Exercise training modulates adipokine dysregulations in metabolic syndrome

Parvin Babaei, Rastegar Hoseini

Sports Medicine and Health Science ›› 2022, Vol. 4 ›› Issue (1) : 18-28. DOI: 10.1016/j.smhs.2022.01.001
Review

Exercise training modulates adipokine dysregulations in metabolic syndrome

Author information +
History +

Keywords

Adipokines / Insulin resistance / Aerobic training / Resistance training / Metabolic syndrome

Cite this article

Download citation ▾
Parvin Babaei, Rastegar Hoseini. Exercise training modulates adipokine dysregulations in metabolic syndrome. Sports Medicine and Health Science, 2022, 4(1): 18‒28 https://doi.org/10.1016/j.smhs.2022.01.001

References

[[1]]
A.M. Alonso-Gómez, L. Tojal Sierra, E. Fortuny Frau, et al.. Diastolic dysfunction and exercise capacity in patients with metabolic syndrome and overweight/obesity. Int J Cardiol Heart Vasc, 22 ( 2018), pp. 67-72, DOI: 10.1016/j.ijcha.2018.12.010
[[2]]
J.K. Dibaise, A.E. Foxx-Orenstein. Role of the gastroenterologist in managing obesity. Expet Rev Gastroenterol Hepatol, 7 (5) ( 2013), pp. 439-451, DOI: 10.1586/17474124.2013.811061
[[3]]
M. Abdelaal, C.W. le Roux, N.G. Docherty.Morbidity and mortality associated with obesity. Ann Transl Med, 5 (7) ( 2017), p. 161, DOI: 10.21037/atm.2017.03.107
[[4]]
J.-B. Funcke, P.E. Scherer. Beyond adiponectin and leptin: adipose tissue-derived mediators of inter-organ communication. J Lipid Res, 60 (10) ( 2019), pp. 1648-1684, DOI: 10.1194/jlr.r094060
[[5]]
F. Santilli, D. D'Ardes, M. Teresa Guagnano, G. Davi. Metabolic syndrome: sex-related cardiovascular risk and therapeutic approach. Curr Med Chem, 24 (24) ( 2017), pp. 2602-2627, DOI: 10.2174/0929867324666170710121145
[[6]]
H.S. Chung, K.M. Choi. Adipokines and myokines: a pivotal role in metabolic and cardiovascular disorders. Curr Med Chem, 25 (20) ( 2018), pp. 2401-2415, DOI: 10.2174/0929867325666171205144627
[[7]]
J.M. Peterson, W.A. Clark, J.-A. Marrs, A. Alamian.Serum adipokines and metabolic syndrome risk factors in hispanic children. Faseb J, 31 (S1) ( 2017), p. 1037, DOI: 10.1096/fasebj.31.1_supplement.1037.5
[[8]]
X. Hu, F. Guo. Amino acid sensing in metabolic homeostasis and health. Endocr Rev, 42 (1) ( 2021), pp. 56-76, DOI: 10.1210/endrev/bnaa026
[[9]]
R.A. Sinha, B.K. Singh, P.M. Yen. Reciprocal crosstalk between autophagic and endocrine signaling in metabolic homeostasis. Endocr Rev, 38 (1) ( 2017), pp. 69-102, DOI: 10.1210/er.2016-1103
[[10]]
T. You, B.J. Nicklas, J. Ding, et al.. The metabolic syndrome is associated with circulating adipokines in older adults across a wide range of adiposity. J Gerontol A Biol Sci Med Sci, 63 (4) ( 2008), pp. 414-419, DOI: 10.1093/gerona/63.4.414
[[11]]
S. Guo. Insulin signaling, resistance, and the metabolic syndrome: insights from mouse models to disease mechanisms. J Endocrinol, 220 (2) ( 2014), pp. T1-T23, DOI: 10.1530/joe-13-0327
[[12]]
D.C. Nieman, L.M. Wentz. The compelling link between physical activity and the body's defense system. J Sport Health Sci, 8 (3) ( 2019), pp. 201-217, DOI: 10.1016/j.jshs.2018.09.009
[[13]]
G.I. Smith, B. Mittendorfer, S. Klein. Metabolically healthy obesity: facts and fantasies. J Clin Invest, 129 (10) ( 2019), pp. 3978-3989, DOI: 10.1172/jci129186
[[14]]
A.A. Imazu, K.F. Goessler, J. Casonatto, M.D. Polito. The influence of physical training status on postexercise hypotension in patients with hypertension: a cross-sectional study. Blood Pres Monit, 22 (4) ( 2017), pp. 196-201, DOI: 10.1097/mbp.0000000000000255
[[15]]
M. Batista Jr., J. Rosa, R. Lopes, et al.. Exercise training changes IL-10/TNF-α ratio in the skeletal muscle of post-MI rats. Cytokine, 49 (1) ( 2010), pp. 102-110, DOI: 10.1016/j.cyto.2009.10.007
[[16]]
D.E. Warburton, C.W. Nicol, S.S. Bredin. Health benefits of physical activity: the evidence. CMAJ (Can Med Assoc J), 174 (6) ( 2006), pp. 801-809, DOI: 10.1503/cmaj.051351
[[17]]
R. Mitsui, M. Fukushima, A. Taniguchi, et al.. Insulin secretory capacity and insulin sensitivity in impaired fasting glucose in Japanese. J Diabetes Investig, 3 (4) ( 2012), pp. 377-383, DOI: 10.1111/j.2040-1124.2012.00201.x
[[18]]
X. Tan, C.D. Chapman, J. Cedernaes, C. Benedict. Association between long sleep duration and increased risk of obesity and type 2 diabetes: a review of possible mechanisms. Sleep Med Rev, 40 ( 2018), pp. 127-134, DOI: 10.1016/j.smrv.2017.11.001
[[19]]
F.S. Lira, J.C. Rosa, N.E. Zanchi, et al.. Regulation of inflammation in the adipose tissue in cancer cachexia: effect of exercise. Cell Biochem Funct, 27 (2) ( 2009), pp. 71-75, DOI: 10.1002/cbf.1540
[[20]]
M.L. Batista Júnior, R.D. Lopes, M.C.L. Seelaender, A.C. Lopes.Anti-inflammatory effect of physical training in heart failure: role of TNF-α and IL-10. Arq Bras Cardiol [in Portuguese], 93 (6) ( 2009), pp. 692-700, DOI: 10.1590/s0066-782x2009001200021
[[21]]
J. Kruk, K. Kotarska, B.H. Aboul-Enein. Physical exercise and catecholamines response: benefits and health risk: possible mechanisms. Free Radic Res, 54 (2-3) ( 2020), pp. 105-125, DOI: 10.1080/10715762.2020.1726343
[[22]]
H. Bruunsgaard. Physical activity and modulation of systemic low-level inflammation. J Leukoc Biol, 78 (4) ( 2005), pp. 819-835, DOI: 10.1189/jlb.0505247
[[23]]
M. Neves, A.C.B. Retameiro, A.L.F. Tavares, et al.. Physical exercise and low-level laser therapy on the nociception and leukocyte migration of Wistar rats submitted to a model of rheumatoid arthritis. Laser Med Sci, 35 (6) ( 2020), pp. 1277-1287, DOI: 10.1007/s10103-019-02905-2
[[24]]
P. Trayhurn, C.A. Drevon, J. Eckel. Secreted proteins from adipose tissue and skeletal muscle-adipokines, myokines and adipose/muscle cross-talk. Arch Physiol Biochem, 117 (2) ( 2011), pp. 47-56, DOI: 10.3109/13813455.2010.535835
[[25]]
E.E. Kershaw, J.S. Flier. Adipose tissue as an endocrine organ. J Clin Endocrinol Metab, 89 (6) ( 2004), pp. 2548-2556, DOI: 10.1210/jc.2004-0395
[[26]]
K.A. Sjøberg, C. Frøsig, R. Kjøbsted, et al.. Exercise increases human skeletal muscle insulin sensitivity via coordinated increases in microvascular perfusion and molecular signaling. Diabetes, 66 (6) ( 2017), pp. 1501-1510, DOI: 10.2337/db16-1327
[[27]]
K.J. Yoon, D. Zhang, S.J. Kim, M.C. Lee, H.Y. Moon. Exercise-induced AMPK activation is involved in delay of skeletal muscle senescence. Biochem Biophys Res Commun, 512 (3) ( 2019), pp. 604-610, DOI: 10.1016/j.bbrc.2019.03.086
[[28]]
J. Huang, X. Wang, Y. Zhu, et al.. Exercise activates lysosomal function in the brain through AMPK-SIRT1-TFEB pathway. CNS Neurosci Ther, 25 (6) ( 2019), pp. 796-807, DOI: 10.1111/cns.13114
