporter 1 (LAT1) expression in human skeletal muscle by immunofluorescent microscopy. Nutrients, 10 (1) ( 2017), p. 23, DOI: 10.3390/nu10010023
[[90]]
M. Mazzulla, N. Hodson, M. Lees, et al.. LAT1 and SNAT 2 protein expression and membrane localization of LAT1 are not acutely altered by dietary amino acids or resistance exercise nor positively associated with leucine or phenylalanine incorporation in human skeletal muscle. Nutrients, 13 (11) ( 2021), p. 3906, DOI: 10.3390/nu13113906
[[91]]
N. Hodson, T. Brown, S. Joanisse, et al.. Characterisation of L-type amino acid transporter 1 (LAT1) expression in human skeletal muscle by immunofluorescent microscopy. Nutrients, 10 (1) ( 2017), p. 23, DOI: 10.3390/nu10010023
[[92]]
M.J. Drummond, E.L. Glynn, C.S. Fry, K.L. Timmerman, E. Volpi, B.B. Rasmussen. An increase in essential amino acid availability upregulates amino acid transporter expression in human skeletal muscle. Am J Physiol Endocrinol Metab, 298 (5) ( 2010), pp. E1011-E1018, DOI: 10.1152/ajpendo.00690.2009
[[93]]
J.W. Beals, R.A. Sukiennik, J. Nallabelli, et al.. Anabolic sensitivity of postprandial muscle protein synthesis to the ingestion of a protein-dense food is reduced in overweight and obese young adults. Am J Clin Nutr, 104 (4) ( 2016), pp. 1014-1022, DOI: 10.3945/ajcn.116.130385
[[94]]
J. Agergaard, J. Bülow, J.K. Jensen, et al.. Effect of light-load resistance exercise on postprandial amino acid transporter expression in elderly men. Phys Rep, 5 (18) ( 2017), p. e13444, DOI: 10.14814/phy2.13444
[[95]]
P. Gran, D. Cameron-Smith.The actions of exogenous leucine on mTOR signalling and amino acid transporters in human myotubes. BMC Physiol, 11 ( 2011), p. 10, DOI: 10.1186/1472-6793-11-10
[[96]]
D.S. Hirsch, Y. Shen, M. Dokmanovic, et al.. Insulin activation of vacuolar protein sorting 34 mediates localized phosphatidylinositol 3-phosphate production at lamellipodia and activation of mTOR/S6K1. Cell Signal, 26 (6) ( 2014), pp. 1258-1268, DOI: 10.1016/j.cellsig.2014.02.009
[[97]]
M.G. MacKenzie, D.L. Hamilton, J.T. Murray, P.M. Taylor, K. Baar. mVps 34 is activated following high-resistance contractions. J Physiol, 587 (1) ( 2009), pp. 253-260, DOI: 10.1113/jphysiol.2008.159830
[[98]]
Z. Hong, N.M. Pedersen, L. Wang, M.L. Torgersen, H. Stenmark, C. Raiborg. PtdIns3P controls mTORC1 signaling through lysosomal positioning. J Cell Biol, 216 (12) ( 2017), pp. 4217-4233, DOI: 10.1083/jcb.201611073
[[99]]
D.W. Lamming, L. Ye, P. Katajisto, et al.. Rapamycin-induced insulin resistance is mediated by mTORC 2 loss and uncoupled from longevity. Science, 335 (6076) ( 2012), pp. 1638-1643, DOI: 10.1126/science.1215135
[[100]]
Z. Mao, W. Zhang.Role of mTOR in glucose and lipid metabolism. Int J Mol Sci, 19 (7) ( 2018), p. 2043, DOI: 10.3390/ijms19072043
[[101]]
A. Kumar, T.E. Harris, S.R. Keller, K.M. Choi, M.A. Magnuson, J.C. Lawrence Jr.. Muscle-specific deletion of rictor impairs insulin-stimulated glucose transport and enhances Basal glycogen synthase activity. Mol Cell Biol, 28 (1) ( 2008), pp. 61-70, DOI: 10.1128/MCB.01405-07
[[102]]
M. Kleinert, B.L. Parker, A.M. Fritzen, et al.. Mammalian target of rapamycin complex 2 regulates muscle glucose uptake during exercise in mice. J Physiol, 595 (14) ( 2017), pp. 4845-4855, DOI: 10.1113/JP274203
[[103]]
N. Hodson, C. McGlory, S.Y. Oikawa, et al.. Differential localization and anabolic responsiveness of mTOR complexes in human skeletal muscle in response to feeding and exercise. Am J Physiol Cell Physiol, 313 (6) ( 2017), pp. C604-C611, DOI: 10.1152/ajpcell.00176.2017
[[104]]
H. Liu, R. Liu, Y. Xiong, et al.. Leucine facilitates the insulin-stimulated glucose uptake and insulin signaling in skeletal muscle cells: involving mTORC1 and mTORC2. Amino Acids, 46 (8) ( 2014), pp. 1971-1979, DOI: 10.1007/s00726-014-1752-9
