Glycemic variability: Importance, relationship with physical activity, and the influence of exercise

Joshua R. Sparks, Erin E. Kishman, Mark A. Sarzynski, J. Mark Davis, Peter W. Grandjean, J. Larry Durstine, Xuewen Wang

Sports Medicine and Health Science ›› 2021, Vol. 3 ›› Issue (4) : 183-193. DOI: 10.1016/j.smhs.2021.09.004
Review

Glycemic variability: Importance, relationship with physical activity, and the influence of exercise

Author information +
History +

Abstract

Glycemic variability is a more sensitive assessment of glycemic health as opposed to traditional clinical measurements. It considers all blood glucose concentrations over a given period to better account for glucose oscillations that occur and provides clinicians with insight into how individuals regulate and/or maintain their glycemic health. The advancement of continuous glucose monitoring (CGM) allows for the measurement of free-living glucose concentrations while providing a more reliable assessment of treatment of dysregulated glycemic. CGM coupled with management of lifestyle behavioral factors, such as reduced sedentary behavior and increased physical activity and regular exercise, potentially offers a previously untapped method for promoting improved glycemic health through greater regulation of glucose concentrations. The aim of this review is to critically evaluate the evidence regarding the measurement of glycemic variability and summarize the current understanding of the relationship between glycemic variability, sedentary behavior, physical activity, the influence of a single exercise session or repeated exercise sessions, and exercise training. This review considers information pertaining to the strengths and limitations for measuring glycemic variability and provides insight into future study designs aimed at evaluating the relationship between sedentary behavior and physical activity with, as well as the influence of exercise on, glycemic variability as a primary outcome.

Keywords

Continuous glucose monitoring (CGM) / Exercise / Glycemic control / Glycemic variability / Physical activity

Cite this article

Download citation ▾
Joshua R. Sparks, Erin E. Kishman, Mark A. Sarzynski, J. Mark Davis, Peter W. Grandjean, J. Larry Durstine, Xuewen Wang. Glycemic variability: Importance, relationship with physical activity, and the influence of exercise. Sports Medicine and Health Science, 2021, 3(4): 183‒193 https://doi.org/10.1016/j.smhs.2021.09.004

