Assessment of muscle strength in para-athletes: A systematic review of observational studies

Seán R. O'Connor, Kristina Fagher, Samuel Williamson, Babette M. Pluim, Clare L. Ardern, Dina C. Janse van Rensburg, Neil Heron

Sports Medicine and Health Science ›› 2022, Vol. 4 ›› Issue (4) : 225-238. DOI: 10.1016/j.smhs.2022.07.004
Original article

Assessment of muscle strength in para-athletes: A systematic review of observational studies

Author information +
History +

Abstract

Accurate and reliable evaluation of muscle strength in para-athletes is essential for monitoring the effectiveness of strength training and/or rehabilitation programmes, and sport classification. Our aim is to synthesise evidence related to assessing muscle strength in para-athletes. Four databases were searched from January 1990 to July 2021 for observational studies focusing on strength assessment. Independent screening, data extraction, and quality assessment were performed in duplicate. A total of 1764 potential studies were identified. Thirty met the inclusion criteria and were included in the review. The mean age of participants was 30.7 years (standard deviation [SD]: 2.4). The majority were men (88%) participating in wheelchair sports, including basketball, rugby, and tennis (23/30: 76%). Overall quality varied, with more than half of the studies failing to identify strategies for dealing with confounding variables. Despite manual muscle testing being a standard component of para-sport classification systems, evidence examining strength characteristics in para-athletes is derived primarily from isometric and isokinetic testing. In studies that included comparative strength data, findings were mixed. Some studies found strength values were similar to or lower than able-bodied athletic controls. However, an important observation was that others reported higher shoulder strength in para-athletes taking part in wheelchair sports than both able-bodied and disabled non-athletes. Studies need to develop accessible, standardised strength testing methods that account for training influence and establish normative strength values in para-athletes. There is also a need for additional studies that include female para-athletes and para-athletes with greater functional impairments.

Keywords

Systematic review / Para-athletes / Disabled sport / Muscle strength / Assessment

Cite this article

Download citation ▾
Seán R. O'Connor, Kristina Fagher, Samuel Williamson, Babette M. Pluim, Clare L. Ardern, Dina C. Janse van Rensburg, Neil Heron. Assessment of muscle strength in para-athletes: A systematic review of observational studies. Sports Medicine and Health Science, 2022, 4(4): 225‒238 https://doi.org/10.1016/j.smhs.2022.07.004