[[105]]
H. Wackerhage, I.J. Vechetti, P. Baumert, et al.. Does a hypertrophying muscle fibre reprogramme its metabolism similar to a cancer cell?. Sports Med, 52 (11) ( 2022), pp. 2569-2578, DOI: 10.1007/s40279-022-01676-1
[[106]]
R. Jia, J.S. Bonifacino.Lysosome positioning influences mTORC2 and AKT signaling. Mol Cell, 75 (1) ( 2019), pp. 26-38.e3, DOI: 10.1016/j.molcel.2019.05.009
[[107]]
Y. Rabanal-Ruiz, A. Byron, A. Wirth, et al.. mTORC 1 activity is supported by spatial association with focal adhesions. J Cell Biol, 220 (5) ( 2021), p. e202004010, DOI: 10.1083/jcb.202004010
[[108]]
M. Flück, A. Ziemiecki, R. Billeter, M. Müntener. Fibre-type specific concentration of focal adhesion kinase at the sarcolemma: influence of fibre innervation and regeneration. J Exp Biol, 205 (Pt 16) ( 2002), pp. 2337-2348, DOI: 10.1242/jeb.205.16.2337
[[109]]
B. Andresen, M. de Marees, T. Schiffer, W. Bloch, F. Suhr.Skeletal muscle fiber type-specific expressions of mechanosensors integrin-linked kinase, talin, and vinculin and their modulation by loading and environmental conditions in humans. Faseb J, 36 (8) ( 2022), p. e22458, DOI: 10.1096/fj.202101377RR
[[110]]
Z.A. Graham, P.M. Gallagher, C.P. Cardozo. Focal adhesion kinase and its role in skeletal muscle. J Muscle Res Cell Motil, 36 (4-5) ( 2015), pp. 305-315, DOI: 10.1007/s10974-015-9415-3
[[111]]
T.J. Burkholder. Mechanotransduction in skeletal muscle. Front Biosci, 12 (1) ( 2007), pp. 174-191, DOI: 10.2741/2057
[[112]]
J. Seong, N. Wang, Y. Wang. Mechanotransduction at focal adhesions: from physiology to cancer development. J Cell Mol Med, 17 (5) ( 2013), pp. 597-604, DOI: 10.1111/jcmm.12045
[[113]]
O.J. Wilson, C.S. Shaw, M. Sherlock, P.M. Stewart, A.J. Wagenmakers. Immunofluorescent visualisation of focal adhesion kinase in human skeletal muscle and its associated microvasculature. Histochem Cell Biol, 138 (4) ( 2012), pp. 617-626, DOI: 10.1007/s00418-012-0980-x
[[114]]
O.J. Wilson, H. Bradley, C.S. Shaw, A.J. Wagenmakers. Paxillin and focal adhesion kinase colocalise in human skeletal muscle and its associated microvasculature. Histochem Cell Biol, 142 (3) ( 2014), pp. 245-256, DOI: 10.1007/s00418-014-1212-3
[[115]]
H. Li, Y. Gao, C. Ren.Focal adhesion kinase inhibitor BI 853520 inhibits cell proliferation, migration and EMT process through PI3K/AKT/mTOR signaling pathway in ovarian cancer. Discov Oncol, 12 (1) ( 2021), p. 29, DOI: 10.1007/s12672-021-00425-6
[[116]]
P.E. Habets, D. Franco, J.M. Ruijter, A.J. Sargeant, J.A. Pereira, A.F. Moorman. RNA content differs in slow and fast muscle fibers: implications for interpretation of changes in muscle gene expression. J Histochem Cytochem, 47 (8) ( 1999), pp. 995-1004, DOI: 10.1177/002215549904700803
[[117]]
Z. Horne, J. Hesketh. Immunological localization of ribosomes in striated rat muscle. Evidence for myofibrillar association and ontological changes in the subsarcolemmal:myofibrillar distribution. Biochem J, 268 (1) ( 1990), pp. 231-236, DOI: 10.1042/bj2680231
[[118]]
T.E. Harris, A. Chi, J. Shabanowitz, D.F. Hunt, R.E. Rhoads, J.C. Lawrence. mTOR-dependent stimulation of the association of eIF4G and eIF3 by insulin. EMBO J, 25 (8) ( 2006), pp. 1659-1668, DOI: 10.1038/sj.emboj.7601047
[[119]]
M.K. Holz, J. Blenis. Identification of S6 kinase 1 as a novel mammalian target of rapamycin (mTOR)-phosphorylating kinase. J Biol Chem, 280 (28) ( 2005), pp. 26089-26093, DOI: 10.1074/jbc.M504045200

We would like to thank Alexa Govette for her insights and discussion during the preparation of the manuscript.

Accesses

Citations

Detail

Sections
Recommended

/