Athletes with mild post-COVID-19 symptoms experience increased respiratory and metabolic demands: Α cross-sectional study

Vasileios T. Stavrou, Astara Kyriaki, George D. Vavougios, Ioannis G. Fatouros, George S. Metsios, Konstantinos Kalabakas, Dimitrios Karagiannis, Zoe Daniil, Konstantinos I. Gourgoulianis, George Βasdekis

Sports Medicine and Health Science ›› 2023, Vol. 5 ›› Issue (2) : 106-111. DOI: 10.1016/j.smhs.2022.10.004
Original article

Athletes with mild post-COVID-19 symptoms experience increased respiratory and metabolic demands: Α cross-sectional study

Author information +
History +

Abstract

Coronavirus Disease 2019 (COVID-19) has significantly affected different physiological systems, with a potentially profound effect on athletic performance. However, to date, such an effect has been neither addressed nor investigated. Therefore, the aim of this study was to investigate fitness indicators, along with the respiratory and metabolic profile, in post-COVID-19 athletes. Forty male soccer players, were divided into two groups: non-hospitalized COVID-19 (n = 20, Age: [25.2 ± 4.1] years, Body Surface Area [BSA]: [1.9 ± 0.2] m2, body fat: 11.8% ± 3.4%) versus [vs] healthy (n = 20, Age: [25.1 ± 4.4] years, BSA: [2.0 ± 0.3] m2, body fat: 10.8% ± 4.5%). For each athlete, prior to cardiopulmonary exercise testing (CPET), body composition, spirometry, and lactate blood levels, were recorded. Differences between groups were assessed with the independent samples t-test (p < 0.05). Several differences were detected between the two groups: ventilation (V˙E: Resting: [14.7 ± 3.1] L·min−1 vs. [11.5 ± 2.6] L·min−1, p = 0.001; Maximal Effort: [137.1 ± 15.5] L·min−1 vs. [109.1 ± 18.4] L·min−1, p < 0.001), ratio VE/maximal voluntary ventilation (Resting: 7.9% ± 1.8% vs. 5.7% ± 1.7%, p < 0.001; Maximal Effort: 73.7% ± 10.8% vs. 63.1% ± 9.0%, p = 0.002), ratioVE/BSA (Resting: 7.9% ± 2.0% vs. 5.9% ± 1.4%, p = 0.001; Maximal Effort: 73.7% ± 11.1% vs. 66.2% ± 9.2%, p = 0.026), heart rate (Maximal Effort: [191.6 ± 7.8] bpm vs. [196.6 ± 8.6] bpm, p = 0.041), and lactate acid (Resting: [1.8 ± 0.8] mmol·L-1 vs. [0.9 ± 0.1] mmol·L-1, p < 0.001; Maximal Effort: [11.0 ± 1.6] mmol·L-1 vs. [9.8 ± 1.2] mmol·L-1, p = 0.009), during CPET. No significant differences were identified regarding maximal oxygen uptake ([55.7 ± 4.4] ml·min−1·kg−1 vs. [55.4 ± 4.6] ml·min−1·kg−1, p = 0.831). Our findings demonstrate a pattern of compromised respiratory function in post-COVID-19 athletes characterized by increased respiratory work at both rest and maximum effort as well as hyperventilation during exercise, which may explain the reported increased metabolic needs.

Keywords

Cardiopulmonary exercise testing / Infected with COVID-19 / Respiratory work

Cite this article

Download citation ▾
Vasileios T. Stavrou, Astara Kyriaki, George D. Vavougios, Ioannis G. Fatouros, George S. Metsios, Konstantinos Kalabakas, Dimitrios Karagiannis, Zoe Daniil, Konstantinos I. Gourgoulianis, George Βasdekis. Athletes with mild post-COVID-19 symptoms experience increased respiratory and metabolic demands: Α cross-sectional study. Sports Medicine and Health Science, 2023, 5(2): 106‒111 https://doi.org/10.1016/j.smhs.2022.10.004