References

[[1]]
L. Monnier, C. Colette, D.R. Owens. Glycemic variability: the third component of the dysglycemia in diabetes. Is it important? How to measure it?. J Diabetes Sci Technol, 2 (6) ( 2008), pp. 1094-1100, DOI: 10.1177/193229680800200618
[[2]]
I.B. Hirsch, M. Brownlee. Should minimal blood glucose variability become the gold standard of glycemic control?. J Diabet Complicat, 19 (3) ( 2005), pp. 178-181, DOI: 10.1016/j.jdiacomp.2004.10.001
[[3]]
S. Buscemi, L. Cosentino, G. Rosafio, et al.. Effects of hypocaloric diets with different glycemic indexes on endothelial function and glycemic variability in overweight and in obese adult patients at increased cardiovascular risk. Clin Nutr, 32 (3) ( 2013), pp. 346-352, DOI: 10.1016/j.clnu.2012.10.006
[[4]]
A.T. Høstmark, G.S. Ekeland, A.C. Beckstrøm, et al.. Postprandial light physical activity blunts the glucose increase. Prev Med, 42 (5) ( 2006), pp. 369-371, DOI: 10.1016/j.ypmed.2005.10.001
[[5]]
H. Nygaard, E. Grindaker, B.R. Rønnestad, et al.. Long-term effects of daily postprandial physical activity on blood glucose: A randomized controlled trial. Appl Physiol Nutr Metab, 42 (4) ( 2017), pp. 430-437, DOI: 10.1139/apnm-2016-0467
[[6]]
J.M. Blankenship, K. Granados, B. Braun. Effects of sitting versus adding exercise on glycemic control and variability in sedentary office workers. Appl Physiol Nutr Metab, 39 (11) ( 2014), pp. 1286-1293, DOI: 10.1139/apnm-2014-0157
[[7]]
T. Battelino, T. Danne, R.M. Bergenstal, et al.. Clinical targets for continuous glucose monitoring data interpretation: Recommendations from the International Consensus on Time in Range. Diabetes Care, 42 (8) ( 2019), pp. 1593-1603, DOI: 10.2337/dci19-0028/-/DC1
[[8]]
N. Wei, H. Zheng, D.M. Nathan. Empirically establishing blood glucose targets to achieve HbA1c goals. Diabetes Care, 37 (4) ( 2014), pp. 1048-1051, DOI: 10.2337/dc13-2173
[[9]]
I.M. Stratton, A.I. Adler, H.A. Neil, et al.. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): Prospective observational study. BMJ, 321 (7258) ( 2000), pp. 405-412, DOI: 10.1136/bmj.321.7258.405
[[10]]
R.R. Little, C.L. Rohlfing, D.B. Sacks, National Glycohemoglobin Standardization Program (NGSP) Steering Committee. Status of hemoglobin A1c measurement and goals for improvement: From chaos to order for improving diabetes care. Clin Chem, 57 (2) ( 2011), pp. 205-214, DOI: 10.1373/clinchem.2010.148841
[[11]]
N. Laiteerapong, S.A. Ham, Y. Gao, et al.. The legacy effect in type 2 diabetes: Impact of early glycemic control of future complications (The Diabetes & Aging Study). Diabetes Care, 42 (3) ( 2019), pp. 416-426, DOI: 10.2337/dc17-1144
[[12]]
S.I. Sherwani, H.A. Khan, A. Ekhzaimy, et al.. Significance of HbA1c test in diagnosis and prognosis of diabetic patients. Biomark Insights, 11 ( 2016), pp. 90-104, DOI: 10.4137/BMI.S38440
[[13]]
L. Jovanovič, H. Savas, M. Mehta, et al.. Frequent monitoring of A1c during pregnancy as a treatment tool to guide therapy. Diabetes Care, 34 (1) ( 2019), pp. 53-54, DOI: 10.2337/dc10-1455
[[14]]
R.W. Beck, C.G. Connor, D.M. Mullen, et al.. The fallacy of average: How using HbA1c alone to assess glycemic control can be misleading. Diabetes Care, 40 (80) ( 2017), pp. 994-999, DOI: 10.2337/dc17-0636
[[15]]
Q. Ma, H. Liu, G. Xiang, et al.. Association between glycated hemoglobin A1c levels with age and gender in Chinese adults with no prior diagnosis of diabetes mellitus. Biomed Rep, 4 (6) ( 2016), pp. 737-740, DOI: 10.3892/br.2016.643
[[16]]
I.B. Hirsch, J.B. Welsh, P. Calhoun, et al.. Associations between HbA1c and continuous glucose monitoring-derived glycaemic variables. Diabet Med, 36 (12) ( 2019), pp. 1637-1642, DOI: 10.1111/dme.14065