References

[[1]]
American College of Sports Medicine. American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc, 41 (3) ( 2009), pp. 687-708, DOI: 10.1249/MSS.0b013e3181915670
[[2]]
R.W. Bohannon, S. Walsh. Nature, reliability, and predictive value of muscle performance measures in patients with hemiparesis following stroke. Arch Phys Med Rehabil, 73 (8) ( 1992), pp. 721-725
[[3]]
O. Verschuren, A.R.P. Smorenburg, Y. Luiking, K. Bell, L. Barber, M.D. Peterson. Determinants of muscle preservation in individuals with cerebral palsy across the lifespan: a narrative review of the literature. J Cachexia Sarcopenia Muscle, 9 (3) ( 2018), pp. 453-464, DOI: 10.1002/jcsm.12287
[[4]]
B.M. Hastings, M.V. Ntsiea, S. Olorunju. Factors that influence functional ability in individuals with spinal cord injury: a cross-sectional, observational study. S Afr J Physiother, 71 (1) ( 2015), pp. 235-242, DOI: 10.4102/sajp.v71i1.235
[[5]]
O. Fliess Douer, D. Koseff, S. Tweedy, B. Molik, Y. Vanlandewijck. Challenges and opportunities in wheelchair basketball classification - a Delphi study. J Sports Sci, 39 (sup1) ( 2021), pp. 7-18, DOI: 10.1080/02640414.2021.1883310
[[6]]
International Wheelchair Rugby Federation. IWRF Classification Rules. ( 2021).
[[7]]
International Tennis Federation. Wheelchair Tennis Classification Rules. ( 2019).
[[8]]
T. Kambič, M. Lainščak, V. Hadžić. Reproducibility of isokinetic knee testing using the novel isokinetic SMM iMoment dynamometer. PLoS One, 15 (8) ( 2020), Article e0237842, DOI: 10.1371/journal.pone.0237842
[[9]]
J.B. de Araujo Ribeiro Alvares, R. Rodrigues, R. de Azevedo Franke, et al.. Inter-machine reliability of the Biodex and Cybex isokinetic dynamometers for knee flexor/extensor isometric, concentric and eccentric tests. Phys Ther Sport, 16 (1) ( 2015), pp. 59-65, DOI: 10.1016/j.ptsp.2014.04.004
[[10]]
A.C. de Carvalho Froufe Andrade, P. Caserotti, C.M. de Carvalho, E.A. de Azevedo Abade, A.J. da Eira Sampaio. Reliability of concentric, eccentric and isometric knee extension and flexion when using the REV9000 Isokinetic Dynamometer. J Hum Kinet, 37 ( 2013), pp. 47-53, DOI: 10.2478/hukin-2013-0024
[[11]]
International Wheelchair Basketball Federation. IWBF Player Classification Rules. ( 2021).
[[12]]
E.M. Beckman, M.J. Connick, S.M. Tweedy. Assessing muscle strength for the purpose of classification in Paralympic sport: a review and recommendations. J Sci Med Sport, 20 (4) ( 2017), pp. 391-396, DOI: 10.1016/j.jsams.2016.08.010
[[13]]
P. Abernethy, G. Wilson, P. Logan. Strength and power assessment. Issues, controversies and challenges [published correction appears in Sports Med. Sports Med, 19 (6) ( 1995), pp. 401-417, DOI: 10.2165/00007256-199519060-00004. 1995 Sep;20(3):205
[[14]]
R. Kollock, B.L. Van Lunen, S.I. Ringleb, J.A. Oñate. Measures of functional performance and their association with hip and thigh strength. J Athl Train, 50 (1) ( 2015), pp. 14-22, DOI: 10.4085/1062-6050-49.3.49
[[15]]
N.J. Majstorović, M.J. Dopsaj, V.M. Grbić, et al.. Relationship between isometric strength parameters and specific volleyball performance tests: multidimensional modelling approach. IES, 29 (1) ( 2021), pp. 83-93, DOI: 10.3233/IES-202156
[[16]]
D. Lum, G.G. Haff, T.M. Barbosa.The relationship between isometric force-time characteristics and dynamic performance: a systematic review. Sports (Basel), 8 (5) ( 2020), p. 63, DOI: 10.3390/sports8050063
[[17]]
D.I. Ogborn, A. Bellemare, B. Bruinooge, H. Brown, S. McRae, J. Leiter. Comparison of common methodologies for the determination of knee flexor muscle strength. Int J Sports Phys Ther, 16 (2) ( 2021), pp. 350-359, DOI: 10.26603/001c.21311