References

[[1]]
A.A. Gebru, T. Birhanu, E. Wendimu, et al.. Global burden of COVID-19: situational analyis and review. Hum Antibodies, 29 (2) ( 2021), pp. 139-148, DOI: 10.3233/HAB-200420
[[2]]
R.R. Deer, M.A. Rock, N. Vasilevsky, et al.. Characterizing long COVID: deep phenotype of a complex condition. EBioMedicine, 74 ( 2021), Article 103722, DOI: 10.1016/j.ebiom.2021.103722
[[3]]
A. Carfì, R. Bernabei, F. Landi. Gemelli against COVID-19 post-acute care study group. Persistent symptoms in patients after acute COVID-19. JAMA, 324 (6) ( 2020), pp. 603-605, DOI: 10.1001/jama.2020.12603
[[4]]
V.T. Stavrou, G.D. Vavougios, S. Boutlas, et al.. Physical fitness differences, amenable to hypoxia-driven and sarcopenia pathophysiology, between sleep apnea and COVID-19. Int J Environ Res Publ Health, 19 (2) ( 2022), p. 669, DOI: 10.3390/ijerph19020669
[[5]]
G.D. Vavougios, V.T. Stavrou, E. Papayianni, et al.. Investigating the prevalence of cognitive impairment in mild and moderate COVID-19 patients two months post-discharge: associations with physical fitness and respiratory function. Alzheimers Dement, 17 (suppl 6) ( 2021), Article e057752, DOI: 10.1002/alz.057752
[[6]]
T. Greenhalgh, M. Knight, C. A'Court, M. Buxton, L. Husain. Management of post-acute covid-19 in primary care. BMJ, 370 ( 2020), p. m3026, DOI: 10.1136/bmj.m3026
[[7]]
A. Nalbandian, K. Sehgal, A. Gupta, et al.. Post-acute COVID-19 syndrome. Nat Med, 27 (4) ( 2021), pp. 601-615, DOI: 10.1038/s41591-021-01283-z
[[8]]
J.A. Woods, N.T. Hutchinson, S.K. Powers, et al.. The COVID-19 pandemic and physical activity. Sports Med Health Sci, 2 (2) ( 2020), pp. 55-64, DOI: 10.1016/j.smhs.2020.05.006
[[9]]
J.H. Hull, M. Wootten, M. Moghal, et al.. Clinical patterns, recovery time and prolonged impact of COVID-19 illness in international athletes: the UK experience. Br J Sports Med, 56 (1) ( 2022), pp. 4-11, DOI: 10.1136/bjsports-2021-104392
[[10]]
V.T. Stavrou, K. Astara, Z. Daniil, et al.. The reciprocal association between fitness indicators and sleep quality in the context of recent sport injury. Int J Environ Res Publ Health, 17 (13) ( 2020), p. 4810, DOI: 10.3390/ijerph17134810
[[11]]
V.T. Stavrou, K.N. Tourlakopoulos, G.D. Vavougios, et al.. Eight weeks unsupervised pulmonary rehabilitation in previously hospitalized of SARS-CoV-2 Infection. J Personalized Med, 11 (8) ( 2021), p. 806, DOI: 10.3390/jpm11080806
[[12]]
D.A. Santos, J.A. Dawson, C.N. Matias, et al.. Reference values for body composition and anthropometric measurements in athletes. PLoS One, 9 (5) ( 2014), Article e97846, DOI: 10.1371/journal.pone.0097846
[[13]]
R.D. Mosteller.Simplified calculation of body-surface area. N Engl J Med, 317 (17) ( 1987), p. 1098, DOI: 10.1056/NEJM198710223171717
[[14]]
M.R. Miller, J. Hankinson, V. Brusasco, et al.. Standardisation of spirometry. Eur Respir J, 26 (2) ( 2005), pp. 319-338, DOI: 10.1183/09031936.05.00034805
[[15]]
V. Stavrou, G.D. Vavougios, F. Bardaka, E. Karetsi, Z. Daniil, K.I. Gourgoulianis.The effect of exercise training on the quality of sleep in national-level adolescent finswimmers. Sports Med Open, 5 (1) ( 2019), p. 34, DOI: 10.1186/s40798-019-0207-y
[[16]]
W. Dafoe.Principles of exercise testing and interpretation. Can J Cardiol, 23 (4) ( 2007), p. 274
[[17]]
V. Stavrou, A.K. Boutou, G.D. Vavougios, et al.. The use of cardiopulmonary exercise testing in identifying the presence of obstructive sleep apnea syndrome in patients with compatible symptomatology. Respir Physiol Neurobiol, 262 ( 2019), pp. 26-31, DOI: 10.1016/j.resp.2019.01.010