[[17]]
H. Chehregosha, M.E. Khamesh, M. Malek, et al.. A view beyond HbA1c: Role of continuous glucose monitoring. Diabetes Ther, 10 (3) ( 2019), pp. 853-863, DOI: 10.1007/s13300-019-0619-1
[[18]]
D. Rodbard. Glucose variability: A review of clinical applications and research developments. Diabetes Technol Therapeut, 20 (S2) ( 2018), pp. S25-S215, DOI: 10.1089/dia.2018.0092
[[19]]
S. Suh, J.H. Kim. Glycemic variability: How do we measure it and why is it important?. Diabetes Metab J, 39 (4) ( 2015), pp. 273-282, DOI: 10.4093/dmj.2015.39.4.273
[[20]]
B. Kovatchev, S. Anderson, L. Heinemann, et al.. Comparison of the numerical and clinical accuracy of four continuous glucose monitors. Diabetes Care, 31 (6) ( 2008), pp. 1160-1164, DOI: 10.2337/dc07-2401
[[21]]
D.G. Altman, J.M. Bland. Standard deviations and standard errors. BMJ (Clinical research ed.), 331 (7521) ( 2005), p. 903, DOI: 10.1136/bmj.331.7521.903
[[22]]
J.F. Service, G.D. Molnar, J.W. Rosevear, et al.. Mean amplitude of glycemic excursions, a measure of diabetic instability. Diabetes, 19 (9) ( 1970), pp. 644-655, DOI: 10.2337/diab.19.9.644
[[23]]
F.J. Service, R.L. Nelson. Characteristics of glycemic stability. Diabetes Care, 3 (1) ( 1980), pp. 58-62, DOI: 10.2337/diacare.3.1.58
[[24]]
F.J. Service, P.C. O’Brien, R.A. Rizza. Measurements of glycemic control. Diabetes Care, 10 (2) ( 1987), pp. 225-237, DOI: 10.2337/diacare.10.2.225
[[25]]
D. Rodbard. Interpretation of continuous glucose monitoring data: Glycemic variability and quality of glycemic control. Diabetes Technol Therapeut, 11 (Supplement 1) ( 2009), pp. S55-S67, DOI: 10.1089/dia.2008.0132
[[26]]
C.M. McDonnell, S.M. Donath, S.I. Vidmar, et al.. A novel approach to continuous glucose analysis utilizing glycemic variation. Diabetes Technol Therapeut, 7 (2) ( 2005), pp. 253-263, DOI: 10.1089/dia.2005.7.253
[[27]]
D.M. Nathan, J. Kuenen, R. Borg, et al.. Translating the A1c assay into estimated average glucose values. Diabetes Care, 31 (8) ( 2008), pp. 1473-1478, DOI: 10.2337/dc08-0545
[[28]]
J.C. Kuenen, R. Borg, D.J. Kuik, et al.. Does glucose variability influence the relationship between mean plasma glucose and HbA1c levels in type 1 and type 2 diabetic patients?. Diabetes Care, 34 (8) ( 2011), pp. 1843-1847, DOI: 10.2337/dc10-2217
[[29]]
H.J. Helmerhorst, K. Wijndaele, S. Brage, et al.. Objectively measured sedentary time may predict insulin resistance independent of moderate- and vigorous-intensity physical activity. Diabetes, 58 (8) ( 2009), pp. 1776-1779, DOI: 10.2337/db08-1773
[[30]]
D.W. Dunstan, E.L. Barr, G.N. Healy, et al.. Television viewing time and mortality: The Australian Diabetes, Obesity and Lifestyle Study (AusDiab). Circulation, 121 (3) ( 2010), pp. 384-391, DOI: 10.1161/CIRCULATIONAHA.109.894824
[[31]]
E.S. Ford, G. Zhao, C. Li. Pre-diabetes and the risk for cardiovascular disease. Diabetes Care, 55 (13) ( 2010), pp. 1310-1317, DOI: 10.2337/dc19-1074
[[32]]
A.A. Thorp, G.N. Healy, N. Owen, et al.. Deleterious associations of sitting time and television viewing time with cardiometabolic risk biomarkers: Australian Diabetes, Obesity and Lifestyle (AusDiab) study 2004-2005. Diabetes Care, 33 (2) ( 2010), pp. 327-334, DOI: 10.2337/dc09-0493
[[33]]
J.L. Veerman, G.N. Healy, L.J. Cobiac, et al.. Television viewing time and reduced life expectancy: A life table analysis. Br J Sports Med, 46 (13) ( 2012), pp. 927-930, DOI: 10.1136/bjsports-2011-085662
[[34]]
E. Lahjibi, B. Heude, J.M. Dekker, et al.. Impact of objectively measured sedentary behavior on changes in insulin resistance and secretion over 3 years in the RISC study: interaction with weight gain. Diabetes Metab, 39 (3) ( 2013), pp. 217-225, DOI: 10.1016/j.diabet.2012.12.006