[[29]]
G. Marwarha, K. Claycombe-Larson, J. Lund, O. Ghribi. Palmitate-Induced SREBP1 expression and activation underlies the increased BACE 1 activity and amyloid beta genesis. Mol Neurobiol, 56 (7) ( 2019), pp. 5256-5269, DOI: 10.1007/s12035-018-1451-8
[[30]]
S. Olivier, M. Foretz, B. Viollet. Promise and challenges for direct small molecule AMPK activators. Biochem Pharmacol, 153 ( 2018), pp. 147-158, DOI: 10.1016/j.bcp.2018.01.049
[[31]]
H. Islam, D.A. Hood, B.J. Gurd. Looking beyond PGC-1α: emerging regulators of exercise-induced skeletal muscle mitochondrial biogenesis and their activation by dietary compounds. Appl Physiol Nutr Metabol, 45 (1) ( 2020), pp. 11-23, DOI: 10.1139/apnm-2019-0069
[[32]]
V. Ramachandran, R. Saravanan. Glucose uptake through translocation and activation of GLUT4 in PI3K/Akt signaling pathway by asiatic acid in diabetic rats. Hum Exp Toxicol, 34 (9) ( 2015), pp. 884-893, DOI: 10.1177/0960327114561663
[[33]]
R.B. Vega, J.P. Konhilas, D.P. Kelly, L.A. Leinwand. Molecular mechanisms underlying cardiac adaptation to exercise. Cell Metabol, 25 (5) ( 2017), pp. 1012-1026, DOI: 10.1016/j.cmet.2017.04.025
[[34]]
X. Zhang, A. Xu, S.K. Chung, et al.. Selective inactivation of c-Jun NH2-terminal kinase in adipose tissue protects against diet-induced obesity and improves insulin sensitivity in both liver and skeletal muscle in mice. Diabetes, 60 (2) ( 2011), pp. 486-495, DOI: 10.2337/db10-0650
[[35]]
N. Banu, K. Elango. Adiponectin level in type 2 diabetes and its complication-A review. J Pharmaceut Sci Res, 11 (4) ( 2019), pp. 1172-1174
[[36]]
D. Zohmangaihi, S. Sharma,S. Madhu. Adiponectin, IL-6 and hsCRP: interplay of inflammation with obesity and type 2 diabetes in Indian population. J Diabetes Metabol, 10 (3) ( 2019), pp. 1-7, DOI: 10.35248/2155-6156.19.10.822
[[37]]
S.C. Adiyaman, M. Ozer, B.O. Saydam, B. Akinci. The role of adiponectin in maintaining metabolic homeostasis. Curr Diabetes Rev, 16 (2) ( 2020), pp. 95-103, DOI: 10.2174/1573399815666190702155733
[[38]]
A. Bouassida, K. Chamari, M. Zaouali, Y. Feki, A. Zbidi, Z. Tabka. Review on leptin and adiponectin responses and adaptations to acute and chronic exercise. Br J Sports Med, 44 (9) ( 2010), pp. 620-630, DOI: 10.1136/bjsm.2008.046151
[[39]]
S. Lindberg, J.S. Jensen, M. Bjerre, et al.. Low adiponectin levels at baseline and decreasing adiponectin levels over 10 years of follow-up predict risk of the metabolic syndrome. Diabetes Metab, 43 (2) ( 2017), pp. 134-139, DOI: 10.1016/j.diabet.2016.07.027
[[40]]
S. Muppala, S.K. Konduru, N. Merchant, et al.. Adiponectin: its role in obesity-associated colon and prostate cancers. Crit Rev Oncol Hematol, 116 ( 2017), pp. 125-133, DOI: 10.1016/j.critrevonc.2017.06.003
[[41]]
X. Wang, Q. Chen, H. Pu, et al.. Adiponectin improves NF-κB-mediated inflammation and abates atherosclerosis progression in apolipoprotein E-deficient mice. Lipids Health Dis, 15 ( 2016), p. 33, DOI: 10.1186/s12944-016-0202-y
[[42]]
F. Tore, A. Tonchev, M. Fiore, et al.. From adipose tissue protein secretion to adipopharmacology of disease. Immunol Endocr Metab Agents Med Chem, 7 (2) ( 2007), pp. 149-155, DOI: 10.2174/187152207780363712
[[43]]
Y. Okamoto, S. Kihara, N. Ouchi, et al.. Adiponectin reduces atherosclerosis in apolipoprotein E-deficient mice. Circulation, 106 (22) ( 2002), pp. 2767-2770, DOI: 10.1161/01.cir.0000042707.50032.19
[[44]]
B. Roy, S.S. Palaniyandi.Tissue-specific role and associated downstream signaling pathways of adiponectin. Cell Biosci, 11 (1) ( 2021), p. 77, DOI: 10.1186/s13578-021-00587-4
[[45]]
L. Miyamoto, M. Yamane, Y. Tomida, et al.. Nitrite activates 5′ AMP-activated protein kinase-endothelial nitric oxide synthase pathway in human glomerular endothelial cells. Biol Pharm Bull, 40 (11) ( 2017), pp. 1866-1872, DOI: 10.1248/bpb.b17-00316
[[46]]
Y. Wang, X.L. Ma, W.B. Lau. Cardiovascular adiponectin resistance: the critical role of adiponectin receptor modification. Trends Endocrinol Metabol, 28 (7) ( 2017), pp. 519-530, DOI: 10.1016/j.tem.2017.03.004
[[47]]
Y. Chen, Y. Zheng, L. Liu, et al.. Adiponectin inhibits TNF-α-activated PAI-1 expression via the cAMP-PKA-AMPK-NF-κB axis in human umbilical vein endothelial cells. Cell Physiol Biochem, 42 (6) ( 2017), pp. 2342-2352, DOI: 10.1159/000480006
[[48]]
T. Yamauchi, Y. Nio, T. Maki, et al.. Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions. Nat Med, 13 (3) ( 2007), pp. 332-339, DOI: 10.1038/nm1557
[[49]]
H. Yamada, D. Suzuki, M. Kakei, I. Kusaka, S. Ishikawa.Close association of hypoadiponectinemia and increased insulin resistance in non-obese Japanese type 2 diabetes with visceral adiposity. J Metab Syndrome, 5 (4) ( 2016), p. 215, DOI: 10.4172/2167-0943.1000215
[[50]]
Q. Zeng, K. Isobe, L. Fu, et al.. Effects of exercise on adiponectin and adiponectin receptor levels in rats. Life Sci, 80 (5) ( 2007), pp. 454-459, DOI: 10.1016/j.lfs.2006.09.031
[[51]]
L. Sun, Y. Lv, J. Tian, et al.. Regular swimming exercise attenuated neuroma pain in rats: involvement of leptin and adiponectin. J Pain, 20 (9) ( 2019), pp. 1112-1124, DOI: 10.1016/j.jpain.2019.02.097
[[52]]
J. Jürimäe, P. Purge, T. Jürimäe. Adiponectin and stress hormone responses to maximal sculling after volume-extended training season in elite rowers. Metabolism, 55 (1) ( 2006), pp. 13-19, DOI: 10.1016/j.metabol.2005.06.020
[[53]]
F. Magherini, T. Fiaschi, R. Marzocchini, et al.. Oxidative stress in exercise training: the involvement of inflammation and peripheral signals. Free Radic Res, 53 (11-12) ( 2019), pp. 1155-1165, DOI: 10.1080/10715762.2019.1697438
[[54]]
A. Damirchi, R. Mehdizade, M. Ansar, B. Soltani, P. Babaei. Effects of aerobic exercise training on visceral fat and serum adiponectin concentration in ovariectomized rats. Climacteric, 13 (2) ( 2010), pp. 171-178, DOI: 10.3109/13697130903360234
[[55]]
J.A. Lee, J.W. Kim, D.Y. Kim. Effects of yoga exercise on serum adiponectin and metabolic syndrome factors in obese postmenopausal women. published correction appears in Menopause. 2012 Apr;19(4):486. Menopause, 19 (3) ( 2012), pp. 296-301, DOI: 10.1097/gme.0b013e31822d59a2
[[56]]
Frankenberg ADv A.F. Reis F. Gerchman. Relationships between adiponectin levels, the metabolic syndrome, and type 2 diabetes: a literature review. Arch Endocrinol Metab, 61 (6) ( 2017), pp. 614-622, DOI: 10.1590/2359-3997000000316
[[57]]
L.J. Ward, S. Nilsson, M. Hammar, et al.. Resistance training decreases plasma levels of adipokines in postmenopausal women. Sci Rep, 10 (1) ( 2020), p. 19837, DOI: 10.1038/s41598-020-76901-w