[[18]]
W.K. Kim, D.K. Kim, K.M. Seo, S.H. Kang. Reliability and validity of isometric knee extensor strength test with hand-held dynamometer depending on its fixation: a pilot study. Ann Rehabil Med, 38 (1) ( 2014), pp. 84-93, DOI: 10.5535/arm.2014.38.1.84
[[19]]
K.S. Sung, Y.G. Yi, H.I. Shin.Reliability and validity of knee extensor strength measurements using a portable dynamometer anchoring system in a supine position. BMC Muscoskel Disord, 20 (1) ( 2019), p. 320, DOI: 10.1186/s12891-019-2703-0
[[20]]
J.P.T. Higgins, J. Thomas, J. Chandler, et al.. Cochrane Handbook for Systematic Reviews of Interventions. Version 6.2. Cochrane
[[21]]
updated February 2021. (2021). www.training.cochrane.org/handbook, Accessed 7th Jun 2021
[[22]]
M.J. Page, J.E. McKenzie, P.M. Bossuyt, et al.. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ, 29 ( 2021), DOI: 10.1136/bmj.n71
[[23]]
S. Moola, Z. Munn, C. Tufanaru, et al..Chapter 7: systematic reviews of etiology and risk. E.Aromataris, Z.Munn ( Joanna Briggs Institute Reviewer's Manual, The Joanna Briggs Institute (Eds.), 2017).
[[24]]
V.C. Altmann, B.E. Groen, K.H. Groenen, Y.C. Vanlandewijck, J. van Limbeek, N.L. Keijsers. Construct validity of the trunk impairment classification system in relation to objective measures of trunk impairment. Arch Phys Med Rehabil, 97 (3) ( 2016), pp. 437-444, DOI: 10.1016/j.apmr.2015.10.096
[[25]]
V.C. Altmann, B.E. Groen, A.L. Hart, Y.C. Vanlandewijck, N.L.W. Keijsers. Classifying trunk strength impairment according to the activity limitation caused in wheelchair rugby performance. Scand J Med Sci Sports, 28 (2) ( 2018), pp. 649-657, DOI: 10.1111/sms.12921
[[26]]
E.M. Beckman, M.J. Connick, S.M. Tweedy. How much does lower body strength impact Paralympic running performance?. Eur J Sport Sci, 16 (6) ( 2016), pp. 669-676, DOI: 10.1080/17461391.2015.1132775
[[27]]
M. Bernardi, S. Carucci, F. Faiola, et al.. Physical fitness evaluation of paralympic winter sports sitting athletes. [published correction appears in Clin J Sport Med. 2012 Mar;22(2):209]. Clin J Sport Med, 22 (1) ( 2012), pp. 26-30, DOI: 10.1097/JSM.0b013e31824237b5
[[28]]
M.J. Connick, E. Beckman, Y. Vanlandewijck, L.A. Malone, S. Blomqvist, S.M. Tweedy. Cluster analysis of novel isometric strength measures produces a valid and evidence-based classification structure for wheelchair track racing. Br J Sports Med, 52 (17) ( 2018), pp. 1123-1129, DOI: 10.1136/bjsports-2017-097558
[[29]]
L. Hogarth, V. Nicholson, J. Spathis, et al.. A battery of strength tests for evidence-based classification in para swimming. J Sports Sci, 37 (4) (2019 Feb), pp.404-413, DOI: 10.1080/02640414.2018.1504606
[[30]]
A. Hyde, L. Hogarth, M. Sayers, et al.. The impact of an assistive pole, seat configuration, and strength in paralympic seated throwing. Int J Sports Physiol Perform, 12 (7) ( 2017), pp. 977-983, DOI: 10.1123/ijspp.2016-0340
[[31]]
G. Marcolin, N. Petrone, M. Benazzato, et al.. Personalized tests in paralympic athletes: aerobic and anaerobic performance profile of elite wheelchair rugby players. J Personalized Med, 10 (3) ( 2020), p. 118, DOI: 10.3390/jpm10030118
[[32]]
B.S. Mason, V.C. Altmann, M.J. Hutchinson, V.L. Goosey-Tolfrey. Validity and reliability of isometric tests for the evidence-based assessment of arm strength impairment in wheelchair rugby classification. J Sci Med Sport, 23 (6) ( 2020), pp. 559-563, DOI: 10.1016/j.jsams.2019.12.022
[[33]]