[[35]]
C. Fritschi, H. Park, A. Richardson, et al.. Association between daily time spent in sedentary behavior and duration of hyperglycemia in type 2 diabetes. Biol Res Nurs, 18 (2) ( 2016), pp. 160-166, DOI: 10.1177/1099800415600065
[[36]]
P. Martyn-Nemeth, L. Quinn, S. Penckofer, et al.. Fear of hypoglycemic: Influence on glycemic variability and self-management behavior in young adults with type 1 diabetes. J Diabet Complicat, 31 (4) ( 2017), pp. 735-741, DOI: 10.1016/j.jdiacomp.2016.12.015
[[37]]
A.C. Paing, K.A. McMillan, A.F. Kirk, et al.. The associations of sedentary time and breaks in sedentary time with 24-hour glycaemic control in type 2 diabetes. Prev Med Rep, 12 ( 2018), pp. 94-100, DOI: 10.1016/j.pmedr.2018.09.002
[[38]]
A.C. Paing, K.A. McMillan, A.F. Kirk, et al.. Impact of free-living pattern of sedentary behaviour on intra-day glucose regulation in type 2 diabetes. Eur J Appl Physiol, 120 (1) ( 2020), pp. 171-179, DOI: 10.1007/s00421-019-04261-z
[[39]]
K.A. McMillan, A.C. Paing, A.F. Kirk, et al.. Measuring group and individual relationship between patterns in sedentary behaviour and glucose in type 2 diabetes adults. Practical Diabetes, 37 (1) ( 2020), pp. 13-18 c, DOI: 10.1002/pdi.2254
[[40]]
F. Gude, P. Díaz-Vidal, C. Rúa-Pérez, et al.. Glycemic variability and its association with demographics and lifestyles in a general adult population. J Diabetes Sci Technol, 11 (4) ( 2017), pp. 780-790, DOI: 10.1177/1932296816682031
[[41]]
E.P. Joslin, H.F. Root, P. White, A. Marble.The Treatment of Diabetes Mellitus. (5), Lea & Febiger, Philadelphia ( 1935), pp. 299-301
[[42]]
L.J. Goodyear, B.B. Kahn. Exercise, glucose transport, and insulin sensitivity. Annu Rev Med, 49 ( 1998), pp. 235-261, DOI: 10.1146/annurev.med.49.1.235
[[43]]
E.D.R. Pruett, S. Oseid. Effect of exercise on glucose and insulin response to glucose infusion. Scand J Clin Lab Invest, 26 (3) ( 1970), pp. 277-285, DOI: 10.3109/00365517009046234
[[44]]
C. Bogardus, P. Thuillex, E. Ravussin, et al.. Effect of muscle glycogen depletion on in vivo insulin action in man. J Clin Invest, 72 (5) ( 1983), pp. 1605-1610, DOI: 10.1172/jci111119
[[45]]
E.A. Richter, K.J. Mikines, H. Galbo, et al.. Effect of exercise on insulin action in human skeletal muscle. J Appl Physiol, 66 (2) ( 1989), pp. 876-885, DOI: 10.1152/jappl.1989.66.2.876
[[46]]
X. Wang, B.W. Patterson, G.I. Smith, et al.. A ∼60-min brisk walk increases insulin-stimulated glucose disposal but has no effect on hepatic and adipose tissue insulin sensitivity in older women. J Appl Physiol, 114 (11) ( 2013), pp. 1563-1568, DOI: 10.1152/japplphysiol.01364.2012
[[47]]
J.T. Devlin, E.S. Horton. Effect of prior high-intensity exercise on glucose metabolism in normal and insulin-resistant men. Diabetes, 34 (10) ( 1985), pp. 973-979, DOI: 10.2337/diab.34.10.973
[[48]]
J.T. Devlin, M.F. Hirshman, E.S. Horton, E.D. Horton. Enhanced peripheral and splanchnic insulin sensitivity in NIDDM men after single bout of exercise. Diabetes, 36 (4) ( 1987), pp. 434-439, DOI: 10.2337/diab.36.4.434
[[49]]
K.J. Mikines, B. Sonne, P.A. Farrell, et al.. Effect of physical exercise on sensitivity and responsiveness to insulin in humans. Am J Physiol, 254 (3 Part 1) ( 1988), pp. E248-E259, DOI: 10.1152/ajpendo.1988.254.3.E248
[[50]]
J.P. Little, M.E. Jung, A.E. Wright, et al.. Effects of high-intensity interval exercise versus continuous moderate-intensity exercise on postprandial glycemic control assessed by continuous glucose monitoring in obese adults. Appl Phsysiol Nutr Metab, 39 (7) ( 2014), pp. 835-841, DOI: 10.1139/apnm-2013-0512
[[51]]