[[58]]
M.T. de Mello, A. de Piano, J. Carnier, et al.. Long-term effects of aerobic plus resistance training on the metabolic syndrome and adiponectinemia in obese adolescents. J Clin Hypertens, 13 (5) ( 2011), pp. 343-350, DOI: 10.1111/j.1751-7176.2010.00388.x
[[59]]
B. Strasser, U. Siebert, W. Schobersberger. Resistance training in the treatment of the metabolic syndrome : a systematic review and meta-analysis of the effect of resistance training on metabolic clustering in patients with abnormal glucose metabolism. Sports Med, 40 (5) ( 2010), pp. 397-415, DOI: 10.2165/11531380-000000000-00000
[[60]]
C. Gastebois, C. Villars, J. Drai, et al.. Effects of training and detraining on adiponectin plasma concentration and muscle sensitivity in lean and overweight men. Eur J Appl Physiol, 116 (11-12) ( 2016), pp. 2135-2144, DOI: 10.1007/s00421-016-3466-z
[[61]]
P. Lucotti, L.D. Monti, E. Setola, et al.. Aerobic and resistance training effects compared to aerobic training alone in obese type 2 diabetic patients on diet treatment. Diabetes Res Clin Pract, 94 (3) ( 2011), pp. 395-403, DOI: 10.1016/j.diabres.2011.08.002
[[62]]
C. Ostman, N. Smart, D. Morcos, A. Duller, W. Ridley, D. Jewiss.The effect of exercise training on clinical outcomes in patients with the metabolic syndrome: a systematic review and meta-analysis. Cardiovasc Diabetol, 16 (1) ( 2017), p. 110, DOI: 10.1186/s12933-017-0590-y
[[63]]
J.R. Choi, J.Y. Kim, J.H. Huh, S.H. Kim, S.B. Koh. Contribution of obesity as an effect regulator to an association between serum leptin and incident metabolic syndrome. Clin Chim Acta, 487 ( 2018), pp. 275-280, DOI: 10.1016/j.cca.2018.09.038
[[64]]
F. Ahsan, M.K. Sharif, M.S. Butt, A. Shehzad, M.I. Khan. Pathophysiological role of leptin for human health: a review. Pakistan J Food Sci, 27 (1) ( 2017), pp. 46-52
[[65]]
R.J. Perry, Y. Wang, G.W. Cline, et al.. Leptin mediates a glucose-fatty acid cycle to maintain glucose homeostasis in starvation. Cell, 172 (1-2) ( 2018), pp. 234-248, DOI: 10.1016/j.cell.2017.12.001
[[66]]
R.V. Considine, M.K. Sinha, M.L. Heiman, et al.. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med, 334 (5) ( 1996), pp. 292-295, DOI: 10.1056/nejm199602013340503
[[67]]
A.A. Ghadge, A.A. Khaire. Leptin as a predictive marker for metabolic syndrome. Cytokine, 121 ( 2019), p. 154735, DOI: 10.1016/j.cyto.2019.154735
[[68]]
T.M. Barnes, K. Shah, M.B. Allison, et al.. Identification of the leptin receptor sequences crucial for the STAT3-Independent control of metabolism. Mol Metabol, 32 ( 2020), pp. 168-175, DOI: 10.1016/j.molmet.2019.12.013
[[69]]
A. Ghasemi, J. Saeidi, M. Azimi-Nejad, S.I. Hashemy. Leptin-induced signaling pathways in cancer cell migration and invasion. Cell Oncol, 42 (3) ( 2019), pp. 243-260, DOI: 10.1007/s13402-019-00428-0
[[70]]
A.A. Barrios-Correa, J.A. Estrada, I. Contreras. Leptin signaling in the control of metabolism and appetite: lessons from animal models. Mol Neurosci, 66 (3) ( 2018), pp. 390-402, DOI: 10.1007/s12031-018-1185-0
[[71]]
E.E. Zhang, E. Chapeau, K. Hagihara, G.-S. Feng. Neuronal Shp2 tyrosine phosphatase controls energy balance and metabolism. Proc Natl Acad Sci U S A, 101 (45) ( 2004), pp. 16064-16069, DOI: 10.1073/pnas.0405041101
[[72]]
S. Uotani, T. Abe, Y. Yamaguchi. Leptin activates AMP-activated protein kinase in hepatic cells via a JAK2-dependent pathway. Biophys Res Commun, 351 (1) ( 2006), pp. 171-175, DOI: 10.1016/j.bbrc.2006.10.015
[[73]]
Y. Minokoshi, T. Alquier, N. Furukawa, et al.. AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature, 428 (6982) ( 2004), pp. 569-574, DOI: 10.1038/nature02440
[[74]]
M. Claret, M.A. Smith, R.L. Batterham, et al.. AMPK is essential for energy homeostasis regulation and glucose sensing by POMC and AgRP neurons. J Clin Invest, 117 (8) ( 2007), pp. 2325-2336, DOI: 10.1172/jci31516
[[75]]
G.S. Zimmermann, M.F. Bastos, T.E. Dias Gonçalves, L. Chambrone, P.M. Duarte. Local and circulating levels of adipocytokines in obese and normal weight individuals with chronic periodontitis. J Periodontol, 84 (5) ( 2013), pp. 624-633, DOI: 10.1902/jop.2012.120254
[[76]]
K. De Git, R. Adan. Leptin resistance in diet-induced obesity: the role of hypothalamic inflammation. Obes Rev, 16 (3) ( 2015), pp. 207-224, DOI: 10.1111/obr.12243
[[77]]
C. Gar, M. Rottenkolber, H. Grallert, et al.. Physical fitness and plasma leptin in women with recent gestational diabetes. PLoS One, 12 (6) ( 2017), Article e0179128, DOI: 10.1371/journal.pone.0179128
[[78]]
N.F. Garcia, C.P. Silva, M. Ferreira Jr. L. K. Oharomari, T. Rocha, Cd Moraes. 7-week aerobic exercise training reduces adipocyte area and improves insulin sensitivity in Wistar rats fed a highly palatable diet. Motriz: Revista de Educação Física., 22 (1) ( 2016), pp. 12-17, DOI: 10.1590/s1980-65742016000100002
[[79]]
J. Zhao, Y. Tian, J. Xu, D. Liu, X. Wang, B. Zhao.Endurance exercise is a leptin signaling mimetic in hypothalamus of Wistar rats. Lipids Health Dis, 10 ( 2011), p. 225, DOI: 10.1186/1476-511X-10-225
[[80]]
J.P. Botero, G.E. Shiguemoto, J. Prestes, et al.. Effects of long-term periodized resistance training on body composition, leptin, resistin and muscle strength in elderly post-menopausal women. J Sports Med Phys Fit, 53 (3) ( 2013), pp. 289-294
[[81]]
A.M. Ramos-Lobo,J. Donato Jr.. The role of leptin in health and disease. Temperature (Austin), 4 (3) ( 2017), pp. 258-291, DOI: 10.1080/23328940.2017.1327003
[[82]]
P.W. Lau, Z. Kong, C-r Choi, et al.. Effects of short-term resistance training on serum leptin levels in obese adolescents. J Exerc Sci Fit, 8 (1) ( 2010), pp. 54-60, DOI: 10.1016/s1728-869x(10)60008-1
[[83]]
S. Ahmadizad, S. Ghorbani, M. Ghasemikaram, M. Bahmanzadeh. Effects of short-term nonperiodized, linear periodized and daily undulating periodized resistance training on plasma adiponectin, leptin and insulin resistance. Clin Biochem, 47 (6) ( 2014), pp. 417-422, DOI: 10.1016/j.clinbiochem.2013.12.019
[[84]]
A. Nappo, E. Gonzalez-Gil, W. Ahrens, et al.. Analysis of the association of leptin and adiponectin concentrations with metabolic syndrome in children: results from the IDEFICS study. Nutr Metabol Cardiovasc Dis, 27 (6) ( 2017), pp. 543-551, DOI: 10.1016/j.numecd.2017.04.003
[[85]]
M.V. Fedewa, E.D. Hathaway, C.L. Ward-Ritacco, T.D. Williams, W.C. Dobbs. The effect of chronic exercise training on leptin: a systematic review and meta-analysis of randomized controlled trials. Sports Med, 48 (6) ( 2018), pp. 1437-1450, DOI: 10.1007/s40279-018-0897-1
[[86]]