[[18]]
H. Tanaka, K.D. Monahan, D.R. Seals. Age-predicted maximal heart rate revisited. J Am Coll Cardiol, 37 (1) ( 2001), pp. 153-156, DOI: 10.1016/s0735-1097(00)01054-8
[[19]]
American Thoracic Society; American College of Chest Physicians. ATS/ACCP Statement on cardiopulmonary exercise testing. Am J Respir Crit Care Med, 167 (2) ( 2003), pp. 211-277, DOI: 10.1164/rccm.167.2.211
[[20]]
L. Townsend, J. Dowds, K. O'Brien, et al.. Persistent poor health after COVID-19 is not associated with respiratory complications or initial disease severity. Ann Am Thorac Soc, 18 (6) ( 2021), pp. 997-1003, DOI: 10.1513/AnnalsATS.202009-1175OC
[[21]]
F. Anastasio, T. LA Macchia, G. Rossi, et al.. Mid-term impact of mild-moderate COVID-19 on cardiorespiratory fitness in élite athletes. J Sports Med Phys Fit, 62 (10) ( 2022), pp. 1383-1390, DOI: 10.23736/S0022-4707.21.13226-8
[[22]]
K. Vonbank, A. Lehmann, D. Bernitzky, et al.. Predictors of prolonged cardiopulmonary exercise impairment after COVID-19 Infection: a prospective observational study. Front Med, 8 ( 2021), Article 773788, DOI: 10.3389/fmed.2021.773788
[[23]]
S. Fuschillo, P. Ambrosino, A. Motta, M. Maniscalco. COVID-19 and diffusing capacity of the lungs for carbon monoxide: a clinical biomarker in postacute care settings. Biomarkers Med, 15 (8) ( 2021), pp. 537-539, DOI: 10.2217/bmm-2021-0134
[[24]]
K. Sahlin, M. Tonkonogi, K. Söderlund. Energy supply and muscle fatigue in humans. Acta Physiol Scand, 162 (3) ( 1998), pp. 261-266, DOI: 10.1046/j.1365-201X.1998.0298f.x
[[25]]
K.G. Alberti. The biochemical consequences of hypoxia. J Clin Pathol Suppl, 11 ( 1977), pp. 14-20, DOI: 10.1136/jcp.s3-11.1.14
[[26]]
Ł.A. Małek, M. Marczak, B. Miłosz-Wieczorek, et al.. Cardiac involvement in consecutive elite athletes recovered from COVID-19: a magnetic resonance study. J Magn Reson Imag, 53 (6) ( 2021), pp. 1723-1729, DOI: 10.1002/jmri.27513
[[27]]
J.C. van Hattum, J.L. Spies, S.M. Verwijs, et al.. Cardiac abnormalities in athletes after SARS-CoV-2 infection: a systematic review. BMJ Open Sport Exerc Med, 7 (4) ( 2021), Article e001164, DOI: 10.1136/bmjsem-2021-001164
[[28]]
D.N. Greene, A.H.B. Wu, A.S. Jaffe.Return-to-play guidelines for athletes after COVID-19 infection. JAMA Cardiol, 6 (4) ( 2021), p. 479, DOI: 10.1001/jamacardio.2020.5348
[[29]]
T.J. Wang, B. Chau, M. Lui, G.T. Lam, N. Lin, S. Humbert.Physical medicine and rehabilitation and pulmonary rehabilitation for COVID-19. Am J Phys Med Rehabil, 99 (9) ( 2020), pp. 769-774, DOI: 10.1097/PHM.0000000000001505
[[30]]
K. Astara, D. Siachpazidou, G.D. Vavougios, et al.. Sleep disordered breathing from preschool to early adult age and its neurocognitive complications: a preliminary report. Sleep Sci, 14 (Spec 2) ( 2021), pp. 140-149, DOI: 10.5935/1984-0063.20200098
[[31]]
V.T. Stavrou, K. Astara, K.N. Tourlakopoulos, et al.. Sleep quality's effect on vigilance and perceptual ability in adolescent and adult athletes. J Sports Med, 2021 ( 2021), Article 5585573, DOI: 10.1155/2021/5585573
[[32]]
E. Anderson, J.L. Durstine. Physical activity, exercise, and chronic diseases: a brief review. Sports Med Health Sci, 1 (1) ( 2019), pp. 3-10, DOI: 10.1016/j.smhs.2019.08.006

We thank all the participants from the Medical Project, Prevention, Evaluation and Recovery Center, for volunteering in the current research protocol.

Accesses

Citations

Detail

Sections
Recommended

/