Exercise training modulates adipokine dysregulations in metabolic syndrome

Parvin Babaei , Rastegar Hoseini

Sports Medicine and Health Science ›› 2022, Vol. 4 ›› Issue (1) : 18 -28.

PDF
Sports Medicine and Health Science ›› 2022, Vol. 4 ›› Issue (1) :18 -28. DOI: 10.1016/j.smhs.2022.01.001
Review

Exercise training modulates adipokine dysregulations in metabolic syndrome

Author information +
History +
PDF

Keywords

Adipokines / Insulin resistance / Aerobic training / Resistance training / Metabolic syndrome

Cite this article

Download citation ▾
Parvin Babaei, Rastegar Hoseini. Exercise training modulates adipokine dysregulations in metabolic syndrome. Sports Medicine and Health Science, 2022, 4(1): 18-28 DOI:10.1016/j.smhs.2022.01.001

登录浏览全文

4963

注册一个新账户 忘记密码

Authors' contributions
Parvin Babaei drafted the MetS part based on the studies carried out in her lab and coordinated the contents of the manuscript. Rastegar Hoseini wrote the theoretical parts of the exercise. Both authors have read and approved the final version of the manuscript and agreed with the order of presentation of the authors.
Funding
No external source of funding was used in the preparation of this article.
Submission statement
Hereby we attest that the submitted manuscript has not been published previously, and it is not under consideration for publication elsewhere. We also agree that if accepted, it will not be published elsewhere including electronically in the same form, in English or in any other language.
Conflict of interest
The authors report no biomedical financial interests or potential conflicts of interest.

References

[1]

A.M. Alonso-Gómez, L. Tojal Sierra, E. Fortuny Frau, et al.. Diastolic dysfunction and exercise capacity in patients with metabolic syndrome and overweight/obesity. Int J Cardiol Heart Vasc, 22 ( 2018), pp. 67-72, DOI: 10.1016/j.ijcha.2018.12.010

[2]

J.K. Dibaise, A.E. Foxx-Orenstein. Role of the gastroenterologist in managing obesity. Expet Rev Gastroenterol Hepatol, 7 (5) ( 2013), pp. 439-451, DOI: 10.1586/17474124.2013.811061

[3]

M. Abdelaal, C.W. le Roux, N.G. Docherty.Morbidity and mortality associated with obesity. Ann Transl Med, 5 (7) ( 2017), p. 161, DOI: 10.21037/atm.2017.03.107

[4]

J.-B. Funcke, P.E. Scherer. Beyond adiponectin and leptin: adipose tissue-derived mediators of inter-organ communication. J Lipid Res, 60 (10) ( 2019), pp. 1648-1684, DOI: 10.1194/jlr.r094060

[5]

F. Santilli, D. D'Ardes, M. Teresa Guagnano, G. Davi. Metabolic syndrome: sex-related cardiovascular risk and therapeutic approach. Curr Med Chem, 24 (24) ( 2017), pp. 2602-2627, DOI: 10.2174/0929867324666170710121145

[6]

H.S. Chung, K.M. Choi. Adipokines and myokines: a pivotal role in metabolic and cardiovascular disorders. Curr Med Chem, 25 (20) ( 2018), pp. 2401-2415, DOI: 10.2174/0929867325666171205144627

[7]

J.M. Peterson, W.A. Clark, J.-A. Marrs, A. Alamian.Serum adipokines and metabolic syndrome risk factors in hispanic children. Faseb J, 31 (S1) ( 2017), p. 1037, DOI: 10.1096/fasebj.31.1_supplement.1037.5

[8]

X. Hu, F. Guo. Amino acid sensing in metabolic homeostasis and health. Endocr Rev, 42 (1) ( 2021), pp. 56-76, DOI: 10.1210/endrev/bnaa026

[9]

R.A. Sinha, B.K. Singh, P.M. Yen. Reciprocal crosstalk between autophagic and endocrine signaling in metabolic homeostasis. Endocr Rev, 38 (1) ( 2017), pp. 69-102, DOI: 10.1210/er.2016-1103

[10]

T. You, B.J. Nicklas, J. Ding, et al.. The metabolic syndrome is associated with circulating adipokines in older adults across a wide range of adiposity. J Gerontol A Biol Sci Med Sci, 63 (4) ( 2008), pp. 414-419, DOI: 10.1093/gerona/63.4.414

[11]

S. Guo. Insulin signaling, resistance, and the metabolic syndrome: insights from mouse models to disease mechanisms. J Endocrinol, 220 (2) ( 2014), pp. T1-T23, DOI: 10.1530/joe-13-0327

[12]

D.C. Nieman, L.M. Wentz. The compelling link between physical activity and the body's defense system. J Sport Health Sci, 8 (3) ( 2019), pp. 201-217, DOI: 10.1016/j.jshs.2018.09.009

[13]

G.I. Smith, B. Mittendorfer, S. Klein. Metabolically healthy obesity: facts and fantasies. J Clin Invest, 129 (10) ( 2019), pp. 3978-3989, DOI: 10.1172/jci129186

[14]

A.A. Imazu, K.F. Goessler, J. Casonatto, M.D. Polito. The influence of physical training status on postexercise hypotension in patients with hypertension: a cross-sectional study. Blood Pres Monit, 22 (4) ( 2017), pp. 196-201, DOI: 10.1097/mbp.0000000000000255

[15]

M. Batista Jr., J. Rosa, R. Lopes, et al.. Exercise training changes IL-10/TNF-α ratio in the skeletal muscle of post-MI rats. Cytokine, 49 (1) ( 2010), pp. 102-110, DOI: 10.1016/j.cyto.2009.10.007

[16]

D.E. Warburton, C.W. Nicol, S.S. Bredin. Health benefits of physical activity: the evidence. CMAJ (Can Med Assoc J), 174 (6) ( 2006), pp. 801-809, DOI: 10.1503/cmaj.051351

[17]

R. Mitsui, M. Fukushima, A. Taniguchi, et al.. Insulin secretory capacity and insulin sensitivity in impaired fasting glucose in Japanese. J Diabetes Investig, 3 (4) ( 2012), pp. 377-383, DOI: 10.1111/j.2040-1124.2012.00201.x

[18]

X. Tan, C.D. Chapman, J. Cedernaes, C. Benedict. Association between long sleep duration and increased risk of obesity and type 2 diabetes: a review of possible mechanisms. Sleep Med Rev, 40 ( 2018), pp. 127-134, DOI: 10.1016/j.smrv.2017.11.001

[19]

F.S. Lira, J.C. Rosa, N.E. Zanchi, et al.. Regulation of inflammation in the adipose tissue in cancer cachexia: effect of exercise. Cell Biochem Funct, 27 (2) ( 2009), pp. 71-75, DOI: 10.1002/cbf.1540

[20]

M.L. Batista Júnior, R.D. Lopes, M.C.L. Seelaender, A.C. Lopes.Anti-inflammatory effect of physical training in heart failure: role of TNF-α and IL-10. Arq Bras Cardiol [in Portuguese], 93 (6) ( 2009), pp. 692-700, DOI: 10.1590/s0066-782x2009001200021

[21]

J. Kruk, K. Kotarska, B.H. Aboul-Enein. Physical exercise and catecholamines response: benefits and health risk: possible mechanisms. Free Radic Res, 54 (2-3) ( 2020), pp. 105-125, DOI: 10.1080/10715762.2020.1726343

[22]

H. Bruunsgaard. Physical activity and modulation of systemic low-level inflammation. J Leukoc Biol, 78 (4) ( 2005), pp. 819-835, DOI: 10.1189/jlb.0505247

[23]

M. Neves, A.C.B. Retameiro, A.L.F. Tavares, et al.. Physical exercise and low-level laser therapy on the nociception and leukocyte migration of Wistar rats submitted to a model of rheumatoid arthritis. Laser Med Sci, 35 (6) ( 2020), pp. 1277-1287, DOI: 10.1007/s10103-019-02905-2

[24]

P. Trayhurn, C.A. Drevon, J. Eckel. Secreted proteins from adipose tissue and skeletal muscle-adipokines, myokines and adipose/muscle cross-talk. Arch Physiol Biochem, 117 (2) ( 2011), pp. 47-56, DOI: 10.3109/13813455.2010.535835

[25]

E.E. Kershaw, J.S. Flier. Adipose tissue as an endocrine organ. J Clin Endocrinol Metab, 89 (6) ( 2004), pp. 2548-2556, DOI: 10.1210/jc.2004-0395

[26]

