Athletes with mild post-COVID-19 symptoms experience increased respiratory and metabolic demands: Α cross-sectional study
Vasileios T. Stavrou, Astara Kyriaki, George D. Vavougios, Ioannis G. Fatouros, George S. Metsios, Konstantinos Kalabakas, Dimitrios Karagiannis, Zoe Daniil, Konstantinos I. Gourgoulianis, George Βasdekis
Athletes with mild post-COVID-19 symptoms experience increased respiratory and metabolic demands: Α cross-sectional study
Coronavirus Disease 2019 (COVID-19) has significantly affected different physiological systems, with a potentially profound effect on athletic performance. However, to date, such an effect has been neither addressed nor investigated. Therefore, the aim of this study was to investigate fitness indicators, along with the respiratory and metabolic profile, in post-COVID-19 athletes. Forty male soccer players, were divided into two groups: non-hospitalized COVID-19 (n = 20, Age: [25.2 ± 4.1] years, Body Surface Area [BSA]: [1.9 ± 0.2] m2, body fat: 11.8% ± 3.4%) versus [vs] healthy (n = 20, Age: [25.1 ± 4.4] years, BSA: [2.0 ± 0.3] m2, body fat: 10.8% ± 4.5%). For each athlete, prior to cardiopulmonary exercise testing (CPET), body composition, spirometry, and lactate blood levels, were recorded. Differences between groups were assessed with the independent samples t-test (p < 0.05). Several differences were detected between the two groups: ventilation (V˙E: Resting: [14.7 ± 3.1] L·min−1 vs. [11.5 ± 2.6] L·min−1, p = 0.001; Maximal Effort: [137.1 ± 15.5] L·min−1 vs. [109.1 ± 18.4] L·min−1, p < 0.001), ratio VE/maximal voluntary ventilation (Resting: 7.9% ± 1.8% vs. 5.7% ± 1.7%, p < 0.001; Maximal Effort: 73.7% ± 10.8% vs. 63.1% ± 9.0%, p = 0.002), ratioVE/BSA (Resting: 7.9% ± 2.0% vs. 5.9% ± 1.4%, p = 0.001; Maximal Effort: 73.7% ± 11.1% vs. 66.2% ± 9.2%, p = 0.026), heart rate (Maximal Effort: [191.6 ± 7.8] bpm vs. [196.6 ± 8.6] bpm, p = 0.041), and lactate acid (Resting: [1.8 ± 0.8] mmol·L-1 vs. [0.9 ± 0.1] mmol·L-1, p < 0.001; Maximal Effort: [11.0 ± 1.6] mmol·L-1 vs. [9.8 ± 1.2] mmol·L-1, p = 0.009), during CPET. No significant differences were identified regarding maximal oxygen uptake ([55.7 ± 4.4] ml·min−1·kg−1 vs. [55.4 ± 4.6] ml·min−1·kg−1, p = 0.831). Our findings demonstrate a pattern of compromised respiratory function in post-COVID-19 athletes characterized by increased respiratory work at both rest and maximum effort as well as hyperventilation during exercise, which may explain the reported increased metabolic needs.
Cardiopulmonary exercise testing / Infected with COVID-19 / Respiratory work
[[1]] |
|
[[2]] |
|
[[3]] |
|
[[4]] |
|
[[5]] |
|
[[6]] |
|
[[7]] |
|
[[8]] |
|
[[9]] |
|
[[10]] |
|
[[11]] |
|
[[12]] |
|
[[13]] |
|
[[14]] |
|
[[15]] |
|
[[16]] |
|
[[17]] |
|
[[18]] |
|
[[19]] |
American Thoracic Society; American College of Chest Physicians. ATS/ACCP Statement on cardiopulmonary exercise testing. Am J Respir Crit Care Med, 167 (2) ( 2003), pp. 211-277, DOI: 10.1164/rccm.167.2.211
|
[[20]] |
|
[[21]] |
|
[[22]] |
|
[[23]] |
|
[[24]] |
|
[[25]] |
|
[[26]] |
|
[[27]] |
|
[[28]] |
|
[[29]] |
|
[[30]] |
|
[[31]] |
|
[[32]] |
|
We thank all the participants from the Medical Project, Prevention, Evaluation and Recovery Center, for volunteering in the current research protocol.
/
〈 | 〉 |