J. Prestes, D. da Cunha Nascimento, I.V. de Sousa Neto, et al.. The effects of muscle strength responsiveness to periodized resistance training on resistin, leptin, and cytokine in elderly postmenopausal women. J Strength Condit Res, 32 (1) ( 2018), pp. 113-120, DOI: 10.1519/jsc.0000000000001718
[[87]]
G.H. Marques-Oliveira, T.M. Silva, W.G. Lima, H.M.S. Valadares, V.E. Chaves. Insulin as a hormone regulator of the synthesis and release of leptin by white adipose tissue. Peptides, 106 ( 2018), pp. 49-58, DOI: 10.1016/j.peptides.2018.06.007
[[88]]
W.S. Dantas, H. Roschel, I.H. Murai, et al.. Exercise-induced increases in insulin sensitivity after bariatric surgery are mediated by muscle extracellular matrix remodeling. Diabetes, 69 (8) ( 2020), pp. 1675-1691, DOI: 10.2337/db19-1180
[[89]]
A. Petridou, S. Tsalouhidou, G. Tsalis, T. Schulz, H. Michna, V. Mougios. Long-term exercise increases the DNA binding activity of peroxisome proliferator-activated receptor γ in rat adipose tissue. Metabolism, 56 (8) ( 2007), pp. 1029-1036, DOI: 10.1016/j.metabol.2007.03.011
[[90]]
M. Tsai, A. Asakawa, H. Amitani, A. Inui. Stimulation of leptin secretion by insulin. Indian J Endocrinol Metab, 16 (Suppl 3) ( 2012), pp. S543-S548, DOI: 10.4103/2230-8210.105570
[[91]]
F. Sirico, A. Bianco, G. D'Alicandro, et al.. Effects of physical exercise on adiponectin, leptin, and inflammatory markers in childhood obesity: systematic review and meta-analysis. Child Obes, 14 (4) ( 2018), pp. 207-217, DOI: 10.1089/chi.2017.0269
[[92]]
S.L. McGee, M. Hargreaves. Exercise adaptations: molecular mechanisms and potential targets for therapeutic benefit. Nat Rev Endocrinol, 16 (9) ( 2020), pp. 495-505, DOI: 10.1038/s41574-020-0377-1
[[93]]
R. Shibata, N. Ouchi, K. Ohashi, T. Murohara. The role of adipokines in cardiovascular disease. J Cardiol, 70 (4) ( 2017), pp. 329-334, DOI: 10.1016/j.jjcc.2017.02.006
[[94]]
R.-Z. Yang, M.-J. Lee, H. Hu, et al.. Identification of omentin as a novel depot-specific adipokine in human adipose tissue: possible role in modulating insulin action. Am J Physiol Endocrinol Metab, 290 (6) ( 2006), pp. E1253-E1261, DOI: 10.1152/ajpendo.00572.2004
[[95]]
M. Buyukinan, M. Atar, U. Can, O. Pirgon, A. Guzelant, I. Deniz. The association between serum vaspin and omentin-1 levels in obese children with metabolic syndrome. Metab Syndr Relat Disord, 16 (2) ( 2018), pp. 76-81, DOI: 10.1089/met.2017.0133
[[96]]
M. Zhang, X. Tan, C. Yin, L. Wang, Y. Tie, Y. Xiao. Serum levels of omentin-1 are increased after weight loss and are particularly associated with increases in obese children with metabolic syndrome. Acta Paediatr, 106 (11) ( 2017), pp. 1851-1856, DOI: 10.1111/apa.14026
[[97]]
C. Sitticharoon, N.C. Nway, S. Chatree, M. Churintaraphan, P. Boonpuan,P. Maikaew. Interactions between adiponectin, visfatin, and omentin in subcutaneous and visceral adipose tissues and serum, and correlations with clinical and peripheral metabolic factors. Peptides, 62 ( 2014), pp. 164-175, DOI: 10.1016/j.peptides.2014.10.006
[[98]]
X. Pan, A.C. Kaminga, S.W. Wen, K. Acheampong, A. Liu. Omentin-1 in diabetes mellitus: a systematic review and meta-analysis. PLoS One, 14 (12) ( 2019), Article e0226292, DOI: 10.1371/journal.pone.0226292
[[99]]
CAd Castro, KAd Silva, M.C. Rocha, et al.. Exercise and omentin: their role in the crosstalk between muscle and adipose tissues in type 2 diabetes mellitus rat models. Front Physiol, 9 ( 2019), p. 1881, DOI: 10.3389/fphys.2018.01881
[[100]]
L. Brunetti, S. Leone, G. Orlando, et al.. Hypotensive effects of omentin-1 related to increased adiponectin and decreased interleukin-6 in intra-thoracic pericardial adipose tissue. Pharmacol Rep, 66 (6) ( 2014), pp. 991-995, DOI: 10.1016/j.pharep.2014.06.014
[[101]]
D. Stejskal, J. Vaclavik, A. Smekal, G. Svobodova, R. Richterova, M. Svestak. Omentin-1 levels in patients with premature coronary artery disease, metabolic syndrome and healthy controls. Short communication. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub, 160 (2) ( 2016), pp. 219-221, DOI: 10.5507/bp.2016.019
[[102]]
F. Liu, S. Fang, X. Liu, et al.. Omentin-1 protects against high glucose-induced endothelial dysfunction via the AMPK/PPARδ signaling pathway. Biochem Pharmacol, 174 ( 2020), Article 113830, DOI: 10.1016/j.bcp.2020.113830
[[103]]
K. Watanabe, R. Watanabe, H. Konii, et al.. Counteractive effects of omentin-1 against atherogenesis. Cardiovasc Res, 110 (1) ( 2016), pp. 118-128, DOI: 10.1093/cvr/cvw016
[[104]]
M. Hiramatsu-Ito, R. Shibata, K. Ohashi, et al.. Omentin attenuates atherosclerotic lesion formation in apolipoprotein E-deficient mice. Cardiovasc Res, 110 (1) ( 2016), pp. 107-117, DOI: 10.1093/cvr/cvv282
[[105]]
Y. Zhou, C. Hao, C. Li, et al.. Omentin-1 protects against bleomycin-induced acute lung injury. Mol Immunol, 103 ( 2018), pp. 96-105, DOI: 10.1016/j.molimm.2018.09.007
[[106]]
R. Jiang, B. Lönnerdal. Cloning and characterization of the human lactoferrin receptor gene promoter. Biometals, 31 (3) ( 2018), pp. 357-368, DOI: 10.1007/s10534-018-0080-z
[[107]]
R. Rashid, M. Maqbool, A. Jan, M.I. Geer. Role of adipokines and free fatty acids in insulin resistance-a review. Int J Adv Res Sci Eng, 7 (4) ( 2018), pp. 2115-2123
[[108]]
P. Babaei, A. Pourrahim Ghouroghchi, A. Damirchi, B. Soltani Tehrani.The interactive effect of aerobic-resistance training and estrogen therapy on metabolic syndrome indices and omentin-1. Physiol Pharmacol, 19 (3) ( 2015), pp. 200-207
[[109]]
S.M. Madsen, A.C. Thorup, M. Bjerre, P.B. Jeppesen. Does 8 weeks of strenuous bicycle exercise improve diabetes-related inflammatory cytokines and free fatty acids in type 2 diabetes patients and individuals at high-risk of metabolic syndrome?. Arch Physiol Biochem, 121 (4) ( 2015), pp. 129-138, DOI: 10.3109/13813455.2015.1082600
[[110]]
M. Urbanová, I. Dostálová, P. Trachta, et al.. Serum concentrations and subcutaneous adipose tissue mRNA expression of omentin in morbid obesity and type 2 diabetes mellitus: the effect of very-low-calorie diet, physical activity and laparoscopic sleeve gastrectomy. Physiol Res, 63 (2) ( 2014), pp. 207-218, DOI: 10.33549/physiolres.932530
[[111]]
M. Faramarzi, E. Banitalebi, S. Nori, S. Farzin, Z. Taghavian. Effects of rhythmic aerobic exercise plus core stability training on serum omentin, chemerin and vaspin levels and insulin resistance of overweight women. J Sports Med Phys Fit, 56 (4) ( 2016), pp. 476-482
[[112]]
H. Ge, L. Huang, T. Pourbahrami, C. Li. Generation of soluble leptin receptor by ectodomain shedding of membrane-spanning receptors in vitro and in vivo. J Biol Chem, 277 (48) ( 2002), pp. 45898-45903, DOI: 10.1074/jbc.m205825200