K.A. Sjøberg, C. Frøsig, R. Kjøbsted, et al.. Exercise increases human skeletal muscle insulin sensitivity via coordinated increases in microvascular perfusion and molecular signaling. Diabetes, 66 (6) ( 2017), pp. 1501-1510, DOI: 10.2337/db16-1327

[27]

K.J. Yoon, D. Zhang, S.J. Kim, M.C. Lee, H.Y. Moon. Exercise-induced AMPK activation is involved in delay of skeletal muscle senescence. Biochem Biophys Res Commun, 512 (3) ( 2019), pp. 604-610, DOI: 10.1016/j.bbrc.2019.03.086

[28]

J. Huang, X. Wang, Y. Zhu, et al.. Exercise activates lysosomal function in the brain through AMPK-SIRT1-TFEB pathway. CNS Neurosci Ther, 25 (6) ( 2019), pp. 796-807, DOI: 10.1111/cns.13114

[29]

G. Marwarha, K. Claycombe-Larson, J. Lund, O. Ghribi. Palmitate-Induced SREBP1 expression and activation underlies the increased BACE 1 activity and amyloid beta genesis. Mol Neurobiol, 56 (7) ( 2019), pp. 5256-5269, DOI: 10.1007/s12035-018-1451-8

[30]

S. Olivier, M. Foretz, B. Viollet. Promise and challenges for direct small molecule AMPK activators. Biochem Pharmacol, 153 ( 2018), pp. 147-158, DOI: 10.1016/j.bcp.2018.01.049

[31]

H. Islam, D.A. Hood, B.J. Gurd. Looking beyond PGC-1α: emerging regulators of exercise-induced skeletal muscle mitochondrial biogenesis and their activation by dietary compounds. Appl Physiol Nutr Metabol, 45 (1) ( 2020), pp. 11-23, DOI: 10.1139/apnm-2019-0069

[32]

V. Ramachandran, R. Saravanan. Glucose uptake through translocation and activation of GLUT4 in PI3K/Akt signaling pathway by asiatic acid in diabetic rats. Hum Exp Toxicol, 34 (9) ( 2015), pp. 884-893, DOI: 10.1177/0960327114561663

[33]

R.B. Vega, J.P. Konhilas, D.P. Kelly, L.A. Leinwand. Molecular mechanisms underlying cardiac adaptation to exercise. Cell Metabol, 25 (5) ( 2017), pp. 1012-1026, DOI: 10.1016/j.cmet.2017.04.025

[34]

X. Zhang, A. Xu, S.K. Chung, et al.. Selective inactivation of c-Jun NH2-terminal kinase in adipose tissue protects against diet-induced obesity and improves insulin sensitivity in both liver and skeletal muscle in mice. Diabetes, 60 (2) ( 2011), pp. 486-495, DOI: 10.2337/db10-0650

[35]

N. Banu, K. Elango. Adiponectin level in type 2 diabetes and its complication-A review. J Pharmaceut Sci Res, 11 (4) ( 2019), pp. 1172-1174

[36]

D. Zohmangaihi, S. Sharma,S. Madhu. Adiponectin, IL-6 and hsCRP: interplay of inflammation with obesity and type 2 diabetes in Indian population. J Diabetes Metabol, 10 (3) ( 2019), pp. 1-7, DOI: 10.35248/2155-6156.19.10.822

[37]

S.C. Adiyaman, M. Ozer, B.O. Saydam, B. Akinci. The role of adiponectin in maintaining metabolic homeostasis. Curr Diabetes Rev, 16 (2) ( 2020), pp. 95-103, DOI: 10.2174/1573399815666190702155733

[38]

A. Bouassida, K. Chamari, M. Zaouali, Y. Feki, A. Zbidi, Z. Tabka. Review on leptin and adiponectin responses and adaptations to acute and chronic exercise. Br J Sports Med, 44 (9) ( 2010), pp. 620-630, DOI: 10.1136/bjsm.2008.046151

[39]

S. Lindberg, J.S. Jensen, M. Bjerre, et al.. Low adiponectin levels at baseline and decreasing adiponectin levels over 10 years of follow-up predict risk of the metabolic syndrome. Diabetes Metab, 43 (2) ( 2017), pp. 134-139, DOI: 10.1016/j.diabet.2016.07.027

[40]

S. Muppala, S.K. Konduru, N. Merchant, et al.. Adiponectin: its role in obesity-associated colon and prostate cancers. Crit Rev Oncol Hematol, 116 ( 2017), pp. 125-133, DOI: 10.1016/j.critrevonc.2017.06.003

[41]

X. Wang, Q. Chen, H. Pu, et al.. Adiponectin improves NF-κB-mediated inflammation and abates atherosclerosis progression in apolipoprotein E-deficient mice. Lipids Health Dis, 15 ( 2016), p. 33, DOI: 10.1186/s12944-016-0202-y

[42]

F. Tore, A. Tonchev, M. Fiore, et al.. From adipose tissue protein secretion to adipopharmacology of disease. Immunol Endocr Metab Agents Med Chem, 7 (2) ( 2007), pp. 149-155, DOI: 10.2174/187152207780363712

[43]

Y. Okamoto, S. Kihara, N. Ouchi, et al.. Adiponectin reduces atherosclerosis in apolipoprotein E-deficient mice. Circulation, 106 (22) ( 2002), pp. 2767-2770, DOI: 10.1161/01.cir.0000042707.50032.19

[44]

B. Roy, S.S. Palaniyandi.Tissue-specific role and associated downstream signaling pathways of adiponectin. Cell Biosci, 11 (1) ( 2021), p. 77, DOI: 10.1186/s13578-021-00587-4

[45]

L. Miyamoto, M. Yamane, Y. Tomida, et al.. Nitrite activates 5′ AMP-activated protein kinase-endothelial nitric oxide synthase pathway in human glomerular endothelial cells. Biol Pharm Bull, 40 (11) ( 2017), pp. 1866-1872, DOI: 10.1248/bpb.b17-00316

[46]

Y. Wang, X.L. Ma, W.B. Lau. Cardiovascular adiponectin resistance: the critical role of adiponectin receptor modification. Trends Endocrinol Metabol, 28 (7) ( 2017), pp. 519-530, DOI: 10.1016/j.tem.2017.03.004

[47]

Y. Chen, Y. Zheng, L. Liu, et al.. Adiponectin inhibits TNF-α-activated PAI-1 expression via the cAMP-PKA-AMPK-NF-κB axis in human umbilical vein endothelial cells. Cell Physiol Biochem, 42 (6) ( 2017), pp. 2342-2352, DOI: 10.1159/000480006

[48]

T. Yamauchi, Y. Nio, T. Maki, et al.. Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions. Nat Med, 13 (3) ( 2007), pp. 332-339, DOI: 10.1038/nm1557

[49]

H. Yamada, D. Suzuki, M. Kakei, I. Kusaka, S. Ishikawa.Close association of hypoadiponectinemia and increased insulin resistance in non-obese Japanese type 2 diabetes with visceral adiposity. J Metab Syndrome, 5 (4) ( 2016), p. 215, DOI: 10.4172/2167-0943.1000215

[50]

Q. Zeng, K. Isobe, L. Fu, et al.. Effects of exercise on adiponectin and adiponectin receptor levels in rats. Life Sci, 80 (5) ( 2007), pp. 454-459, DOI: 10.1016/j.lfs.2006.09.031

[51]

L. Sun, Y. Lv, J. Tian, et al.. Regular swimming exercise attenuated neuroma pain in rats: involvement of leptin and adiponectin. J Pain, 20 (9) ( 2019), pp. 1112-1124, DOI: 10.1016/j.jpain.2019.02.097

[52]

J. Jürimäe, P. Purge, T. Jürimäe. Adiponectin and stress hormone responses to maximal sculling after volume-extended training season in elite rowers. Metabolism, 55 (1) ( 2006), pp. 13-19, DOI: 10.1016/j.metabol.2005.06.020

[53]

F. Magherini, T. Fiaschi, R. Marzocchini, et al.. Oxidative stress in exercise training: the involvement of inflammation and peripheral signals. Free Radic Res, 53 (11-12) ( 2019), pp. 1155-1165, DOI: 10.1080/10715762.2019.1697438

[54]

A. Damirchi, R. Mehdizade, M. Ansar, B. Soltani, P. Babaei. Effects of aerobic exercise training on visceral fat and serum adiponectin concentration in ovariectomized rats. Climacteric, 13 (2) ( 2010), pp. 171-178, DOI: 10.3109/13697130903360234

[55]