L. Parker, C.S. Shaw, L. Banting, et al.. Acute low-volume high-intensity interval exercise and continuous moderate-intensity exercise elicits a similar improvement in 24-hour glycemic control in overweight or obese adults. Front Physiol, 7 ( 2017), p. 661, DOI: 10.3389/fphys.2016.00661
[[52]]
F.R. Figueira, D. Umpierre, P.M. Bock, et al.. Effect of exercise on glucose variability in healthy subjects: Randomized crossover trial. Biol Sport, 36 (2) ( 2019), pp. 141-148, DOI: 10.5114/biolsport.2019.83006
[[53]]
C. Manohar, J. Levine, D.K. Nandy, et al.. The effect of walking on postprandial glycemic excursion in patients with type 1 diabetes and healthy people. Diabetes Care, 35 (12) ( 2012), pp. 2493-2499, DOI: 10.2337/dc11-2381
[[54]]
J.-W. van Dijk, T.M. Eijsvogels, J. Nyakayiru, et al.. Glycemic control during consecutive days with prolonged walking exercise in individuals with type 1 diabetes mellitus. Diabetes Res Clin Pract, 117 ( 2016), pp. 74-81, DOI: 10.1016/j.diabres.2016.04.053
[[55]]
S.F. Praet, R.J. Manders, A.G. Lieverse, et al.. Influence of acute exercise on hyperglycemia in insulin-treated type 2 diabetes. Med Sci Sports Exerc, 38 (12) ( 2006), pp. 2037-2044, DOI: 10.1249/01.mss.0000235352.09061.1d
[[56]]
F.R. Figueira, D. Umpierre, K.R. Casali, et al.. Aerobic and combined exercise sessions reduce glucose variability in type 2 diabetes: Crossover randomized trial. PLoS One, 8 (3) ( 2013), Article e57733, DOI: 10.1371/journal.pone.0057733
[[57]]
J.-W. van Dijk, R.J. Manders, E.E. Canfora, et al.. Exercise and 24-hour glycemic control: Equal effects for all type 2 diabetes patients?. Med Sci Sports Exerc, 45 (4) ( 2013), pp. 628-635, DOI: 10.1249/MSS.0b013e31827ad8b4
[[58]]
S.S. Farabi, D.W. Carley, D. Smith, et al.. Impact of exercise on diurnal and nocturnal markers of glycaemic variability and oxidative stress in obese individuals with type 2 diabetes or impaired glucose tolerance. Diab Vasc Dis Res, 12 (5) ( 2015), pp. 381-385, DOI: 10.1177/1479164115579003
[[59]]
É Myette-Côté T. Terada N.G. Boulé. The Effect of Exercise with or Without Metformin on Glucose Profiles in Type 2 Diabetes: A Pilot Study. Can J Diabetes, 40 (2) ( 2016), pp. 173-177, DOI: 10.1016/j.jcjd.2015.08.015
[[60]]
J. Haxhi, G. Leto, A.S. di Palumbo, et al.. Exercise at lunchtime: effect on glycemic control and oxidative stress in middle-aged men with type 2 diabetes. Eur J Appl Physiol, 116 (3) ( 2016), pp. 573-582, DOI: 10.1007/s00421-015-3317-3
[[61]]
T. Terada, B.J. Wilson, E. Myette-Côté, et al.. Targeting specific interstitial glycemic parameters with high-intensity interval exercise and fasted-state exercise in type 2 diabetes. Metabolism, 65 (5) ( 2016), pp. 599-608, DOI: 10.1016/j.metabol.2016.01.003
[[62]]
P.C. Dempsey, R.N. Larsen, P. Sethi, et al.. Benefits for type 2 Diabetes of interrupting prolonged sitting with brief bouts of light walking or simple resistance activities. Diabetes Care, 39 (6) ( 2016), pp. 964-972, DOI: 10.2337/dc15-2336
[[63]]
P.C. Dempsey, J.M. Blankenship, R.N. Larsen, et al.. Interrupting prolonged sitting in type 2 diabetes: nocturnal persistence of improved glycaemic control. Diabetologia, 60 (3) ( 2017), pp. 499-507, DOI: 10.1007/s00125-016-4169-z
[[64]]
R.S. Metcalfe, B. Fitzpatrick, S. Fitzpatrick, et al.. Extremely short duration interval exercise improves 24-h glycaemia in men with type 2 diabetes. Eur J Appl Physiol, 118 (12) ( 2018), pp. 2551-2562, DOI: 10.1007/s00421-018-3980-2
[[65]]
S.H. Scheider, L.F. Amorosa, A.K. Khachadurian, et al.. Studies on the mechanism of improved glucose control during regular exercise in type 2 (non-insulin-dependent) diabetes. Diabetologia, 26 (5) ( 1984), pp. 355-360, DOI: 10.1007/BF00266036