[[113]]
P. Yan, D. Liu, M. Long, Y. Ren, J. Pang, R. Li. Changes of serum omentin levels and relationship between omentin and adiponectin concentrations in type 2 diabetes mellitus. Exp Clin Endocrinol Diabetes, 119 (4) ( 2011), pp. 257-263, DOI: 10.1055/s-0030-1269912
[[114]]
Y. Kataoka, R. Shibata, K. Ohashi, et al.. Omentin prevents myocardial ischemic injury through AMP-activated protein kinase-and Akt-dependent mechanisms. J Am Coll Cardiol, 63 (24) ( 2014), pp. 2722-2733, DOI: 10.1016/j.jacc.2014.03.032
[[115]]
C.M. de Souza Batista, R.-Z. Yang, M.-J. Lee, et al.. Omentin plasma levels and gene expression are decreased in obesity. Diabetes, 56 (6) ( 2007), pp. 1655-1661, DOI: 10.2337/db06-1506
[[116]]
J. Boucher, B. Masri, D. Daviaud, et al.. Apelin, a newly identified adipokine up-regulated by insulin and obesity. Endocrinology, 146 (4) ( 2005), pp. 1764-1771, DOI: 10.1210/en.2004-1427
[[117]]
M.J. Kleinz, A.P. Davenport. Emerging roles of apelin in biology and medicine. Pharmacol Ther, 107 (2) ( 2005), pp. 198-211, DOI: 10.1016/j.pharmthera.2005.04.001
[[118]]
L. Li, G. Yang, Q. Li, et al.. Changes and relations of circulating visfatin, apelin, and resistin levels in normal, impaired glucose tolerance, and type 2 diabetic subjects. Exp Clin Endocrinol Diabetes, 114 (10) ( 2006), pp. 544-548, DOI: 10.1055/s-2006-948309
[[119]]
P. Babaei, A. Dastras, B.S. Tehrani, S. Pourali Roudbaneh. The effect of estrogen replacement therapy on visceral fat, serum glucose, lipid profiles and apelin level in ovariectomized rats. J Menopausal Med, 23 (3) ( 2017), pp. 182-189, DOI: 10.6118/jmm.2017.23.3.182
[[120]]
Y.S. Choi, H.I. Yang, S. Cho, et al.. Serum asymmetric dimethylarginine, apelin, and tumor necrosis factor-α levels in non-obese women with polycystic ovary syndrome. Steroids, 77 (13) ( 2012), pp. 1352-1358, DOI: 10.1016/j.steroids.2012.08.005
[[121]]
S. Zhu, F. Sun, W. Li, et al.. Apelin stimulates glucose uptake through the PI3K/Akt pathway and improves insulin resistance in 3T3-L1 adipocytes. Mol Cell Biochem, 353 (1-2) ( 2011), pp. 305-313, DOI: 10.1007/s11010-011-0799-0
[[122]]
C. Dray, C. Knauf, D. Daviaud, et al.. Apelin stimulates glucose utilization in normal and obese insulin-resistant mice. Cell Metabol, 8 (5) ( 2008), pp. 437-445, DOI: 10.1016/j.cmet.2008.10.003
[[123]]
I. Castan-Laurell, B. Masri, P. Valet. The apelin/APJ system as a therapeutic target in metabolic diseases. Expert Opin Ther Targets, 23 (3) ( 2019), pp. 215-225, DOI: 10.1080/14728222.2019.1561871
[[124]]
C. Bertrand, P. Valet, I. Castan-Laurell.Apelin and energy metabolism. Front Physiol, 6 ( 2015), p. 115, DOI: 10.3389/fphys.2015.00115
[[125]]
I. Castan-Laurell, C. Dray, C. Attané, T. Duparc, C. Knauf,P. Valet. Apelin, diabetes, and obesity. Endocrine, 40 (1) ( 2011), pp. 1-9, DOI: 10.1007/s12020-011-9507-9
[[126]]
J.J. Maguire, M.J. Kleinz, S.L. Pitkin, A.P. Davenport. [Pyr1] apelin-13 identified as the predominant apelin isoform in the human heart: vasoactive mechanisms and inotropic action in disease. Hypertension, 54 (3) ( 2009), pp. 598-604, DOI: 10.1161/hypertensionaha.109.134619
[[127]]
X.-H. Yu, Z.-B. Tang, L.-J. Liu, et al.. Apelin and its receptor APJ in cardiovascular diseases. Clin Chim Acta, 428 ( 2014), pp. 1-8, DOI: 10.1016/j.cca.2013.09.001
[[128]]
B. Masri, N. Morin, L. Pedebernade, B. Knibiehler, Y. Audigier. The apelin receptor is coupled to Gi1 or Gi2 protein and is differentially desensitized by apelin fragments. J Biol Chem, 281 (27) ( 2006), pp. 18317-18326, DOI: 10.1074/jbc.m600606200
[[129]]
A. Besse-Patin, E. Montastier, C. Vinel, et al.. Effect of endurance training on skeletal muscle myokine expression in obese men: identification of apelin as a novel myokine. Int J Obes, 38 (5) ( 2014), pp. 707-713, DOI: 10.1038/ijo.2013.158
[[130]]
N.P. Kadoglou, I.S. Vrabas, A. Kapelouzou, et al.. The impact of aerobic exercise training on novel adipokines, apelin and ghrelin, in patients with type 2 diabetes. Med Sci Mon Int Med J Exp Clin Res, 18 (5) ( 2012), pp. CR290-CR295, DOI: 10.12659/msm.882734
[[131]]
S.-H. Jang, I.-Y. Paik, J.-H. Ryu, T.-H. Lee, D.-E. Kim.Effects of aerobic and resistance exercises on circulating apelin-12 and apelin-36 concentrations in obese middle-aged women: a randomized controlled trial. BMC Wom Health, 19 (1) ( 2019), p. 23, DOI: 10.1186/s12905-019-0722-5
[[132]]
M. Nikseresht, H. Rajabi, A. Nikseresht. The effects of nonlinear resistance and aerobic interval training on serum levels of apelin and insulin resistance in middle-aged obese men. Tehran Univ Med J, 73 (5) ( 2015), pp. 375-383
[[133]]
A. Ghanbari-Niaki, A. Saeidi, L. Gharahcholo, et al.. Influence of resistance training and herbal supplementation on plasma apelin and metabolic syndrome risk factors in postmenopausal women. Sci Sports, 35 (2) ( 2020), pp. 109.e1-109.e5, DOI: 10.1016/j.scispo.2019.04.010
[[134]]
J.S. Green, R.C. Lowe, N. Pronk, D. Jacobsen, J.J. Rohack, S.F. Crouse.Low and high intensity endurance exercise training does not significantly alter the apolipoprotein-b/apoliporotienal ratio in hypercholesterolemic men. Med Sci Sports Exerc, 37 ( 2005), p. S470, DOI: 10.1097/00005768-200505001-02459
[[135]]
H.M. Chang, H.J. Lee, H.S. Park, et al.. Effects of weight reduction on serum vaspin concentrations in obese subjects: modification by insulin resistance. Obesity, 18 (11) ( 2010), pp. 2105-2110, DOI: 10.1038/oby.2010.60
[[136]]
N. Klöting, P. Kovacs, M. Kern, et al.. Central vaspin administration acutely reduces food intake and has sustained blood glucose-lowering effects. Diabetologia, 54 (7) ( 2011), pp. 1819-1823, DOI: 10.1007/s00125-011-2137-1
[[137]]
N. Klöting, J. Berndt, S. Kralisch, et al.. Vaspin gene expression in human adipose tissue: association with obesity and type 2 diabetes. Biochem Biophys Res Commun, 339 (1) ( 2006), pp. 430-436, DOI: 10.1016/j.bbrc.2005.11.039
[[138]]
S.W. Mansour, M.S. Tawfiq, A.A. Khalefa, S.E. Hadhoud, E.A.A. El-Shorbgy. Effect of diet regimen on serum vaspin level in obese diabetic female patients. Zagazig University Medical Journal, 25 (5) ( 2019), pp. 699-707, DOI: 10.21608/zumj.2019.10713.11170
[[139]]
D.H. El-Lebedy, A.A. Ibrahim, I.O. Ashmawy.Novel adipokines vaspin and irisin as risk biomarkers for cardiovascular diseases in type 2 diabetes mellitus. Diabetes Metab Syndr, 12 (5) ( 2018), pp. 643-648, DOI: 10.1016/j.dsx.2018.04.025
[[140]]
J.T. Heiker, N. Klöting, P. Kovacs, et al.. Vaspin inhibits kallikrein 7 by serpin mechanism. Cell Mol Life Sci, 70 (14) ( 2013), pp. 2569-2583, DOI: 10.1007/s00018-013-1258-8