J.A. Lee, J.W. Kim, D.Y. Kim. Effects of yoga exercise on serum adiponectin and metabolic syndrome factors in obese postmenopausal women. published correction appears in Menopause. 2012 Apr;19(4):486. Menopause, 19 (3) ( 2012), pp. 296-301, DOI: 10.1097/gme.0b013e31822d59a2

[56]

Frankenberg ADv A.F. Reis F. Gerchman. Relationships between adiponectin levels, the metabolic syndrome, and type 2 diabetes: a literature review. Arch Endocrinol Metab, 61 (6) ( 2017), pp. 614-622, DOI: 10.1590/2359-3997000000316

[57]

L.J. Ward, S. Nilsson, M. Hammar, et al.. Resistance training decreases plasma levels of adipokines in postmenopausal women. Sci Rep, 10 (1) ( 2020), p. 19837, DOI: 10.1038/s41598-020-76901-w

[58]

M.T. de Mello, A. de Piano, J. Carnier, et al.. Long-term effects of aerobic plus resistance training on the metabolic syndrome and adiponectinemia in obese adolescents. J Clin Hypertens, 13 (5) ( 2011), pp. 343-350, DOI: 10.1111/j.1751-7176.2010.00388.x

[59]

B. Strasser, U. Siebert, W. Schobersberger. Resistance training in the treatment of the metabolic syndrome : a systematic review and meta-analysis of the effect of resistance training on metabolic clustering in patients with abnormal glucose metabolism. Sports Med, 40 (5) ( 2010), pp. 397-415, DOI: 10.2165/11531380-000000000-00000

[60]

C. Gastebois, C. Villars, J. Drai, et al.. Effects of training and detraining on adiponectin plasma concentration and muscle sensitivity in lean and overweight men. Eur J Appl Physiol, 116 (11-12) ( 2016), pp. 2135-2144, DOI: 10.1007/s00421-016-3466-z

[61]

P. Lucotti, L.D. Monti, E. Setola, et al.. Aerobic and resistance training effects compared to aerobic training alone in obese type 2 diabetic patients on diet treatment. Diabetes Res Clin Pract, 94 (3) ( 2011), pp. 395-403, DOI: 10.1016/j.diabres.2011.08.002

[62]

C. Ostman, N. Smart, D. Morcos, A. Duller, W. Ridley, D. Jewiss.The effect of exercise training on clinical outcomes in patients with the metabolic syndrome: a systematic review and meta-analysis. Cardiovasc Diabetol, 16 (1) ( 2017), p. 110, DOI: 10.1186/s12933-017-0590-y

[63]

J.R. Choi, J.Y. Kim, J.H. Huh, S.H. Kim, S.B. Koh. Contribution of obesity as an effect regulator to an association between serum leptin and incident metabolic syndrome. Clin Chim Acta, 487 ( 2018), pp. 275-280, DOI: 10.1016/j.cca.2018.09.038

[64]

F. Ahsan, M.K. Sharif, M.S. Butt, A. Shehzad, M.I. Khan. Pathophysiological role of leptin for human health: a review. Pakistan J Food Sci, 27 (1) ( 2017), pp. 46-52

[65]

R.J. Perry, Y. Wang, G.W. Cline, et al.. Leptin mediates a glucose-fatty acid cycle to maintain glucose homeostasis in starvation. Cell, 172 (1-2) ( 2018), pp. 234-248, DOI: 10.1016/j.cell.2017.12.001

[66]

R.V. Considine, M.K. Sinha, M.L. Heiman, et al.. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med, 334 (5) ( 1996), pp. 292-295, DOI: 10.1056/nejm199602013340503

[67]

A.A. Ghadge, A.A. Khaire. Leptin as a predictive marker for metabolic syndrome. Cytokine, 121 ( 2019), p. 154735, DOI: 10.1016/j.cyto.2019.154735

[68]

T.M. Barnes, K. Shah, M.B. Allison, et al.. Identification of the leptin receptor sequences crucial for the STAT3-Independent control of metabolism. Mol Metabol, 32 ( 2020), pp. 168-175, DOI: 10.1016/j.molmet.2019.12.013

[69]

A. Ghasemi, J. Saeidi, M. Azimi-Nejad, S.I. Hashemy. Leptin-induced signaling pathways in cancer cell migration and invasion. Cell Oncol, 42 (3) ( 2019), pp. 243-260, DOI: 10.1007/s13402-019-00428-0

[70]

A.A. Barrios-Correa, J.A. Estrada, I. Contreras. Leptin signaling in the control of metabolism and appetite: lessons from animal models. Mol Neurosci, 66 (3) ( 2018), pp. 390-402, DOI: 10.1007/s12031-018-1185-0

[71]

E.E. Zhang, E. Chapeau, K. Hagihara, G.-S. Feng. Neuronal Shp2 tyrosine phosphatase controls energy balance and metabolism. Proc Natl Acad Sci U S A, 101 (45) ( 2004), pp. 16064-16069, DOI: 10.1073/pnas.0405041101

[72]

S. Uotani, T. Abe, Y. Yamaguchi. Leptin activates AMP-activated protein kinase in hepatic cells via a JAK2-dependent pathway. Biophys Res Commun, 351 (1) ( 2006), pp. 171-175, DOI: 10.1016/j.bbrc.2006.10.015

[73]

Y. Minokoshi, T. Alquier, N. Furukawa, et al.. AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature, 428 (6982) ( 2004), pp. 569-574, DOI: 10.1038/nature02440

[74]

M. Claret, M.A. Smith, R.L. Batterham, et al.. AMPK is essential for energy homeostasis regulation and glucose sensing by POMC and AgRP neurons. J Clin Invest, 117 (8) ( 2007), pp. 2325-2336, DOI: 10.1172/jci31516

[75]

G.S. Zimmermann, M.F. Bastos, T.E. Dias Gonçalves, L. Chambrone, P.M. Duarte. Local and circulating levels of adipocytokines in obese and normal weight individuals with chronic periodontitis. J Periodontol, 84 (5) ( 2013), pp. 624-633, DOI: 10.1902/jop.2012.120254

[76]

K. De Git, R. Adan. Leptin resistance in diet-induced obesity: the role of hypothalamic inflammation. Obes Rev, 16 (3) ( 2015), pp. 207-224, DOI: 10.1111/obr.12243

[77]

C. Gar, M. Rottenkolber, H. Grallert, et al.. Physical fitness and plasma leptin in women with recent gestational diabetes. PLoS One, 12 (6) ( 2017), Article e0179128, DOI: 10.1371/journal.pone.0179128

[78]

N.F. Garcia, C.P. Silva, M. Ferreira Jr. L. K. Oharomari, T. Rocha, Cd Moraes. 7-week aerobic exercise training reduces adipocyte area and improves insulin sensitivity in Wistar rats fed a highly palatable diet. Motriz: Revista de Educação Física., 22 (1) ( 2016), pp. 12-17, DOI: 10.1590/s1980-65742016000100002

[79]

J. Zhao, Y. Tian, J. Xu, D. Liu, X. Wang, B. Zhao.Endurance exercise is a leptin signaling mimetic in hypothalamus of Wistar rats. Lipids Health Dis, 10 ( 2011), p. 225, DOI: 10.1186/1476-511X-10-225

[80]

J.P. Botero, G.E. Shiguemoto, J. Prestes, et al.. Effects of long-term periodized resistance training on body composition, leptin, resistin and muscle strength in elderly post-menopausal women. J Sports Med Phys Fit, 53 (3) ( 2013), pp. 289-294

[81]

A.M. Ramos-Lobo,J. Donato Jr.. The role of leptin in health and disease. Temperature (Austin), 4 (3) ( 2017), pp. 258-291, DOI: 10.1080/23328940.2017.1327003

[82]

P.W. Lau, Z. Kong, C-r Choi, et al.. Effects of short-term resistance training on serum leptin levels in obese adolescents. J Exerc Sci Fit, 8 (1) ( 2010), pp. 54-60, DOI: 10.1016/s1728-869x(10)60008-1

[83]

S. Ahmadizad, S. Ghorbani, M. Ghasemikaram, M. Bahmanzadeh. Effects of short-term nonperiodized, linear periodized and daily undulating periodized resistance training on plasma adiponectin, leptin and insulin resistance. Clin Biochem, 47 (6) ( 2014), pp. 417-422, DOI: 10.1016/j.clinbiochem.2013.12.019

[84]

A. Nappo, E. Gonzalez-Gil, W. Ahrens, et al.. Analysis of the association of leptin and adiponectin concentrations with metabolic syndrome in children: results from the IDEFICS study. Nutr Metabol Cardiovasc Dis, 27 (6) ( 2017), pp. 543-551, DOI: 10.1016/j.numecd.2017.04.003

