Exercise during weight loss improves hepatic mitophagy

Megan E. Rosa-Caldwell, Kaylee E. Poole, Andrew Seija, Matthew P. Harris, Nicholas P. Greene, Joshua S. Wooten

Sports Medicine and Health Science ›› 2022, Vol. 4 ›› Issue (3) : 183-189. DOI: 10.1016/j.smhs.2022.04.003
Original article

Exercise during weight loss improves hepatic mitophagy

Author information +
History +

Abstract

Non-alcoholic fatty liver disease (NAFLD) has recently become a public health concern concurrent with the obesity crisis. Previous work has shown aberrant mitochondrial content/quality and autophagy in models of NAFLD, whereas exercise is known to improve these derangements. The purpose of this study was to examine the effect of different weight-loss modalities on hepatic mitochondrial content, autophagy and mitophagy in NAFLD. Forty-eight male C57BL/6J mice were divided into 1 of 4 groups: low fat diet (LFD, 10% fat, 18 weeks), high fat diet (HFD, 60% fat diet, 18 weeks), weight-loss by diet (D, 60% fat diet for 10 weeks then 10% fat diet for 8 weeks) or weight-loss by diet and physical activity (D/PA, 60% fat diet for 10 weeks, then 10% fat diet plus a running wheel for 8 weeks). Immunoblot data were analyzed by one-way analysis of variance (ANOVA) with significance denoted at p ​< ​0.05. COX-IV protein contents were approximately 50% less in HFD compared to LFD. D/PA had 50% more BNIP3 compared to HFD. PINK1 content was 40% higher in D and D/PA compared to LFD. P-PARKIN/PARKIN levels were 40% lower in HFD, D, and D/PA compared to LFD. Whereas p-UbSer65 was 3-fold higher in HFD. LC3II/I ratio was 50% greater in HFD and D/PA, yet p62 protein content was 2.5 fold higher in HFD. High-fat diet causes disruptions in markers of mitochondrial quality control. Physical activity combined with diet were able to ameliorate these derangements and seemingly improve hepatic mitochondrial quality above control values.

Keywords

Autophagy / High-fat diet / Mitochondria / Hepatic metabolism

Cite this article

Download citation ▾
Megan E. Rosa-Caldwell, Kaylee E. Poole, Andrew Seija, Matthew P. Harris, Nicholas P. Greene, Joshua S. Wooten. Exercise during weight loss improves hepatic mitophagy. Sports Medicine and Health Science, 2022, 4(3): 183‒189 https://doi.org/10.1016/j.smhs.2022.04.003