[[141]]
C.H. Jung, W.J. Lee, J.Y. Hwang, et al.. Vaspin protects vascular endothelial cells against free fatty acid-induced apoptosis through a phosphatidylinositol 3-kinase/Akt pathway. Biochem Biophys Res Commun, 413 (2) ( 2011), pp. 264-269, DOI: 10.1016/j.bbrc.2011.08.083
[[142]]
K. Zieger, J. Weiner, K. Krause, et al.. Vaspin suppresses cytokine-induced inflammation in 3T3-L 1 adipocytes via inhibition of NFκB pathway. Mol Cell Endocrinol, 460 ( 2018), pp. 181-188, DOI: 10.1016/j.mce.2017.07.022
[[143]]
S. Phalitakul, M. Okada, Y. Hara, H. Yamawaki. Vaspin prevents TNF-α-induced intracellular adhesion molecule-1 via inhibiting reactive oxygen species-dependent NF-κB and PKCθ activation in cultured rat vascular smooth muscle cells. Pharmacol Res, 64 (5) ( 2011), pp. 493-500, DOI: 10.1016/j.phrs.2011.06.001
[[144]]
S. Liu, Y. Dong, T. Wang, et al.. Vaspin inhibited proinflammatory cytokine induced activation of nuclear factor-kappa B and its downstream molecules in human endothelial EA. hy926 cells. Diabetes Res Clin Pract, 103 (3) ( 2014), pp. 482-488, DOI: 10.1016/j.diabres.2013.12.002
[[145]]
P. Tantiwong, K. Shanmugasundaram, A. Monroy, et al.. NF-κB activity in muscle from obese and type 2 diabetic subjects under basal and exercise-stimulated conditions. Am J Physiol Endocrinol Metab, 299 (5) ( 2010), pp. E794-E801, DOI: 10.1152/ajpendo.00776.2009
[[146]]
S.S. Choe, J.Y. Huh, I.J. Hwang, J.I. Kim, J.B. Kim.Adipose tissue remodeling: its role in energy metabolism and metabolic disorders. Front Endocrinol, 7 ( 2016), p. 30, DOI: 10.3389/fendo.2016.00030
[[147]]
O. Fabre, L.R. Ingerslev, C. Garde, I. Donkin, D. Simar, R. Barres. Exercise training alters the genomic response to acute exercise in human adipose tissue. Epigenomics, 10 (8) ( 2018), pp. 1033-1050, DOI: 10.2217/epi-2018-0039
[[148]]
B.-S. Youn, N. Klöting, J. Kratzsch, et al.. Serum vaspin concentrations in human obesity and type 2 diabetes. Diabetes, 57 (2) ( 2008), pp. 372-377, DOI: 10.2337/db07-1045
[[149]]
A. Shahdadi, K. Molaei. The effect of 8 Weeks rhythmic aerobic exercise on vaspin levels and lipid profile in overweight and obese women. Mediterr J Soc Sci, 7 (4) ( 2016), pp. 163-168, DOI: 10.5901/mjss.2016.v7n4s2p163
[[150]]
H. Amouzad Mahdirejei, S. Fadaei Reyhan Abadei, A. Abbaspour Seidi, et al.. Effects of an eight-week resistance training on plasma vaspin concentrations, metabolic parameters levels and physical fitness in patients with type 2 diabetes. Cell J, 16 (3) ( 2014), pp. 367-374
[[151]]
A. Oberbach, K. Kirsch, S. Lehmann, et al.. Serum vaspin concentrations are decreased after exercise-induced oxidative stress. Obes Facts, 3 (5) ( 2010), pp. 328-331, DOI: 10.1159/000321637
[[152]]
S. Briken, S.C. Rosenkranz, O. Keminer, et al.. Effects of exercise on Irisin, BDNF and IL-6 serum levels in patients with progressive multiple sclerosis. J Neuroimmunol, 299 ( 2016), pp. 53-58, DOI: 10.1016/j.jneuroim.2016.08.007
[[153]]
C. Keller, A. Steensberg, A.K. Hansen, C.P. Fischer, P. Plomgaard, B.K. Pedersen. Effect of exercise, training, and glycogen availability on IL-6 receptor expression in human skeletal muscle. J Appl Physiol ( 1985), 99 (6) ( 2005), pp. 2075-2079, DOI: 10.1152/japplphysiol.00590.2005
[[154]]
D.C. Nieman, K.A. Zwetsloot, D.D. Lomiwes, M.P. Meaney, R.D. Hurst.Muscle glycogen depletion following 75-km of cycling is not linked to increased muscle IL-6, IL-8, and MCP-1 mRNA expression and protein content. Front Physiol, 7 ( 2016), p. 431, DOI: 10.3389/fphys.2016.00431
[[155]]
S. Samarghandian, M. Azimi-Nezhad, T. Farkhondeh. Crocin attenuate Tumor Necrosis Factor-alpha (TNF-α) and interleukin-6 (IL-6) in streptozotocin-induced diabetic rat aorta. Cytokine, 88 ( 2016), pp. 20-28, DOI: 10.1016/j.cyto.2016.08.002
[[156]]
R.M. da Costa, K.B. Neves, F.L. Mestriner, P. Louzada-Junior, T. Bruder-Nascimento, R.C. Tostes.TNF-α induces vascular insulin resistance via positive modulation of PTEN and decreased Akt/eNOS/NO signaling in high fat diet-fed mice. Cardiovasc Diabetol, 15 (1) ( 2016), p. 119, DOI: 10.1186/s12933-016-0443-0
[[157]]
S.J. Dunmore, J. Brown.The role of adipokines in b-cell failure of type 2 diabetes. J Endocrinol, 216 (1) ( 2013), pp. T37-T45, DOI: 10.1530/joe-12-0278
[[158]]
A.D. Hagstrom, P.W. Marshall, C. Lonsdale, et al.. The effect of resistance training on markers of immune function and inflammation in previously sedentary women recovering from breast cancer: a randomized controlled trial. Breast Cancer Res Treat, 155 (3) ( 2016), pp. 471-482, DOI: 10.1007/s10549-016-3688-0
[[159]]
A.V. Sardeli, C.M. Tomeleri, E.S. Cyrino, B. Fernhall, C.R. Cavaglieri, M.P.T. Chacon-Mikahil. Effect of resistance training on inflammatory markers of older adults: a meta-analysis. Exp Gerontol, 111 ( 2018), pp. 188-196, DOI: 10.1016/j.exger.2018.07.021
[[160]]
E. Fayaz, A. Damirchi, N. Zebardast, P. Babaei. Cinnamon extract combined with high-intensity endurance training alleviates metabolic syndrome via non-canonical WNT signaling. Nutrition, 65 ( 2019), pp. 173-178, DOI: 10.1016/j.nut.2019.03.009
[[161]]
S. Kouhestani, S. Zare, P. Babaei. Flavonoids fraction of mespilus germanica alleviates insulin resistance in metabolic syndrome model of ovariectomized rats via reduction in tumor necrosis factor-α. J Menopausal Med, 24 (3) ( 2018), pp. 169-175, DOI: 10.6118/jmm.2018.24.3.169
[[162]]
J. Wang, K.-S. Leung, S.K.-H. Chow, W.-H. Cheung. Inflammation and age-associated skeletal muscle deterioration (sarcopaenia). J orthopaedic translat, 10 ( 2017), pp. 94-101, DOI: 10.1016/j.jot.2017.05.006
[[163]]
A.M. Diehl. Tumor necrosis factor and its potential role in insulin resistance and nonalcoholic fatty liver disease. Clin Liver Dis, 8 (3) ( 2004), pp. 619-x, DOI: 10.1016/j.cld.2004.04.012
[[164]]
S. Joshi-Barve, S.S. Barve, W. Butt, J. Klein, C.J. McClain. Inhibition of proteasome function leads to NF-κB-independent IL-8 expression in human hepatocytes. Hepatology, 38 (5) ( 2003), pp. 1178-1187, DOI: 10.1053/jhep.2003.50470
[[165]]
B. Vozarova, C. Weyer, K. Hanson, P.A. Tataranni, C. Bogardus, R.E. Pratley. Circulating interleukin-6 in relation to adiposity, insulin action, and insulin secretion. Obes Res, 9 (7) ( 2001), pp. 414-417, DOI: 10.1038/oby.2001.54
[[166]]
F. Oberhauser, D. Schulte, M. Faust, et al.. Weight loss due to a very low calorie diet differentially affects insulin sensitivity and interleukin-6 serum levels in nondiabetic obese human subjects. Horm Metab Res, 44 (6) ( 2012), pp. 465-470, DOI: 10.1055/s-0032-1306341
[[167]]