[85]

M.V. Fedewa, E.D. Hathaway, C.L. Ward-Ritacco, T.D. Williams, W.C. Dobbs. The effect of chronic exercise training on leptin: a systematic review and meta-analysis of randomized controlled trials. Sports Med, 48 (6) ( 2018), pp. 1437-1450, DOI: 10.1007/s40279-018-0897-1

[86]

J. Prestes, D. da Cunha Nascimento, I.V. de Sousa Neto, et al.. The effects of muscle strength responsiveness to periodized resistance training on resistin, leptin, and cytokine in elderly postmenopausal women. J Strength Condit Res, 32 (1) ( 2018), pp. 113-120, DOI: 10.1519/jsc.0000000000001718

[87]

G.H. Marques-Oliveira, T.M. Silva, W.G. Lima, H.M.S. Valadares, V.E. Chaves. Insulin as a hormone regulator of the synthesis and release of leptin by white adipose tissue. Peptides, 106 ( 2018), pp. 49-58, DOI: 10.1016/j.peptides.2018.06.007

[88]

W.S. Dantas, H. Roschel, I.H. Murai, et al.. Exercise-induced increases in insulin sensitivity after bariatric surgery are mediated by muscle extracellular matrix remodeling. Diabetes, 69 (8) ( 2020), pp. 1675-1691, DOI: 10.2337/db19-1180

[89]

A. Petridou, S. Tsalouhidou, G. Tsalis, T. Schulz, H. Michna, V. Mougios. Long-term exercise increases the DNA binding activity of peroxisome proliferator-activated receptor γ in rat adipose tissue. Metabolism, 56 (8) ( 2007), pp. 1029-1036, DOI: 10.1016/j.metabol.2007.03.011

[90]

M. Tsai, A. Asakawa, H. Amitani, A. Inui. Stimulation of leptin secretion by insulin. Indian J Endocrinol Metab, 16 (Suppl 3) ( 2012), pp. S543-S548, DOI: 10.4103/2230-8210.105570

[91]

F. Sirico, A. Bianco, G. D'Alicandro, et al.. Effects of physical exercise on adiponectin, leptin, and inflammatory markers in childhood obesity: systematic review and meta-analysis. Child Obes, 14 (4) ( 2018), pp. 207-217, DOI: 10.1089/chi.2017.0269

[92]

S.L. McGee, M. Hargreaves. Exercise adaptations: molecular mechanisms and potential targets for therapeutic benefit. Nat Rev Endocrinol, 16 (9) ( 2020), pp. 495-505, DOI: 10.1038/s41574-020-0377-1

[93]

R. Shibata, N. Ouchi, K. Ohashi, T. Murohara. The role of adipokines in cardiovascular disease. J Cardiol, 70 (4) ( 2017), pp. 329-334, DOI: 10.1016/j.jjcc.2017.02.006

[94]

R.-Z. Yang, M.-J. Lee, H. Hu, et al.. Identification of omentin as a novel depot-specific adipokine in human adipose tissue: possible role in modulating insulin action. Am J Physiol Endocrinol Metab, 290 (6) ( 2006), pp. E1253-E1261, DOI: 10.1152/ajpendo.00572.2004

[95]

M. Buyukinan, M. Atar, U. Can, O. Pirgon, A. Guzelant, I. Deniz. The association between serum vaspin and omentin-1 levels in obese children with metabolic syndrome. Metab Syndr Relat Disord, 16 (2) ( 2018), pp. 76-81, DOI: 10.1089/met.2017.0133

[96]

M. Zhang, X. Tan, C. Yin, L. Wang, Y. Tie, Y. Xiao. Serum levels of omentin-1 are increased after weight loss and are particularly associated with increases in obese children with metabolic syndrome. Acta Paediatr, 106 (11) ( 2017), pp. 1851-1856, DOI: 10.1111/apa.14026

[97]

C. Sitticharoon, N.C. Nway, S. Chatree, M. Churintaraphan, P. Boonpuan,P. Maikaew. Interactions between adiponectin, visfatin, and omentin in subcutaneous and visceral adipose tissues and serum, and correlations with clinical and peripheral metabolic factors. Peptides, 62 ( 2014), pp. 164-175, DOI: 10.1016/j.peptides.2014.10.006

[98]

X. Pan, A.C. Kaminga, S.W. Wen, K. Acheampong, A. Liu. Omentin-1 in diabetes mellitus: a systematic review and meta-analysis. PLoS One, 14 (12) ( 2019), Article e0226292, DOI: 10.1371/journal.pone.0226292

[99]

CAd Castro, KAd Silva, M.C. Rocha, et al.. Exercise and omentin: their role in the crosstalk between muscle and adipose tissues in type 2 diabetes mellitus rat models. Front Physiol, 9 ( 2019), p. 1881, DOI: 10.3389/fphys.2018.01881

[100]

L. Brunetti, S. Leone, G. Orlando, et al.. Hypotensive effects of omentin-1 related to increased adiponectin and decreased interleukin-6 in intra-thoracic pericardial adipose tissue. Pharmacol Rep, 66 (6) ( 2014), pp. 991-995, DOI: 10.1016/j.pharep.2014.06.014

[101]

D. Stejskal, J. Vaclavik, A. Smekal, G. Svobodova, R. Richterova, M. Svestak. Omentin-1 levels in patients with premature coronary artery disease, metabolic syndrome and healthy controls. Short communication. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub, 160 (2) ( 2016), pp. 219-221, DOI: 10.5507/bp.2016.019

[102]

F. Liu, S. Fang, X. Liu, et al.. Omentin-1 protects against high glucose-induced endothelial dysfunction via the AMPK/PPARδ signaling pathway. Biochem Pharmacol, 174 ( 2020), Article 113830, DOI: 10.1016/j.bcp.2020.113830

[103]

K. Watanabe, R. Watanabe, H. Konii, et al.. Counteractive effects of omentin-1 against atherogenesis. Cardiovasc Res, 110 (1) ( 2016), pp. 118-128, DOI: 10.1093/cvr/cvw016

[104]

M. Hiramatsu-Ito, R. Shibata, K. Ohashi, et al.. Omentin attenuates atherosclerotic lesion formation in apolipoprotein E-deficient mice. Cardiovasc Res, 110 (1) ( 2016), pp. 107-117, DOI: 10.1093/cvr/cvv282

[105]

Y. Zhou, C. Hao, C. Li, et al.. Omentin-1 protects against bleomycin-induced acute lung injury. Mol Immunol, 103 ( 2018), pp. 96-105, DOI: 10.1016/j.molimm.2018.09.007

[106]

R. Jiang, B. Lönnerdal. Cloning and characterization of the human lactoferrin receptor gene promoter. Biometals, 31 (3) ( 2018), pp. 357-368, DOI: 10.1007/s10534-018-0080-z

[107]

R. Rashid, M. Maqbool, A. Jan, M.I. Geer. Role of adipokines and free fatty acids in insulin resistance-a review. Int J Adv Res Sci Eng, 7 (4) ( 2018), pp. 2115-2123

[108]

P. Babaei, A. Pourrahim Ghouroghchi, A. Damirchi, B. Soltani Tehrani.The interactive effect of aerobic-resistance training and estrogen therapy on metabolic syndrome indices and omentin-1. Physiol Pharmacol, 19 (3) ( 2015), pp. 200-207

[109]

S.M. Madsen, A.C. Thorup, M. Bjerre, P.B. Jeppesen. Does 8 weeks of strenuous bicycle exercise improve diabetes-related inflammatory cytokines and free fatty acids in type 2 diabetes patients and individuals at high-risk of metabolic syndrome?. Arch Physiol Biochem, 121 (4) ( 2015), pp. 129-138, DOI: 10.3109/13813455.2015.1082600

[110]

M. Urbanová, I. Dostálová, P. Trachta, et al.. Serum concentrations and subcutaneous adipose tissue mRNA expression of omentin in morbid obesity and type 2 diabetes mellitus: the effect of very-low-calorie diet, physical activity and laparoscopic sleeve gastrectomy. Physiol Res, 63 (2) ( 2014), pp. 207-218, DOI: 10.33549/physiolres.932530

[111]

M. Faramarzi, E. Banitalebi, S. Nori, S. Farzin, Z. Taghavian. Effects of rhythmic aerobic exercise plus core stability training on serum omentin, chemerin and vaspin levels and insulin resistance of overweight women. J Sports Med Phys Fit, 56 (4) ( 2016), pp. 476-482

[112]