References

[[1]]
S. Bellentani, F. Scaglioni, M. Marino, et al.. Epidemiology of non-alcoholic fatty liver disease. Dig Dis, 28 (1) ( 2010), pp. 155-161, DOI: 10.1159/000282080
[[2]]
M. Lazo, R. Hernaez, M.S. Eberhardt, et al.. Prevalence of nonalcoholic fatty liver disease in the United States: the third national health and nutrition examination survey, 1988-1994. Am J Epidemiol, 178 (1) ( 2013), pp. 38-45, DOI: 10.1093/aje/kws448
[[3]]
V.J. Lavallard, P. Gual.Autophagy and non-alcoholic fatty liver disease. BioMed Res Int, 2014 ( 2014), p. 120179, DOI: 10.1155/2014/120179
[[4]]
C. Filozof, B.J. Goldstein, R.N. Williams, et al.. Non-alcoholic steatohepatitis: limited available treatment options but promising drugs in development and recent progress towards a regulatory approval pathway. Drugs, 75 (12) ( 2015), pp. 1373-1392, DOI: 10.1007/s40265-015-0437-3
[[5]]
S. Alex, A. Boss, A. Heerschap, et al.. Exercise training improves liver steatosis in mice. Nutr Metab, 12 ( 2015), p. 29, DOI: 10.1186/s12986-015-0026-1
[[6]]
R.S. Rector, G.M. Uptergrove, E.M. Morris, et al.. Daily exercise vs. caloric restriction for prevention of nonalcoholic fatty liver disease in the OLETF rat model. Am J Physiol Gastrointest Liver Physiol, 300 (5) ( 2011), pp. G874-G883, DOI: 10.1152/ajpgi.00510.2010
[[7]]
A. Di Ciaula, S. Passarella, H. Shanmugam, et al.. Nonalcoholic fatty liver disease (NAFLD). Mitochondria as players and targets of therapies?. Int J Mol Sci, 22 (10) ( 2021), p. 5375, DOI: 10.3390/ijms22105375
[[8]]
C.A.L.H. Galloway, P.S. Brookes, Y. Yoon. Decreasing mitochondrial fission alleviates hepatic steatosis in a murine model of nonalcoholic fatty liver disease. Am J Physiol Gastrointest Liver Physiol, 307 (6) ( 2014), pp. G632-G641, DOI: 10.1152/ajpgi.00182.2014
[[9]]
D. Glick, W. Zhang, M. Beaton, et al.. BNip 3 regulates mitochondrial function and lipid metabolism in the liver. Mol Cell Biol, 32 (13) ( 2012), pp. 2570-2584, DOI: 10.1128/MCB.00167-12
[[10]]
J.J. Kuo, H.H. Chang, T.H. Tsai, et al.. Positive effect of curcumin on inflammation and mitochondrial dysfunction in obese mice with liver steatosis. Int J Mol Med, 30 (3) ( 2012), pp. 673-679, DOI: 10.3892/ijmm.2012.1049
[[11]]
J. Xu, K. Cao, Y. Li, et al.. Bitter gourd inhibits the development of obesity-associated fatty liver in C57BL/ 6 mice fed a high-fat diet. J Nutr, 144 (4) ( 2014), pp. 475-483, DOI: 10.3945/jn.113.187450
[[12]]
R.S. Rector, J.P. Thyfault, G.M. Uptergrove, et al.. Mitochondrial dysfunction precedes insulin resistance and hepatic steatosis and contributes to the natural history of non-alcoholic fatty liver disease in an obese rodent model. J Hepatol, 52 (5) ( 2010), pp. 727-736, DOI: 10.1016/j.jhep.2009.11.030
[[13]]
T.N. Nguyen, B.S. Padman, M. Lazarou.Deciphering the molecular signals of PINK1/parkin mitophagy. Trends Cell Biol, 26 (10) ( 2016), pp. 733-744, DOI: 10.1016/j.tcb.2016.05.008
[[14]]
I. Novak, V. Kirkin, D.G. McEwan, et al.. Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep, 11 (1) ( 2010), pp. 45-51, DOI: 10.1038/embor.2009.256
[[15]]
A. Hamacher-Brady, N.R. Brady. Mitophagy programs: mechanisms and physiological implications of mitochondrial targeting by autophagy. Cell Mol Life Sci, 73 (4) ( 2016), pp. 775-795, DOI: 10.1007/s00018-015-2087-8
[[16]]
C. Kondapalli, A. Kazlauskaite, N. Zhang, et al.. PINK 1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65. Open Biol, 2 (5) ( 2012), p. 120080, DOI: 10.1098/rsob.120080
[[17]]
L.A. Kane, M. Lazarou, A.I. Fogel, et al.. PINK 1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. J Cell Biol, 205 (2) ( 2014), pp. 143-153, DOI: 10.1083/jcb.201402104
[[18]]
A. Kazlauskaite, C. Kondapalli, R. Gourlay, et al.. Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65. Biochem J, 460 (1) ( 2014), pp. 127-139, DOI: 10.1042/BJ20140334