B.S. Mason, V.C. Altmann, M.J. Hutchinson, N. Petrone, F. Bettella, V.L. Goosey-Tolfrey. Optimising classification of proximal arm strength impairment in wheelchair rugby: a proof of concept study. J Sports Sci, 39 (sup1) ( 2021), pp. 132-139, DOI: 10.1080/02640414.2021.1883291
[[34]]
Y.C. Porto, M. Almeida, C.K. de , P.A. Schwingel, C.C. Zoppi. Anthropometric and physical characteristics of motor disabilited paralympic rowers. Res Sports Med, 16 (3) ( 2008), pp. 203-212, DOI: 10.1080/15438620802103437
[[35]]
R. Reina, D. Barbado, C. Soto-Valero, J.M. Sarabia, A. Roldán. Evaluation of the bilateral function in para-athletes with spastic hemiplegia: a model-based clustering approach. J Sci Med Sport, 23 (8) ( 2020), pp. 710-714, DOI: 10.1016/j.jsams.2020.01.003
[[36]]
Y. Umezu, N. Shiba, F. Tajima, et al.. Muscle endurance and power spectrum of the triceps brachii in wheelchair marathon racers with paraplegia. Spinal Cord, 41 (9) ( 2003), pp. 511-515, DOI: 10.1038/sj.sc.3101495
[[37]]
Y.C. Vanlandewijck, J. Verellen, E. Beckman, M. Connick, S.M. Tweedy. Trunk strength effect on track wheelchair start: implications for classification. Med Sci Sports Exerc, 43 (12) ( 2011), pp. 2344-2351, DOI: 10.1249/MSS.0b013e318223af14
[[38]]
Y.T. Wang, S. Chen, W. Limroongreungrat, L.S. Change. Contributions of selected fundamental factors to wheelchair basketball performance. Med Sci Sports Exerc, 37 (1) ( 2005), pp. 130-137, DOI: 10.1249/01.mss.0000150076.36706.b2
[[39]]
J. Yanci, C. Granados, M. Otero, et al.. Sprint, agility, strength and endurance capacity in wheelchair basketball players. Biol Sport, 32 (1) ( 2015), pp. 71-78, DOI: 10.5604/20831862.1127285
[[40]]
MdS. Andrade, A. M. Fleury, A. C. Silva. Isokinetic muscular strength of paralympic athletes with cerebral palsy (CP) from the Brazilian soccer team. Rev Bras Med Esporte, 11 (5) ( 2005), pp. 281-285, DOI: 10.1590/S1517-86922005000500007
[[41]]
A. Aytar, N.O. Pekyavas, N. Ergun, M. Karatas.Is there a relationship between core stability, balance and strength in amputee soccer players? A pilot study. Prosthet Orthot Int, 36 (3) ( 2012), p. 332, DOI: 10.1177/0309364612445836. 328
[[42]]
S. Başar, N. Ergun. Isokinetic training of the shoulder rotator musculature in wheelchair basketball athletes. Int J Athl Ther Train, 17 (6) ( 2012), pp. 23-26, DOI: 10.1123/ijatt.17.6.23
[[43]]
P.L. Bernard, P. Codine, J. Minier. Isokinetic shoulder rotator muscles in wheelchair athletes. Spinal Cord, 42 (4) ( 2004), pp. 222-229, DOI: 10.1038/sj.sc.3101556
[[44]]
B. Külünkoğlu, Y. Akkubak, N. Ergun. The profile of upper extremity muscular strength in female wheelchair basketball players: a pilot study. J Sports Med Phys Fit, 58 (5) ( 2018), pp. 606-611, DOI: 10.23736/S0022-4707.17.06862-1
[[45]]
P.S. Freitas, T.S. Santana, L.S. Manoel, F.S. Serenza, M. Riberto.A comparison of isokinetic rotator cuff performance in wheelchair basketball athletes vs. non-athletes with spinal cord injury. J Spinal Cord Med, 44 (4) ( 2021), pp. 557-562, DOI: 10.1080/10790268.2019.1603489
[[46]]
G. Çobanoğlu, N. Atalay Güzel, B. Seven, et al.. The comparison of flexibility and isokinetic shoulder strength in wheelchair and able-bodied basketball players. Turkiye Klinikleri J Sports Sci, 12 (3) ( 2020), pp. 349-357, DOI: 10.5336/sportsci.2020-75591
[[47]]
H.B. Moon, S.J. Park, A.C. Kim, J.H. Jang. Characteristics of upper limb muscular strength in male wheelchair tennis players. J Exerc Rehabil, 9 (3) ( 2013), pp. 375-380, DOI: 10.12965/jer.130051
[[48]]