H. Ge, L. Huang, T. Pourbahrami, C. Li. Generation of soluble leptin receptor by ectodomain shedding of membrane-spanning receptors in vitro and in vivo. J Biol Chem, 277 (48) ( 2002), pp. 45898-45903, DOI: 10.1074/jbc.m205825200

[113]

P. Yan, D. Liu, M. Long, Y. Ren, J. Pang, R. Li. Changes of serum omentin levels and relationship between omentin and adiponectin concentrations in type 2 diabetes mellitus. Exp Clin Endocrinol Diabetes, 119 (4) ( 2011), pp. 257-263, DOI: 10.1055/s-0030-1269912

[114]

Y. Kataoka, R. Shibata, K. Ohashi, et al.. Omentin prevents myocardial ischemic injury through AMP-activated protein kinase-and Akt-dependent mechanisms. J Am Coll Cardiol, 63 (24) ( 2014), pp. 2722-2733, DOI: 10.1016/j.jacc.2014.03.032

[115]

C.M. de Souza Batista, R.-Z. Yang, M.-J. Lee, et al.. Omentin plasma levels and gene expression are decreased in obesity. Diabetes, 56 (6) ( 2007), pp. 1655-1661, DOI: 10.2337/db06-1506

[116]

J. Boucher, B. Masri, D. Daviaud, et al.. Apelin, a newly identified adipokine up-regulated by insulin and obesity. Endocrinology, 146 (4) ( 2005), pp. 1764-1771, DOI: 10.1210/en.2004-1427

[117]

M.J. Kleinz, A.P. Davenport. Emerging roles of apelin in biology and medicine. Pharmacol Ther, 107 (2) ( 2005), pp. 198-211, DOI: 10.1016/j.pharmthera.2005.04.001

[118]

L. Li, G. Yang, Q. Li, et al.. Changes and relations of circulating visfatin, apelin, and resistin levels in normal, impaired glucose tolerance, and type 2 diabetic subjects. Exp Clin Endocrinol Diabetes, 114 (10) ( 2006), pp. 544-548, DOI: 10.1055/s-2006-948309

[119]

P. Babaei, A. Dastras, B.S. Tehrani, S. Pourali Roudbaneh. The effect of estrogen replacement therapy on visceral fat, serum glucose, lipid profiles and apelin level in ovariectomized rats. J Menopausal Med, 23 (3) ( 2017), pp. 182-189, DOI: 10.6118/jmm.2017.23.3.182

[120]

Y.S. Choi, H.I. Yang, S. Cho, et al.. Serum asymmetric dimethylarginine, apelin, and tumor necrosis factor-α levels in non-obese women with polycystic ovary syndrome. Steroids, 77 (13) ( 2012), pp. 1352-1358, DOI: 10.1016/j.steroids.2012.08.005

[121]

S. Zhu, F. Sun, W. Li, et al.. Apelin stimulates glucose uptake through the PI3K/Akt pathway and improves insulin resistance in 3T3-L1 adipocytes. Mol Cell Biochem, 353 (1-2) ( 2011), pp. 305-313, DOI: 10.1007/s11010-011-0799-0

[122]

C. Dray, C. Knauf, D. Daviaud, et al.. Apelin stimulates glucose utilization in normal and obese insulin-resistant mice. Cell Metabol, 8 (5) ( 2008), pp. 437-445, DOI: 10.1016/j.cmet.2008.10.003

[123]

I. Castan-Laurell, B. Masri, P. Valet. The apelin/APJ system as a therapeutic target in metabolic diseases. Expert Opin Ther Targets, 23 (3) ( 2019), pp. 215-225, DOI: 10.1080/14728222.2019.1561871

[124]

C. Bertrand, P. Valet, I. Castan-Laurell.Apelin and energy metabolism. Front Physiol, 6 ( 2015), p. 115, DOI: 10.3389/fphys.2015.00115

[125]

I. Castan-Laurell, C. Dray, C. Attané, T. Duparc, C. Knauf,P. Valet. Apelin, diabetes, and obesity. Endocrine, 40 (1) ( 2011), pp. 1-9, DOI: 10.1007/s12020-011-9507-9

[126]

J.J. Maguire, M.J. Kleinz, S.L. Pitkin, A.P. Davenport. [Pyr1] apelin-13 identified as the predominant apelin isoform in the human heart: vasoactive mechanisms and inotropic action in disease. Hypertension, 54 (3) ( 2009), pp. 598-604, DOI: 10.1161/hypertensionaha.109.134619

[127]

X.-H. Yu, Z.-B. Tang, L.-J. Liu, et al.. Apelin and its receptor APJ in cardiovascular diseases. Clin Chim Acta, 428 ( 2014), pp. 1-8, DOI: 10.1016/j.cca.2013.09.001

[128]

B. Masri, N. Morin, L. Pedebernade, B. Knibiehler, Y. Audigier. The apelin receptor is coupled to Gi1 or Gi2 protein and is differentially desensitized by apelin fragments. J Biol Chem, 281 (27) ( 2006), pp. 18317-18326, DOI: 10.1074/jbc.m600606200

[129]

A. Besse-Patin, E. Montastier, C. Vinel, et al.. Effect of endurance training on skeletal muscle myokine expression in obese men: identification of apelin as a novel myokine. Int J Obes, 38 (5) ( 2014), pp. 707-713, DOI: 10.1038/ijo.2013.158

[130]

N.P. Kadoglou, I.S. Vrabas, A. Kapelouzou, et al.. The impact of aerobic exercise training on novel adipokines, apelin and ghrelin, in patients with type 2 diabetes. Med Sci Mon Int Med J Exp Clin Res, 18 (5) ( 2012), pp. CR290-CR295, DOI: 10.12659/msm.882734

[131]

S.-H. Jang, I.-Y. Paik, J.-H. Ryu, T.-H. Lee, D.-E. Kim.Effects of aerobic and resistance exercises on circulating apelin-12 and apelin-36 concentrations in obese middle-aged women: a randomized controlled trial. BMC Wom Health, 19 (1) ( 2019), p. 23, DOI: 10.1186/s12905-019-0722-5

[132]

M. Nikseresht, H. Rajabi, A. Nikseresht. The effects of nonlinear resistance and aerobic interval training on serum levels of apelin and insulin resistance in middle-aged obese men. Tehran Univ Med J, 73 (5) ( 2015), pp. 375-383

[133]

A. Ghanbari-Niaki, A. Saeidi, L. Gharahcholo, et al.. Influence of resistance training and herbal supplementation on plasma apelin and metabolic syndrome risk factors in postmenopausal women. Sci Sports, 35 (2) ( 2020), pp. 109.e1-109.e5, DOI: 10.1016/j.scispo.2019.04.010

[134]

J.S. Green, R.C. Lowe, N. Pronk, D. Jacobsen, J.J. Rohack, S.F. Crouse.Low and high intensity endurance exercise training does not significantly alter the apolipoprotein-b/apoliporotienal ratio in hypercholesterolemic men. Med Sci Sports Exerc, 37 ( 2005), p. S470, DOI: 10.1097/00005768-200505001-02459

[135]

H.M. Chang, H.J. Lee, H.S. Park, et al.. Effects of weight reduction on serum vaspin concentrations in obese subjects: modification by insulin resistance. Obesity, 18 (11) ( 2010), pp. 2105-2110, DOI: 10.1038/oby.2010.60

[136]

N. Klöting, P. Kovacs, M. Kern, et al.. Central vaspin administration acutely reduces food intake and has sustained blood glucose-lowering effects. Diabetologia, 54 (7) ( 2011), pp. 1819-1823, DOI: 10.1007/s00125-011-2137-1

[137]

N. Klöting, J. Berndt, S. Kralisch, et al.. Vaspin gene expression in human adipose tissue: association with obesity and type 2 diabetes. Biochem Biophys Res Commun, 339 (1) ( 2006), pp. 430-436, DOI: 10.1016/j.bbrc.2005.11.039

[138]

S.W. Mansour, M.S. Tawfiq, A.A. Khalefa, S.E. Hadhoud, E.A.A. El-Shorbgy. Effect of diet regimen on serum vaspin level in obese diabetic female patients. Zagazig University Medical Journal, 25 (5) ( 2019), pp. 699-707, DOI: 10.21608/zumj.2019.10713.11170

[139]

D.H. El-Lebedy, A.A. Ibrahim, I.O. Ashmawy.Novel adipokines vaspin and irisin as risk biomarkers for cardiovascular diseases in type 2 diabetes mellitus. Diabetes Metab Syndr, 12 (5) ( 2018), pp. 643-648, DOI: 10.1016/j.dsx.2018.04.025

[140]