M.S.H. Akash, K. Rehman, A. Liaqat. Tumor necrosis factor-alpha: role in development of insulin resistance and pathogenesis of type 2 diabetes mellitus. J Cell Biochem, 119 (1) ( 2018), pp. 105-110, DOI: 10.1002/jcb.26174
[[168]]
H. Zand, N. Morshedzadeh, F. Naghashian.Signaling pathways linking inflammation to insulin resistance. Diabetes Metab Syndr, 11 (Suppl 1) ( 2017), pp. S307-S309, DOI: 10.1016/j. dsx.2017.03.006
[[169]]
J.G. Bode, J. Schweigart, J. Kehrmann, et al.. TNF-α induces tyrosine phosphorylation and recruitment of the Src homology protein-tyrosine phosphatase 2 to the gp130 signal-transducing subunit of the IL-6 receptor complex. J Immunol, 171 (1) ( 2003), pp. 257-266, DOI: 10.4049/jimmunol.171.1.257
[[170]]
V. Rotter, I. Nagaev, U. Smith. Interleukin-6 (IL-6) induces insulin resistance in 3T3-L1 adipocytes and is, like IL-8 and tumor necrosis factor-α overexpressed in human fat cells from insulin-resistant subjects. J Biol Chem, 278 (46) ( 2003), pp. 45777-45784, DOI: 10.1074/jbc.m301977200
[[171]]
G.J. Grosicki, B. Barrett, D. Englund, et al.. Circulating interleukin-6 is associated with skeletal muscle strength, quality, and functional adaptation with exercise training in mobility-limited older adults. J Frailty Aging, 9 (1) ( 2020), pp. 57-63, DOI: 10.14283/jfa.2019.30
[[172]]
M.A. Kurauti, J.M. Costa-Júnior, S.M. Ferreira, et al.. Interleukin-6 increases the expression and activity of insulin-degrading enzyme. Sci Rep, 7 ( 2017), Article 46750, DOI: 10.1038/srep46750
[[173]]
I. Alipourfard, N. Datukishvili, D. Mikeladze. TNF-α downregulation modifies Insulin Receptor Substrate 1 (IRS-1) in metabolic signaling of diabetic insulin-resistant hepatocytes. Mediat Inflamm ( 2019), Article 3560819, DOI: 10.1155/2019/3560819
[[174]]
N. Kränkel, M. Bahls, E.M. Van Craenenbroeck, et al.. Exercise training to reduce cardiovascular risk in patients with metabolic syndrome and type 2 diabetes mellitus: how does it work?. Eur J Prev Cardiol, 26 (7) ( 2019), pp. 701-708, DOI: 10.1177/2047487318805158
[[175]]
P.Y.O. Martínez, J.A.H. López, D.P. Diaz, D.A.Z. Trujillo, A.M. Teixeira. Effects of three months of water-based exercise training on metabolic syndrome components in older women. Retos: nuevas tendencias en educación física, deporte y recreación, 35 ( 2019), pp. 181-184, DOI: 10.47197/retos.v0i35.62041
[[176]]
T. Ho, X. Zhao, A. Courville, et al.. Effects of a 12-month moderate weight loss intervention on insulin sensitivity and inflammation status in nondiabetic overweight and obese subjects. Horm Metab Res, 47 (4) ( 2015), pp. 289-296, DOI: 10.1055/s-0034-1382011
[[177]]
J.P. Scott, C. Sale, J.P. Greeves, A. Casey, J. Dutton, W.D. Fraser. Effect of exercise intensity on the cytokine response to an acute bout of running. Med Sci Sports Exerc, 43 (12) ( 2011), pp. 2297-2306, DOI: 10.1249/mss.0b013e31822113a9
[[178]]
M. Kohut, D. McCann, D. Russell, et al.. Aerobic exercise, but not flexibility/resistance exercise, reduces serum IL-18, CRP, and IL-6 independent of β-blockers, BMI, and psychosocial factors in older adults. Brain Behav Immun, 20 (3) ( 2006), pp. 201-209, DOI: 10.1016/j.bbi.2005.12.002
[[179]]
N.G. Allen, S.M. Higham, A.E. Mendham, T.E. Kastelein, P.S. Larsen, R. Duffield. The effect of high-intensity aerobic interval training on markers of systemic inflammation in sedentary populations. Eur J Appl Physiol, 117 (6) ( 2017), pp. 1249-1256, DOI: 10.1007/s00421-017-3613-1
[[180]]
S. Abd El-Kader, A. Gari, A.S. El-Den. Impact of moderate versus mild aerobic exercise training on inflammatory cytokines in obese type 2 diabetic patients: a randomized clinical trial. Afr Health Sci, 13 (4) ( 2013), pp. 857-863, DOI: 10.4314/ahs.v13i4.1
[[181]]
J. Gerosa-Neto, B.M. Antunes, E.Z. Campos, et al.. Impact of long-term high-intensity interval and moderate-intensity continuous training on subclinical inflammation in overweight/obese adults. J Exerc Rehabil, 12 (6) ( 2016), pp. 575-580, DOI: 10.12965/jer.1632770.385
[[182]]
J.B. Farinha, F.M. Steckling, S.T. Stefanello, et al.. Response of oxidative stress and inflammatory biomarkers to a 12-week aerobic exercise training in women with metabolic syndrome. Sports Med Open, 1 (1) ( 2015), p. 19, DOI: 10.1186/s40798-015-0011-2
[[183]]
K.M. Beavers, F.-C. Hsu, S. Isom, et al.. Long-term physical activity and inflammatory biomarkers in older adults. Med Sci Sports Exerc, 42 (12) ( 2010), pp. 2189-2196, DOI: 10.1249/mss.0b013e3181e3ac80
[[184]]
P.A.M. Cavalcante, M.F. Gregnani, J.S. Henrique, F.H. Ornellas, R.C. Araújo. Aerobic but not resistance exercise can induce inflammatory pathways via toll-like 2 and 4: a systematic review. Sports Med Open, 3 (1) ( 2017), p. 42, DOI: 10.1186/s40798-017-0111-2. published correction appears in Sports Med Open. 2018 Jan 31;4(1):7
[[185]]
R.S. Monteiro-Junior, P. de Tarso Maciel-Pinheiro, EdMM. Portugal, et al.. Effect of exercise on inflammatory profile of older persons: systematic review and meta-analyses. J Phys Activ Health, 15 (1) ( 2018), pp. 64-71, DOI: 10.1123/jpah.2016-0735
[[186]]
C. Kasapis, P.D. Thompson. The effects of physical activity on serum C-reactive protein and inflammatory markers: a systematic review. J Am Coll Cardiol, 45 (10) ( 2005), pp. 1563-1569, DOI: 10.1016/j.jacc.2004.12.077
[[187]]
P.A.M. Cavalcante, M.F. Gregnani, J.S. Henrique, F.H. Ornellas, R.C. Araújo. Aerobic but not resistance exercise can induce inflammatory pathways via toll-like 2 and 4: a systematic review. Sports Med Open, 3 (1) ( 2017), p. 42, DOI: 10.1186/s40798-017-0111-2. published correction appears in Sports Med Open. 2018 Jan 31;4(1):7
[[188]]
M.G. Flynn, B.K. McFarlin, M.D. Phillips, L.K. Stewart, K.L. Timmerman. Toll-like receptor 4 and CD14 mRNA expression are lower in resistive exercise-trained elderly women. J Appl Physiol ( 1985), 95 (5) ( 2003), pp. 1833-1842, DOI: 10.1152/japplphysiol.00359.2003
[[189]]
A. Kanayama, R.B. Seth, L. Sun, et al.. TAB2 and TAB 3 activate the NF-κB pathway through binding to polyubiquitin chains. Mol Cell, 15 (4) ( 2004), pp. 535-548, DOI: 10.1016/j.molcel.2004.08.008
[[190]]
M. Silveira Martins, J.B. Farinha, C. Basso Benetti, et al.. Positive effects OF resistance training ON inflammatory parameters IN men with metabolic syndrome risk factors. Nutr Hosp, 32 (2) ( 2015), pp. 792-798, DOI: 10.3305/nh.2015.32.2.8696
[[191]]
S.M. Asokan, T. Wang, M.-F. Wang, W.-T. Lin.A novel dipeptide from potato protein hydrolysate augments the effects of exercise training against high-fat diet-induced damages in senescence-accelerated mouse-prone 8 by boosting pAMPK/SIRT1/PGC-1α/pFOXO3 pathway. Aging (N Y), 12 (8) ( 2020), pp. 7334-7349, DOI: 10.18632/aging.103081