[[19]]
M.E. Rosa-Caldwell, D.E. Lee, J.L. Brown, et al.. Moderate physical activity promotes basal hepatic autophagy in diet-induced obese mice. Appl Physiol Nutr Metabol, 42 (2) ( 2017), pp. 148-156, DOI: 10.1139/apnm-2016-0280
[[20]]
M.E. Rosa-Caldwell, L.T. Jansen, S. Lim, et al.. Neither autophagy nor exercise training mode affect exercise-induced beneficial adaptations in high fat-fed mice. Sports Medicine and Health Science, 2 (1) ( 2020), pp. 44-53, DOI: 10.1016/j.smhs.2020.03.003
[[21]]
J.S. Wooten, K.E. Poole, M.P. Harris, et al.. The effects of voluntary wheel running during weight-loss on biomarkers of hepatic lipid metabolism and inflammation in C57Bl/6J mice. Curr Res Physiol, 5 ( 2022), pp. 63-72, DOI: 10.1016/j.crphys.2022.01.003
[[22]]
K.N.Z. Fuller, J.P. Thyfault. Barriers in translating preclinical rodent exercise metabolism findings to human health. J Appl Physiol, 130 (1) ( 1985), pp. 182-192, DOI: 10.1152/japplphysiol.00683.2020
[[23]]
M. González-Granillo, L.A. Helguero, E. Alves, et al.. Sex-specific lipid molecular signatures in obesity-associated metabolic dysfunctions revealed by lipidomic characterization in ob/ob mouse. Biol Sex Differ, 10 (1) ( 2019), p. 11, DOI: 10.1186/s13293-019-0225-y
[[24]]
C. Estes, H. Razavi, R. Loomba, et al.. Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease. Hepatology, 67 (1) ( 2018), pp. 123-133, DOI: 10.1002/hep.29466
[[25]]
N.P. Greene, D.E. Lee, J.L. Brown, et al.. Mitochondrial quality control, driven by PGC-1α is dysregulated by Western Diet-induced obesity and partially restored by moderate physical activity in mice. Phys Rep, 3 (7) ( 2015), Article e12470, DOI: 10.14814/phy2.12470
[[26]]
N.P.N.M. Greene, T.A. Washington, D.E. Lee, et al.. Impaired exercise-induced mitochondrial biogenesis in the obese Zucker rat, despite PGC-1α induction, is due to compromised mitochondrial translation elongation. Am J Physiol Endocrinol Metab ( 2014), pp. E503-E511, DOI: 10.1152/ajpendo.00671.2013
[[27]]
H.L. Chen, Y.T. Tung, C.L. Tsai, et al.. Kefir improves fatty liver syndrome by inhibiting the lipogenesis pathway in leptin-deficient ob/ob knockout mice. Int J Obes, 38 (9) ( 2014), pp. 1172-1179, DOI: 10.1038/ijo.2013.236
[[28]]
J.W. Perfield, L.C. Ortinau, R.T. Pickering, et al.. Altered hepatic lipid metabolism contributes to nonalcoholic fatty liver disease in leptin-deficient Ob/Ob mice. J Obes, 2013 ( 2013), Article 296537, DOI: 10.1155/2013/296537
[[29]]
P. Puigserver, Z. Wu, C.W. Park, R. Graves, M. Wright, B.M. Spiegelman. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell Market, 92 (6) ( 1998), pp. 829-839, DOI: 10.1016/s0092-8674(00)81410-5
[[30]]
M. Aharoni-Simon, M. Hann-Obercyger, S. Pen, et al.. Fatty liver is associated with impaired activity of PPARγ-coactivator 1α (PGC1α) and mitochondrial biogenesis in mice. Lab Invest, 91 (7) ( 2011), pp. 1018-1028, DOI: 10.1038/labinvest.2011.55
[[31]]
C. Jamart, D. Naslain, H. Gilson, et al.. Higher activation of autophagy in skeletal muscle of mice during endurance exercise in the fasted state. Am J Physiol Endocrinol Metab, 305 (8) ( 2013), pp. E964-E974, DOI: 10.1152/ajpendo.00270.2013
[[32]]
V.A. Lira, M. Okutsu, M. Zhang, et al.. Autophagy is required for exercise training-induced skeletal muscle adaptation and improvement of physical performance. Faseb J, 27 (10) ( 2013), pp. 4184-4193, DOI: 10.1096/fj.13-228486
[[33]]
D. Ivankovic, K.Y. Chau, A.H. Schapira, et al.. Mitochondrial and lysosomal biogenesis are activated following PINK1/parkin-mediated mitophagy. J Neurochem, 136 (2) ( 2016), pp. 388-402, DOI: 10.1111/jnc.13412
[[34]]
J. Sin, A.M. Andres, D.J. Taylor, et al.. Mitophagy is required for mitochondrial biogenesis and myogenic differentiation of C2C12 myoblasts. Autophagy, 12 (2) ( 2016), pp. 369-380, DOI: 10.1080/15548627.2015.1115172