J.T. Heiker, N. Klöting, P. Kovacs, et al.. Vaspin inhibits kallikrein 7 by serpin mechanism. Cell Mol Life Sci, 70 (14) ( 2013), pp. 2569-2583, DOI: 10.1007/s00018-013-1258-8

[141]

C.H. Jung, W.J. Lee, J.Y. Hwang, et al.. Vaspin protects vascular endothelial cells against free fatty acid-induced apoptosis through a phosphatidylinositol 3-kinase/Akt pathway. Biochem Biophys Res Commun, 413 (2) ( 2011), pp. 264-269, DOI: 10.1016/j.bbrc.2011.08.083

[142]

K. Zieger, J. Weiner, K. Krause, et al.. Vaspin suppresses cytokine-induced inflammation in 3T3-L 1 adipocytes via inhibition of NFκB pathway. Mol Cell Endocrinol, 460 ( 2018), pp. 181-188, DOI: 10.1016/j.mce.2017.07.022

[143]

S. Phalitakul, M. Okada, Y. Hara, H. Yamawaki. Vaspin prevents TNF-α-induced intracellular adhesion molecule-1 via inhibiting reactive oxygen species-dependent NF-κB and PKCθ activation in cultured rat vascular smooth muscle cells. Pharmacol Res, 64 (5) ( 2011), pp. 493-500, DOI: 10.1016/j.phrs.2011.06.001

[144]

S. Liu, Y. Dong, T. Wang, et al.. Vaspin inhibited proinflammatory cytokine induced activation of nuclear factor-kappa B and its downstream molecules in human endothelial EA. hy926 cells. Diabetes Res Clin Pract, 103 (3) ( 2014), pp. 482-488, DOI: 10.1016/j.diabres.2013.12.002

[145]

P. Tantiwong, K. Shanmugasundaram, A. Monroy, et al.. NF-κB activity in muscle from obese and type 2 diabetic subjects under basal and exercise-stimulated conditions. Am J Physiol Endocrinol Metab, 299 (5) ( 2010), pp. E794-E801, DOI: 10.1152/ajpendo.00776.2009

[146]

S.S. Choe, J.Y. Huh, I.J. Hwang, J.I. Kim, J.B. Kim.Adipose tissue remodeling: its role in energy metabolism and metabolic disorders. Front Endocrinol, 7 ( 2016), p. 30, DOI: 10.3389/fendo.2016.00030

[147]

O. Fabre, L.R. Ingerslev, C. Garde, I. Donkin, D. Simar, R. Barres. Exercise training alters the genomic response to acute exercise in human adipose tissue. Epigenomics, 10 (8) ( 2018), pp. 1033-1050, DOI: 10.2217/epi-2018-0039

[148]

B.-S. Youn, N. Klöting, J. Kratzsch, et al.. Serum vaspin concentrations in human obesity and type 2 diabetes. Diabetes, 57 (2) ( 2008), pp. 372-377, DOI: 10.2337/db07-1045

[149]

A. Shahdadi, K. Molaei. The effect of 8 Weeks rhythmic aerobic exercise on vaspin levels and lipid profile in overweight and obese women. Mediterr J Soc Sci, 7 (4) ( 2016), pp. 163-168, DOI: 10.5901/mjss.2016.v7n4s2p163

[150]

H. Amouzad Mahdirejei, S. Fadaei Reyhan Abadei, A. Abbaspour Seidi, et al.. Effects of an eight-week resistance training on plasma vaspin concentrations, metabolic parameters levels and physical fitness in patients with type 2 diabetes. Cell J, 16 (3) ( 2014), pp. 367-374

[151]

A. Oberbach, K. Kirsch, S. Lehmann, et al.. Serum vaspin concentrations are decreased after exercise-induced oxidative stress. Obes Facts, 3 (5) ( 2010), pp. 328-331, DOI: 10.1159/000321637

[152]

S. Briken, S.C. Rosenkranz, O. Keminer, et al.. Effects of exercise on Irisin, BDNF and IL-6 serum levels in patients with progressive multiple sclerosis. J Neuroimmunol, 299 ( 2016), pp. 53-58, DOI: 10.1016/j.jneuroim.2016.08.007

[153]

C. Keller, A. Steensberg, A.K. Hansen, C.P. Fischer, P. Plomgaard, B.K. Pedersen. Effect of exercise, training, and glycogen availability on IL-6 receptor expression in human skeletal muscle. J Appl Physiol ( 1985), 99 (6) ( 2005), pp. 2075-2079, DOI: 10.1152/japplphysiol.00590.2005

[154]

D.C. Nieman, K.A. Zwetsloot, D.D. Lomiwes, M.P. Meaney, R.D. Hurst.Muscle glycogen depletion following 75-km of cycling is not linked to increased muscle IL-6, IL-8, and MCP-1 mRNA expression and protein content. Front Physiol, 7 ( 2016), p. 431, DOI: 10.3389/fphys.2016.00431

[155]

S. Samarghandian, M. Azimi-Nezhad, T. Farkhondeh. Crocin attenuate Tumor Necrosis Factor-alpha (TNF-α) and interleukin-6 (IL-6) in streptozotocin-induced diabetic rat aorta. Cytokine, 88 ( 2016), pp. 20-28, DOI: 10.1016/j.cyto.2016.08.002

[156]

R.M. da Costa, K.B. Neves, F.L. Mestriner, P. Louzada-Junior, T. Bruder-Nascimento, R.C. Tostes.TNF-α induces vascular insulin resistance via positive modulation of PTEN and decreased Akt/eNOS/NO signaling in high fat diet-fed mice. Cardiovasc Diabetol, 15 (1) ( 2016), p. 119, DOI: 10.1186/s12933-016-0443-0

[157]

S.J. Dunmore, J. Brown.The role of adipokines in b-cell failure of type 2 diabetes. J Endocrinol, 216 (1) ( 2013), pp. T37-T45, DOI: 10.1530/joe-12-0278

[158]

A.D. Hagstrom, P.W. Marshall, C. Lonsdale, et al.. The effect of resistance training on markers of immune function and inflammation in previously sedentary women recovering from breast cancer: a randomized controlled trial. Breast Cancer Res Treat, 155 (3) ( 2016), pp. 471-482, DOI: 10.1007/s10549-016-3688-0

[159]

A.V. Sardeli, C.M. Tomeleri, E.S. Cyrino, B. Fernhall, C.R. Cavaglieri, M.P.T. Chacon-Mikahil. Effect of resistance training on inflammatory markers of older adults: a meta-analysis. Exp Gerontol, 111 ( 2018), pp. 188-196, DOI: 10.1016/j.exger.2018.07.021

[160]

E. Fayaz, A. Damirchi, N. Zebardast, P. Babaei. Cinnamon extract combined with high-intensity endurance training alleviates metabolic syndrome via non-canonical WNT signaling. Nutrition, 65 ( 2019), pp. 173-178, DOI: 10.1016/j.nut.2019.03.009

[161]

S. Kouhestani, S. Zare, P. Babaei. Flavonoids fraction of mespilus germanica alleviates insulin resistance in metabolic syndrome model of ovariectomized rats via reduction in tumor necrosis factor-α. J Menopausal Med, 24 (3) ( 2018), pp. 169-175, DOI: 10.6118/jmm.2018.24.3.169

[162]

J. Wang, K.-S. Leung, S.K.-H. Chow, W.-H. Cheung. Inflammation and age-associated skeletal muscle deterioration (sarcopaenia). J orthopaedic translat, 10 ( 2017), pp. 94-101, DOI: 10.1016/j.jot.2017.05.006

[163]

A.M. Diehl. Tumor necrosis factor and its potential role in insulin resistance and nonalcoholic fatty liver disease. Clin Liver Dis, 8 (3) ( 2004), pp. 619-x, DOI: 10.1016/j.cld.2004.04.012

[164]

S. Joshi-Barve, S.S. Barve, W. Butt, J. Klein, C.J. McClain. Inhibition of proteasome function leads to NF-κB-independent IL-8 expression in human hepatocytes. Hepatology, 38 (5) ( 2003), pp. 1178-1187, DOI: 10.1053/jhep.2003.50470

[165]

B. Vozarova, C. Weyer, K. Hanson, P.A. Tataranni, C. Bogardus, R.E. Pratley. Circulating interleukin-6 in relation to adiposity, insulin action, and insulin secretion. Obes Res, 9 (7) ( 2001), pp. 414-417, DOI: 10.1038/oby.2001.54

[166]

F. Oberhauser, D. Schulte, M. Faust, et al.. Weight loss due to a very low calorie diet differentially affects insulin sensitivity and interleukin-6 serum levels in nondiabetic obese human subjects. Horm Metab Res, 44 (6) ( 2012), pp. 465-470, DOI: 10.1055/s-0032-1306341