Ç. Soylu, N.Ü. Yıldırım, C. Akalan, B. Akınoğlu, T. Kocahan. The relationship between athletic performance and physiological characteristics in wheelchair basketball athletes. Res Q Exerc Sport, 92 (4) ( 2021), pp. 639-650, DOI: 10.1080/02701367.2020.1762834
[[49]]
J. Villacieros, J. Pérez-Tejero, G. Garrido, L. Grams, López-Illescas Á, A. Ferro.Relationship between sprint velocity and peak moment at shoulder and elbow in elite wheelchair basketball players. Int J Environ Res Publ Health, 17 (19) ( 2020), p. 6989, DOI: 10.3390/ijerph17196989
[[50]]
B. Juul-Kristensen, C. Bech, B. Liaghat, et al.. Assessment of shoulder rotation strength, muscle co-activation and shoulder pain in tetraplegic wheelchair athletes - a methodological study. J Spinal Cord Med, 45 (3) ( 2022), pp. 410-419, DOI: 10.1080/10790268.2020.1803659
[[51]]
Ç. Soylu, N.Ü. Yıldırım, C. Akalan, B. Akınoğlu, T. Kocahan. The relationship between athletic performance and physiological characteristics in wheelchair basketball athletes. Res Q Exerc Sport, 92 (4) ( 2021), pp. 639-650, DOI: 10.1080/02701367.2020.1762834
[[52]]
P.A. Schwingel, Y.C. Porto, M.C. Dias, M.M. Moreira, C.C. Zoppi. Predicting one repetition maximum equations accuracy in paralympic rowers with motor disabilities. J Strength Condit Res, 23 (3) ( 2009), pp. 1045-1050, DOI: 10.1519/JSC.0b013e3181a06356
[[53]]
A. Iturricastillo, C. Granados, R. Reina, J.M. Sarabia, A. Romarate, J. Yanci. Velocity and power-load association of bench press exercise in wheelchair basketball players and their relationships with field-test performance. Int J Sports Physiol Perform, 14 (7) ( 2019), pp. 880-886, DOI: 10.1123/ijspp.2018-0123
[[54]]
M.L. van der Linden, S. Jahed, N. Tennant, M.H.G. Verheul. The influence of lower limb impairments on race running performance in athletes with hypertonia, ataxia or athetosis. Gait Posture, 61 ( 2018), pp. 362-367, DOI: 10.1016/j.gaitpost.2018.02.004
[[55]]
J.Y. Hogrel, G. Ollivier,C. Desnuelle. Testing musculaire manuel et quantifié dans les maladies neuromusculaires. Comment assurer la qualité des mesures de force dans les protocoles cliniques? [Manual and quantitative muscle testing in neuromuscular disorders. How to assess the consistency of strength measurements in clinical trials?]. Rev Neurol (Paris), 162 (4) ( 2006), pp. 427-436, DOI: 10.1016/s0035-3787(06)75033-0
[[56]]
F.N. Bittmann, S. Dech, M. Aehle, L.V. Schaefer.Manual muscle testing-force profiles and their reproducibility. Diagnostics (Basel), 10 (12) ( 2020), p. 996, DOI: 10.3390/diagnostics10120996
[[57]]
F. Manikowska, B.P. Chen, M. Jóźwiak, M.K. Lebiedowska. Validation of manual muscle testing (MMT) in children and adolescents with cerebral palsy. NeuroRehabilitation, 42 (1) ( 2018), pp. 1-7, DOI: 10.3233/NRE-172179
[[58]]
T. Paternostro-Sluga, M. Grim-Stieger, M. Posch, et al.. Reliability and validity of the Medical Research Council (MRC) scale and a modified scale for testing muscle strength in patients with radial palsy. J Rehabil Med, 40 (8) ( 2008), pp. 665-671, DOI: 10.2340/16501977-0235
[[59]]
G. Sole, J. Hamrén, S. Milosavljevic, H. Nicholson, S.J. Sullivan. Test-retest reliability of isokinetic knee extension and flexion. Arch Phys Med Rehabil, 88 (5) ( 2007), pp. 626-631, DOI: 10.1016/j.apmr.2007.02.006
[[60]]
B. Habets, J.B. Staal, M. Tijssen, R. van Cingel.Intrarater reliability of the Humac NORM isokinetic dynamometer for strength measurements of the knee and shoulder muscles. BMC Res Notes, 11 (1) ( 2018), p. 15, DOI: 10.1186/s13104-018-3128-9
[[61]]