[[192]]
N. Ouchi, A. Higuchi, K. Ohashi, et al.. Sfrp 5 is an anti-inflammatory adipokine that modulates metabolic dysfunction in obesity. Science, 329 (5990) ( 2010), pp. 454-457, DOI: 10.1126/science.1188280
[[193]]
M.D. Abou Ziki, A. Mani. The interplay of canonical and noncanonical Wnt signaling in metabolic syndrome. Nutr Res, 70 ( 2019), pp. 18-25, DOI: 10.1016/j.nutres.2018.06.009
[[194]]
V. Catalán, J. Gómez-Ambrosi, A. Rodríguez, et al.. Activation of noncanonical Wnt signaling through WNT5A in visceral adipose tissue of obese subjects is related to inflammation. Clin Endocrinol Metabol, 99 (8) ( 2014), pp. E1407-E1417, DOI: 10.1210/jc.2014-1191
[[195]]
M.A. Zuriaga, J.J. Fuster, M.G. Farb, et al.. Activation of non-canonical WNT signaling in human visceral adipose tissue contributes to local and systemic inflammation. Sci Rep, 7 (1) ( 2017), p. 17326, DOI: 10.1038/s41598-017-17509-5
[[196]]
Z. Hu, H. Deng, H. Qu. Plasma SFRP5 levels are decreased in Chinese subjects with obesity and type 2 diabetes and negatively correlated with parameters of insulin resistance. Diabetes Res Clin Pract, 99 (3) ( 2013), pp. 391-395, DOI: 10.1016/j.diabres.2012.11.026
[[197]]
M. Carstensen, C. Herder, K. Kempf, et al.. Sfrp 5 correlates with insulin resistance and oxidative stress. Eur J Clin Invest, 43 (4) ( 2013), pp. 350-357, DOI: 10.1111/eci.12052
[[198]]
Z. El Asmar, J. Terrand, M. Jenty, et al.. Convergent signaling pathways controlled by LRP 1 (receptor-related protein 1) cytoplasmic and extracellular domains limit cellular cholesterol accumulation. J Biol Chem, 291 (10) ( 2016), pp. 5116-5127, DOI: 10.1074/jbc.m116.714485
[[199]]
T. Fujino, H. Asaba, M.-J. Kang, et al.. Low-density lipoprotein receptor-related protein 5 (LRP5) is essential for normal cholesterol metabolism and glucose-induced insulin secretion. Proc Natl Acad Sci U S A, 100 (1) ( 2003), pp. 229-234, DOI: 10.1073/pnas.0133792100
[[200]]
S.S. Makarov. NF-κB as a therapeutic target in chronic inflammation: recent advances. Mol Med Today, 6 (11) ( 2000), pp. 441-448, DOI: 10.1016/s1357-4310(00)01814-1
[[201]]
J.E. Pessin, H. Kwon.Adipokines mediate inflammation and insulin resistance. Front Endocrinol, 4 ( 2013), p. 71, DOI: 10.3389/fendo.2013.00071
[[202]]
A. De. Wnt/Ca2+ signaling pathway: a brief overview. Acta Biochim Biophys Sin, 43 (10) ( 2011), pp. 745-756, DOI: 10.1093/abbs/gmr079
[[203]]
Y. Komiya, R. Habas. Wnt signal transduction pathways. Organogenesis, 4 (2) ( 2008), pp. 68-75, DOI: 10.4161/org.4.2.5851
[[204]]
H.A. Baarsma, M. Königshoff, R. Gosens. The WNT signaling pathway from ligand secretion to gene transcription: molecular mechanisms and pharmacological targets. Pharmacol Ther, 138 (1) ( 2013), pp. 66-83, DOI: 10.1016/j.pharmthera.2013.01.002
[[205]]
A.D. Kohn, R.T. Moon. Wnt and calcium signaling: β-catenin-independent pathways. Cell Calcium, 38 (3-4) ( 2005), pp. 439-446, DOI: 10.1016/j.ceca.2005.06.022
[[206]]
I. Ackers, R. Malgor. Interrelationship of canonical and non-canonical Wnt signalling pathways in chronic metabolic diseases. Diabetes Vasc Dis Res, 15 (1) ( 2018), pp. 3-13, DOI: 10.1177/1479164117738442
[[207]]
Y.C. Lu, C.P. Wang, C.C. Hsu, et al.. Circulating secreted frizzled-related protein 5 (Sfrp5) and wingless-type MMTV integration site family member 5a (Wnt5a) levels in patients with type 2 diabetes mellitus. Diabetes Metab Res Rev, 29 (7) ( 2013), pp. 551-556, DOI: 10.1002/dmrr.2426
[[208]]
B. Gustafson, A. Hammarstedt, S. Hedjazifar, U. Smith.Restricted adipogenesis in hypertrophic obesity: the role of WISP2, WNT, and BMP4. Diabetes, 62 (9) ( 2013), pp. 2997-3004, DOI: 10.2337/db13-0473
[[209]]
M. Laudes. Role of WNT signalling in the determination of human mesenchymal stem cells into preadipocytes. J Mol Endocrinol, 46 (2) ( 2011), pp. R65-R72, DOI: 10.1530/jme-10-0169
[[210]]
G.C. Weir. Glucolipotoxicity, β-cells, and diabetes: the emperor has no clothes. Diabetes, 69 (3) ( 2020), pp. 273-278, DOI: 10.2337/db19-0138
[[211]]
J.J. Fuster, M.A. Zuriaga, D.T.-M. Ngo, et al.. Noncanonical Wnt signaling promotes obesity-induced adipose tissue inflammation and metabolic dysfunction independent of adipose tissue expansion. Diabetes, 64 (4) ( 2015), pp. 1235-1248, DOI: 10.2337/db14-1164
[[212]]
H. Tilg, A.R. Moschen. Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat Rev Immunol, 6 (10) ( 2006), pp. 772-783, DOI: 10.1038/nri1937
[[213]]
Z. Shi, M. Xu, X. Chen, J. Wang, T. Zhao, D. Zha.The regulatory role of SFRP5/WNT5A axis in allergic rhinitis through inhibiting JNK pathway activation and lowering mucin generation in human nasal epithelial cells. Exp Mol Pathol, 118 ( 2021), p. 104591, DOI: 10.1016/j.yexmp.2020.104591
[[214]]
M.L. Leal, L. Lamas, M.S. Aoki, et al.. Effect of different resistance-training regimens on the WNT-signaling pathway. Eur J Appl Physiol, 111 (10) ( 2011), pp. 2535-2545, DOI: 10.1007/s00421-011-1874-7
[[215]]
A.J. Wagenmakers, B.K. Pedersen. The anti-inflammatory effect of exercise: its role in diabetes and cardiovascular disease control. Essays Biochem, 42 ( 2006), pp. 105-117, DOI: 10.1042/bse0420105
[[216]]
S. Karki, D.T. Ngo, M.G. Farb, et al.. WNT5A regulates adipose tissue angiogenesis via antiangiogenic VEGF-A165b in obese humans. Am J Physiol Heart Circ Physiol, 313 (1) ( 2017), pp. H200-H206, DOI: 10.1152/ajpheart.00776.2016
[[217]]
E. Mir, M. Moazzami, N. Bijeh, E.H. Dokht, N. Rahimi. Changes in SFRP5, WNT5A, HbA1c, BMI, PBF, and insulin resistance in men with type 2 diabetes after 12 weeks of combined exercise (HIIT and resistance). Int J Diabetes Dev Ctries, 40 (2) ( 2020), pp. 248-254, DOI: 10.1007/s13410-019-00790-7
[[218]]
D. Newmire, D.S. Willoughby. Wnt and β-catenin signaling and skeletal muscle myogenesis in response to muscle damage and resistance exercise and training. Int J Kinesiol Sports Sci, 3 (4) ( 2015), pp. 40-49, DOI: 10.7575/aiac.ijkss.v.3n.4p.40
[[219]]
J.A. McCubrey, L. Steelman, F.E. Bertrand, et al.. Multifaceted roles of GSK-3 and Wnt/β-catenin in hematopoiesis and leukemogenesis: opportunities for therapeutic intervention. Leukemia, 28 (1) ( 2014), pp. 15-33, DOI: 10.1038/leu.2013.184
[[220]]
W.G. Aschenbach, R.C. Ho, K. Sakamoto, et al.. Regulation of Dishevelled and β-catenin in rat skeletal muscle: an alternative exercise-induced GSK-3β signaling pathway. Am J Physiol Endocrinol Metab, 291 (1) ( 2006), pp. E152-E158, DOI: 10.1152/ajpendo.00180.2005

Accesses

Citations

Detail

Sections
Recommended

/