[167]

M.S.H. Akash, K. Rehman, A. Liaqat. Tumor necrosis factor-alpha: role in development of insulin resistance and pathogenesis of type 2 diabetes mellitus. J Cell Biochem, 119 (1) ( 2018), pp. 105-110, DOI: 10.1002/jcb.26174

[168]

H. Zand, N. Morshedzadeh, F. Naghashian.Signaling pathways linking inflammation to insulin resistance. Diabetes Metab Syndr, 11 (Suppl 1) ( 2017), pp. S307-S309, DOI: 10.1016/j. dsx.2017.03.006

[169]

J.G. Bode, J. Schweigart, J. Kehrmann, et al.. TNF-α induces tyrosine phosphorylation and recruitment of the Src homology protein-tyrosine phosphatase 2 to the gp130 signal-transducing subunit of the IL-6 receptor complex. J Immunol, 171 (1) ( 2003), pp. 257-266, DOI: 10.4049/jimmunol.171.1.257

[170]

V. Rotter, I. Nagaev, U. Smith. Interleukin-6 (IL-6) induces insulin resistance in 3T3-L1 adipocytes and is, like IL-8 and tumor necrosis factor-α overexpressed in human fat cells from insulin-resistant subjects. J Biol Chem, 278 (46) ( 2003), pp. 45777-45784, DOI: 10.1074/jbc.m301977200

[171]

G.J. Grosicki, B. Barrett, D. Englund, et al.. Circulating interleukin-6 is associated with skeletal muscle strength, quality, and functional adaptation with exercise training in mobility-limited older adults. J Frailty Aging, 9 (1) ( 2020), pp. 57-63, DOI: 10.14283/jfa.2019.30

[172]

M.A. Kurauti, J.M. Costa-Júnior, S.M. Ferreira, et al.. Interleukin-6 increases the expression and activity of insulin-degrading enzyme. Sci Rep, 7 ( 2017), Article 46750, DOI: 10.1038/srep46750

[173]

I. Alipourfard, N. Datukishvili, D. Mikeladze. TNF-α downregulation modifies Insulin Receptor Substrate 1 (IRS-1) in metabolic signaling of diabetic insulin-resistant hepatocytes. Mediat Inflamm ( 2019), Article 3560819, DOI: 10.1155/2019/3560819

[174]

N. Kränkel, M. Bahls, E.M. Van Craenenbroeck, et al.. Exercise training to reduce cardiovascular risk in patients with metabolic syndrome and type 2 diabetes mellitus: how does it work?. Eur J Prev Cardiol, 26 (7) ( 2019), pp. 701-708, DOI: 10.1177/2047487318805158

[175]

P.Y.O. Martínez, J.A.H. López, D.P. Diaz, D.A.Z. Trujillo, A.M. Teixeira. Effects of three months of water-based exercise training on metabolic syndrome components in older women. Retos: nuevas tendencias en educación física, deporte y recreación, 35 ( 2019), pp. 181-184, DOI: 10.47197/retos.v0i35.62041

[176]

T. Ho, X. Zhao, A. Courville, et al.. Effects of a 12-month moderate weight loss intervention on insulin sensitivity and inflammation status in nondiabetic overweight and obese subjects. Horm Metab Res, 47 (4) ( 2015), pp. 289-296, DOI: 10.1055/s-0034-1382011

[177]

J.P. Scott, C. Sale, J.P. Greeves, A. Casey, J. Dutton, W.D. Fraser. Effect of exercise intensity on the cytokine response to an acute bout of running. Med Sci Sports Exerc, 43 (12) ( 2011), pp. 2297-2306, DOI: 10.1249/mss.0b013e31822113a9

[178]

M. Kohut, D. McCann, D. Russell, et al.. Aerobic exercise, but not flexibility/resistance exercise, reduces serum IL-18, CRP, and IL-6 independent of β-blockers, BMI, and psychosocial factors in older adults. Brain Behav Immun, 20 (3) ( 2006), pp. 201-209, DOI: 10.1016/j.bbi.2005.12.002

[179]

N.G. Allen, S.M. Higham, A.E. Mendham, T.E. Kastelein, P.S. Larsen, R. Duffield. The effect of high-intensity aerobic interval training on markers of systemic inflammation in sedentary populations. Eur J Appl Physiol, 117 (6) ( 2017), pp. 1249-1256, DOI: 10.1007/s00421-017-3613-1

[180]

S. Abd El-Kader, A. Gari, A.S. El-Den. Impact of moderate versus mild aerobic exercise training on inflammatory cytokines in obese type 2 diabetic patients: a randomized clinical trial. Afr Health Sci, 13 (4) ( 2013), pp. 857-863, DOI: 10.4314/ahs.v13i4.1

[181]

J. Gerosa-Neto, B.M. Antunes, E.Z. Campos, et al.. Impact of long-term high-intensity interval and moderate-intensity continuous training on subclinical inflammation in overweight/obese adults. J Exerc Rehabil, 12 (6) ( 2016), pp. 575-580, DOI: 10.12965/jer.1632770.385

[182]

J.B. Farinha, F.M. Steckling, S.T. Stefanello, et al.. Response of oxidative stress and inflammatory biomarkers to a 12-week aerobic exercise training in women with metabolic syndrome. Sports Med Open, 1 (1) ( 2015), p. 19, DOI: 10.1186/s40798-015-0011-2

[183]

K.M. Beavers, F.-C. Hsu, S. Isom, et al.. Long-term physical activity and inflammatory biomarkers in older adults. Med Sci Sports Exerc, 42 (12) ( 2010), pp. 2189-2196, DOI: 10.1249/mss.0b013e3181e3ac80

[184]

P.A.M. Cavalcante, M.F. Gregnani, J.S. Henrique, F.H. Ornellas, R.C. Araújo. Aerobic but not resistance exercise can induce inflammatory pathways via toll-like 2 and 4: a systematic review. Sports Med Open, 3 (1) ( 2017), p. 42, DOI: 10.1186/s40798-017-0111-2. published correction appears in Sports Med Open. 2018 Jan 31;4(1):7

[185]

R.S. Monteiro-Junior, P. de Tarso Maciel-Pinheiro, EdMM. Portugal, et al.. Effect of exercise on inflammatory profile of older persons: systematic review and meta-analyses. J Phys Activ Health, 15 (1) ( 2018), pp. 64-71, DOI: 10.1123/jpah.2016-0735

[186]

C. Kasapis, P.D. Thompson. The effects of physical activity on serum C-reactive protein and inflammatory markers: a systematic review. J Am Coll Cardiol, 45 (10) ( 2005), pp. 1563-1569, DOI: 10.1016/j.jacc.2004.12.077

[187]

P.A.M. Cavalcante, M.F. Gregnani, J.S. Henrique, F.H. Ornellas, R.C. Araújo. Aerobic but not resistance exercise can induce inflammatory pathways via toll-like 2 and 4: a systematic review. Sports Med Open, 3 (1) ( 2017), p. 42, DOI: 10.1186/s40798-017-0111-2. published correction appears in Sports Med Open. 2018 Jan 31;4(1):7

[188]

M.G. Flynn, B.K. McFarlin, M.D. Phillips, L.K. Stewart, K.L. Timmerman. Toll-like receptor 4 and CD14 mRNA expression are lower in resistive exercise-trained elderly women. J Appl Physiol ( 1985), 95 (5) ( 2003), pp. 1833-1842, DOI: 10.1152/japplphysiol.00359.2003

[189]

A. Kanayama, R.B. Seth, L. Sun, et al.. TAB2 and TAB 3 activate the NF-κB pathway through binding to polyubiquitin chains. Mol Cell, 15 (4) ( 2004), pp. 535-548, DOI: 10.1016/j.molcel.2004.08.008

[190]

M. Silveira Martins, J.B. Farinha, C. Basso Benetti, et al.. Positive effects OF resistance training ON inflammatory parameters IN men with metabolic syndrome risk factors. Nutr Hosp, 32 (2) ( 2015), pp. 792-798, DOI: 10.3305/nh.2015.32.2.8696

[191]

S.M. Asokan, T. Wang, M.-F. Wang, W.-T. Lin.A novel dipeptide from potato protein hydrolysate augments the effects of exercise training against high-fat diet-induced damages in senescence-accelerated mouse-prone 8 by boosting pAMPK/SIRT1/PGC-1α/pFOXO3 pathway. Aging (N Y), 12 (8) ( 2020), pp. 7334-7349, DOI: 10.18632/aging.103081