[[35]]
L. Herhaus, I. Dikic. Expanding the ubiquitin code through post-translational modification. EMBO Rep, 16 (9) ( 2015), pp. 1071-1083, DOI: 10.15252/embr.201540891
[[36]]
A. Ordureau, S.A. Sarraf, D.M. Duda, et al.. Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis. Mol Cell, 56 (3) ( 2014), pp. 360-375, DOI: 10.1016/j.molcel.2014.09.007
[[37]]
T. Wauer, K.N. Swatek, J.L. Wagstaff, et al.. Ubiquitin Ser 65 phosphorylation affects ubiquitin structure, chain assembly and hydrolysis. EMBO J, 34 (3) ( 2015), pp. 307-325, DOI: 10.15252/embj.201489847
[[38]]
A. Kazlauskaite, R.J. Martínez-Torres, S. Wilkie, et al.. Binding to serine 65-phosphorylated ubiquitin primes Parkin for optimal PINK1-dependent phosphorylation and activation. EMBO Rep, 16 (8) ( 2015), pp. 939-954, DOI: 10.15252/embr.201540352
[[39]]
T. Wauer, M. Simicek, A. Schubert, et al.. Mechanism of phospho-ubiquitin-induced PARKIN activation. Nature, 524 (7565) ( 2015), pp. 370-374, DOI: 10.1038/nature14879
[[40]]
V. Sauvé, A. Lilov, M. Seirafi, et al.. A Ubl/ubiquitin switch in the activation of Parkin. EMBO J, 34 (20) ( 2015), pp. 2492-2505, DOI: 10.15252/embj.201592237
[[41]]
D. Narendra, J.E. Walker, R. Youle. Mitochondrial quality control mediated by PINK1 and Parkin: links to parkinsonism. Cold Spring Harbor Perspect Biol, 4 (11) ( 2012), Article a011338., DOI: 10.1101/cshperspect.a011338
[[42]]
S.A. Sarraf, M. Raman, V. Guarani-Pereira, et al.. Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization. Nature, 496 (7445) ( 2013), pp. 372-376, DOI: 10.1038/nature12043
[[43]]
D.L. Swaney, R.A. Rodríguez-Mias, J. Villén. Phosphorylation of ubiquitin at Ser65 affects its polymerization, targets, and proteome-wide turnover. EMBO Rep, 16 (9) ( 2015), pp. 1131-1144, DOI: 10.15252/embr.201540298
[[44]]
F. Koyano, K. Okatsu, H. Kosako, et al.. Ubiquitin is phosphorylated by PINK 1 to activate parkin. Nature, 510 (7503) ( 2014), pp. 162-166, DOI: 10.1038/nature13392
[[45]]
A. Ordureau, J.M. Heo, D.M. Duda, et al.. Defining roles of PARKIN and ubiquitin phosphorylation by PINK 1 in mitochondrial quality control using a ubiquitin replacement strategy. Proc Natl Acad Sci U S A, 112 (21) ( 2015), pp. 6637-6642, DOI: 10.1073/pnas.1506593112
[[46]]
D.J. Klionsky, F.C. Abdalla, H. Abeliovich, et al.. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 8 (4) ( 2012), pp. 445-544, DOI: 10.4161/auto.19496
[[47]]
F. Nassir, J.A. Ibdah. Role of mitochondria in nonalcoholic fatty liver disease. Int J Mol Sci, 15 (5) ( 2014), pp. 8713-8742, DOI: 10.3390/ijms15058713
[[48]]
A.M. Gusdon, K.X. Song, S. Qu.Nonalcoholic Fatty liver disease: pathogenesis and therapeutics from a mitochondria-centric perspective. Oxid Med Cell Longev, 2014 ( 2014), p. 637027, DOI: 10.1155/2014/637027
[[49]]
K.N.Z. Fuller, C.S. McCoin, J. Allen, et al.. Sex and BNIP 3 genotype, rather than acute lipid injection, modulate hepatic mitochondrial function and steatosis risk in mice. J Appl Physiol ( 1985), 128 (5) ( 2020), pp. 1251-1261, DOI: 10.1152/japplphysiol.00035.2020
[[50]]
C.S. McCoin, A. Von Schulze, J. Allen, et al.. Sex modulates hepatic mitochondrial adaptations to high-fat diet and physical activity. Am J Physiol Endocrinol Metab, 317 (2) ( 2019), pp. E298-E311, DOI: 10.1152/ajpendo.00098.2019

We thank the students, faculty, and staff at the University of Arkansas Exercise Research Center for their continued support. This study was supported by Seed Grants for Translational and Exploratory Projects (J.S.W.) and the Undergraduate Creative Arts and Research Program (K.E.P. and A.S.) at Southern Illinois University Edwardsville, Edwardsville, IL.

Accesses

Citations

Detail

Sections
Recommended

/