T. Stark, B. Walker, J.K. Phillips, R. Fejer, R. Beck. Hand-held dynamometry correlation with the gold standard isokinetic dynamometry: a systematic review. Pharm Manag PM R, 3 (5) ( 2011), pp. 472-479, DOI: 10.1016/j.pmrj.2010.10.025
[[62]]
T. Awatani, I. Morikita, J. Shinohara, et al.. Intra- and inter-rater reliability of isometric shoulder extensor and internal rotator strength measurements performed using a hand-held dynamometer. J Phys Ther Sci, 28 (11) ( 2016), pp. 3054-3059, DOI: 10.1589/jpts.28.3054
[[63]]
J. Lesnak, D. Anderson, B. Farmer, D. Katsavelis, T.L. Grindstaff. Validity of hand-held dynamometry in measuring quadriceps strength and rate of torque development. Int J Sports Phys Ther, 14 (2) ( 2019), pp. 180-187
[[64]]
K.L. Holt, D.P. Raper, C.E. Boettcher, G.S. Waddington, M.K. Drew. Hand-held dynamometry strength measures for internal and external rotation demonstrate superior reliability, lower minimal detectable change and higher correlation to isokinetic dynamometry than externally-fixed dynamometry of the shoulder. Phys Ther Sport, 21 ( 2016), pp. 75-81, DOI: 10.1016/j.ptsp.2016.07.001
[[65]]
H. Keep, L. Luu, A. Berson, S.J. Garland. Validity of the handheld dynamometer compared with an isokinetic dynamometer in measuring peak hip extension strength. Physiother Can, 68 (1) ( 2016), pp. 15-22, DOI: 10.3138/ptc.2014-62
[[66]]
M. Hirano, M. Katoh, M. Gomi, S. Arai. Validity and reliability of isometric knee extension muscle strength measurements using a belt-stabilized hand-held dynamometer: a comparison with the measurement using an isokinetic dynamometer in a sitting posture. J Phys Ther Sci, 32 (2) ( 2020), pp. 120-124, DOI: 10.1589/jpts.32.120
[[67]]
D. Karabay, S.S. Yesilyaprak, G. Sahiner Picak. Reliability and validity of eccentric strength measurement of the shoulder abductor muscles using a hand-held dynamometer. Phys Ther Sport, 43 ( 2020), pp. 52-57, DOI: 10.1016/j.ptsp.2020.02.002
[[68]]
J. Alcazar, R. Csapo, I. Ara, L.M. Alegre.On the shape of the force-velocity relationship in skeletal muscles: the linear, the hyperbolic, and the double-hyperbolic. Front Physiol, 10 ( 2019), p. 769, DOI: 10.3389/fphys.2019.00769
[[69]]
C.A. Stone, B. Nolan, P.G. Lawlor, R.A. Kenny. Hand-held dynamometry: tester strength is paramount, even in frail populations. J Rehabil Med, 43 (9) ( 2011), pp. 808-811, DOI: 10.2340/16501977-0860
[[70]]
C. Chamorro, M. Arancibia, B. Trigo, L. Arias-Poblete, D. Jerez-Mayorga.Absolute reliability and concurrent validity of hand-held dynamometry in shoulder rotator strength assessment: systematic review and meta-analysis. Int J Environ Res Publ Health, 18 (17) ( 2021), p. 9293, DOI: 10.3390/ijerph18179293
[[71]]
D. Martinez-Garcia, A. Rodriguez-Perea, P. Barboza, et al.. Reliability of a standing isokinetic shoulder rotators strength test using a functional electromechanical dynamometer: effects of velocity. PeerJ, 8 (2020 Oct 27), Article e9951, DOI: 10.7717/peerj.9951
[[72]]
J.N.E. Bakers, L.H. van den Berg, T.G. Ajeks, et al.. Portable fixed dynamometry: towards remote muscle strength measurements in patients with motor neuron disease. J Neurol, 268 (5) ( 2021), pp. 1738-1746, DOI: 10.1007/s00415-020-10366-9
[[73]]
M.J. Hutchinson, J.K. Phillips, B.S. Mason, V.L. Goosey-Tolfrey, E.M. Beckman. Measures of impairment applicable to the classification of paralympic athletes competing in wheelchair sports: a systematic review of validity, reliability and associations with performance. J Sports Sci, 39 (sup1) ( 2021), pp. 40-61, DOI: 10.1080/02640414.2020.1815957

Accesses

Citations

Detail

Sections
Recommended

/