[192]

N. Ouchi, A. Higuchi, K. Ohashi, et al.. Sfrp 5 is an anti-inflammatory adipokine that modulates metabolic dysfunction in obesity. Science, 329 (5990) ( 2010), pp. 454-457, DOI: 10.1126/science.1188280

[193]

M.D. Abou Ziki, A. Mani. The interplay of canonical and noncanonical Wnt signaling in metabolic syndrome. Nutr Res, 70 ( 2019), pp. 18-25, DOI: 10.1016/j.nutres.2018.06.009

[194]

V. Catalán, J. Gómez-Ambrosi, A. Rodríguez, et al.. Activation of noncanonical Wnt signaling through WNT5A in visceral adipose tissue of obese subjects is related to inflammation. Clin Endocrinol Metabol, 99 (8) ( 2014), pp. E1407-E1417, DOI: 10.1210/jc.2014-1191

[195]

M.A. Zuriaga, J.J. Fuster, M.G. Farb, et al.. Activation of non-canonical WNT signaling in human visceral adipose tissue contributes to local and systemic inflammation. Sci Rep, 7 (1) ( 2017), p. 17326, DOI: 10.1038/s41598-017-17509-5

[196]

Z. Hu, H. Deng, H. Qu. Plasma SFRP5 levels are decreased in Chinese subjects with obesity and type 2 diabetes and negatively correlated with parameters of insulin resistance. Diabetes Res Clin Pract, 99 (3) ( 2013), pp. 391-395, DOI: 10.1016/j.diabres.2012.11.026

[197]

M. Carstensen, C. Herder, K. Kempf, et al.. Sfrp 5 correlates with insulin resistance and oxidative stress. Eur J Clin Invest, 43 (4) ( 2013), pp. 350-357, DOI: 10.1111/eci.12052

[198]

Z. El Asmar, J. Terrand, M. Jenty, et al.. Convergent signaling pathways controlled by LRP 1 (receptor-related protein 1) cytoplasmic and extracellular domains limit cellular cholesterol accumulation. J Biol Chem, 291 (10) ( 2016), pp. 5116-5127, DOI: 10.1074/jbc.m116.714485

[199]

T. Fujino, H. Asaba, M.-J. Kang, et al.. Low-density lipoprotein receptor-related protein 5 (LRP5) is essential for normal cholesterol metabolism and glucose-induced insulin secretion. Proc Natl Acad Sci U S A, 100 (1) ( 2003), pp. 229-234, DOI: 10.1073/pnas.0133792100

[200]

S.S. Makarov. NF-κB as a therapeutic target in chronic inflammation: recent advances. Mol Med Today, 6 (11) ( 2000), pp. 441-448, DOI: 10.1016/s1357-4310(00)01814-1

[201]

J.E. Pessin, H. Kwon.Adipokines mediate inflammation and insulin resistance. Front Endocrinol, 4 ( 2013), p. 71, DOI: 10.3389/fendo.2013.00071

[202]

A. De. Wnt/Ca2+ signaling pathway: a brief overview. Acta Biochim Biophys Sin, 43 (10) ( 2011), pp. 745-756, DOI: 10.1093/abbs/gmr079

[203]

Y. Komiya, R. Habas. Wnt signal transduction pathways. Organogenesis, 4 (2) ( 2008), pp. 68-75, DOI: 10.4161/org.4.2.5851

[204]

H.A. Baarsma, M. Königshoff, R. Gosens. The WNT signaling pathway from ligand secretion to gene transcription: molecular mechanisms and pharmacological targets. Pharmacol Ther, 138 (1) ( 2013), pp. 66-83, DOI: 10.1016/j.pharmthera.2013.01.002

[205]

A.D. Kohn, R.T. Moon. Wnt and calcium signaling: β-catenin-independent pathways. Cell Calcium, 38 (3-4) ( 2005), pp. 439-446, DOI: 10.1016/j.ceca.2005.06.022

[206]

I. Ackers, R. Malgor. Interrelationship of canonical and non-canonical Wnt signalling pathways in chronic metabolic diseases. Diabetes Vasc Dis Res, 15 (1) ( 2018), pp. 3-13, DOI: 10.1177/1479164117738442

[207]

Y.C. Lu, C.P. Wang, C.C. Hsu, et al.. Circulating secreted frizzled-related protein 5 (Sfrp5) and wingless-type MMTV integration site family member 5a (Wnt5a) levels in patients with type 2 diabetes mellitus. Diabetes Metab Res Rev, 29 (7) ( 2013), pp. 551-556, DOI: 10.1002/dmrr.2426

[208]

B. Gustafson, A. Hammarstedt, S. Hedjazifar, U. Smith.Restricted adipogenesis in hypertrophic obesity: the role of WISP2, WNT, and BMP4. Diabetes, 62 (9) ( 2013), pp. 2997-3004, DOI: 10.2337/db13-0473

[209]

M. Laudes. Role of WNT signalling in the determination of human mesenchymal stem cells into preadipocytes. J Mol Endocrinol, 46 (2) ( 2011), pp. R65-R72, DOI: 10.1530/jme-10-0169

[210]

G.C. Weir. Glucolipotoxicity, β-cells, and diabetes: the emperor has no clothes. Diabetes, 69 (3) ( 2020), pp. 273-278, DOI: 10.2337/db19-0138

[211]

J.J. Fuster, M.A. Zuriaga, D.T.-M. Ngo, et al.. Noncanonical Wnt signaling promotes obesity-induced adipose tissue inflammation and metabolic dysfunction independent of adipose tissue expansion. Diabetes, 64 (4) ( 2015), pp. 1235-1248, DOI: 10.2337/db14-1164

[212]

H. Tilg, A.R. Moschen. Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat Rev Immunol, 6 (10) ( 2006), pp. 772-783, DOI: 10.1038/nri1937

[213]

Z. Shi, M. Xu, X. Chen, J. Wang, T. Zhao, D. Zha.The regulatory role of SFRP5/WNT5A axis in allergic rhinitis through inhibiting JNK pathway activation and lowering mucin generation in human nasal epithelial cells. Exp Mol Pathol, 118 ( 2021), p. 104591, DOI: 10.1016/j.yexmp.2020.104591

[214]

M.L. Leal, L. Lamas, M.S. Aoki, et al.. Effect of different resistance-training regimens on the WNT-signaling pathway. Eur J Appl Physiol, 111 (10) ( 2011), pp. 2535-2545, DOI: 10.1007/s00421-011-1874-7

[215]

A.J. Wagenmakers, B.K. Pedersen. The anti-inflammatory effect of exercise: its role in diabetes and cardiovascular disease control. Essays Biochem, 42 ( 2006), pp. 105-117, DOI: 10.1042/bse0420105

[216]

S. Karki, D.T. Ngo, M.G. Farb, et al.. WNT5A regulates adipose tissue angiogenesis via antiangiogenic VEGF-A165b in obese humans. Am J Physiol Heart Circ Physiol, 313 (1) ( 2017), pp. H200-H206, DOI: 10.1152/ajpheart.00776.2016

[217]

E. Mir, M. Moazzami, N. Bijeh, E.H. Dokht, N. Rahimi. Changes in SFRP5, WNT5A, HbA1c, BMI, PBF, and insulin resistance in men with type 2 diabetes after 12 weeks of combined exercise (HIIT and resistance). Int J Diabetes Dev Ctries, 40 (2) ( 2020), pp. 248-254, DOI: 10.1007/s13410-019-00790-7

[218]

D. Newmire, D.S. Willoughby. Wnt and β-catenin signaling and skeletal muscle myogenesis in response to muscle damage and resistance exercise and training. Int J Kinesiol Sports Sci, 3 (4) ( 2015), pp. 40-49, DOI: 10.7575/aiac.ijkss.v.3n.4p.40

[219]

J.A. McCubrey, L. Steelman, F.E. Bertrand, et al.. Multifaceted roles of GSK-3 and Wnt/β-catenin in hematopoiesis and leukemogenesis: opportunities for therapeutic intervention. Leukemia, 28 (1) ( 2014), pp. 15-33, DOI: 10.1038/leu.2013.184

[220]

W.G. Aschenbach, R.C. Ho, K. Sakamoto, et al.. Regulation of Dishevelled and β-catenin in rat skeletal muscle: an alternative exercise-induced GSK-3β signaling pathway. Am J Physiol Endocrinol Metab, 291 (1) ( 2006), pp. E152-E158, DOI: 10.1152/ajpendo.00180.2005

PDF

329

Accesses

0

Citation

Detail

Sections
Recommended

/