[[66]]
J.E. Manson, E.B. Rimm, M.J. Stampfer, et al.. Physical activity and incidence of non-insulin-dependent diabetes mellitus in women. Lancet, 338 (8770) ( 1991), pp. 774-778, DOI: 10.1016/0140-6736(91)90664-b
[[67]]
J.E. Manson, D.M. Nathan, A.S. Krolewski, et al.. A prospective study of exercise and incidence of diabetes among US male physicians. JAMA, 268 (1) ( 1992), pp. 63-67, DOI: 10.1001/jama.1992.03490010065031
[[68]]
S.P. Helmrich, D.R. Ragland, R.W. Leung, et al.. Physical activity and reduced occurrence of non-insulin-dependent diabetes mellitus. N Eng J Med, 325 (3) ( 1991), pp. 147-152, DOI: 10.1056/NEJM199107183250302
[[69]]
J.O. Holloszy, J. Schultz, J. Kusnierkiewicz, et al.. Effects of exercise on glucose tolerance and insulin resistance. Brief review and some preliminary results. Acta Med Scand Suppl, 711 ( 1986), pp. 55-65, DOI: 10.1111/j.0954-6820.1986.tb08932.x
[[70]]
C.R. Mikus, D.J. Oberlin, J. Libla, et al.. Glycaemic control is improved by 7 days of aerobic exercise training in patients with type 2 diabetes. Diabetologia, 55 (5) ( 2012), pp. 1417-1423, DOI: 10.1007/s00125-012-2490-8
[[71]]
K. Karstoft, K. Winding, S.H. Knudsen, et al.. The effects of free-living interval-walking training on glycemic control, body composition, and physical fitness in type 2 diabetic patients: a randomized, controlled trial. Diabetes Care, 36 (2) ( 2013), pp. 228-236, DOI: 10.2337/dc12-0658
[[72]]
M.E. Francois, C. Durrer, K.J. Pistawka, et al.. Combined interval training and post-exercise nutrition in type 2 diabetes: A randomized control trial. Front Physiol, 8 ( 2017), p. 528, DOI: 10.3389/fphys.2017.00528
[[73]]
S.R. Colberg, R.J. Sigal, J.E. Yardley, et al.. Physical activity/exercise and diabetes: A position statement from the American Diabetes Association. Diabetes Care, 39 (11) ( 2016), pp. 2065-2079, DOI: 10.2337/dc16-1728
[[74]]
S.R. Bird, J.A. Hawley. Update on the effects of physical activity on insulin sensitivity in humans. BMJ Open Sport Exerc Med, 2 (1) ( 2017), Article e000143, DOI: 10.1136/bmjsem-201-000143
[[75]]
N. Wei, H. Zheng, D.M. Nathan. Empirically established blood glucose targets to achieve HbA1c goals. Diabetes Care, 37 (4) ( 2014), pp. 1048-1051, DOI: 10.2337/dc13-2173
[[76]]
E.A. Richter,M. Hargreaves. Exercise, GLUT4, and skeletal muscle glucose uptake. Physiol Rev, 93 (3) ( 2013), pp. 993-1017, DOI: 10.1152/physrev.00038.2012
[[77]]
J.P. Thyfault, A. Bergouignan. Exercise and metabolic health: Beyond skeletal muscle. Diabetologia, 63 ( 2020), pp. 1464-1474, DOI: 10.1007/s00125-020-05177-6
[[78]]
C.A. Slentz, C.J. Tanner, L.A. Bateman, et al.. Effects of exercise training intensity on pancreatic β-cell function. Diabetes Care, 32 (10) ( 2009), pp. 1807-1811, DOI: 10.2337/dc09-0032
[[79]]
G. Iaccarino, D. Franco, D. Sorriento, et al.. Modulation of insulin sensitivity by exercise training: Implications for cardiovascular prevention. J Cardiovasc Transl Res, 14 ( 2021), pp. 256-270, DOI: 10.1007/s12265-020-10057-w
[[80]]
P.L. Evans, S.L. McMillin, L.A. Weyrauch, et al.. Regulation of skeletal muscle glucose transport and glucose metabolism by exercise training. Nutrients, 11 (10) ( 2019), p. 2432, DOI: 10.3390/nu11102432
[[81]]
S.M. Honkala, P. Motiani, R. Kivelä, et al.. Exercise training improves adipose tissue metabolism and vasculature regardless of baseline glucose tolerance and sex. BMJ Open Diabetes Res Care, 8 (1) ( 2020), Article e000830, DOI: 10.1136/bmjdrc-2019-000830
[[82]]
F.J. DiMenna, A.D. Arad.The acute vs. chronic effect of exercise on insulin sensitivity: Nothing lasts forever. Cardiovasc Endocrinol Metab, 10 (3) ( 2020), pp. 149-161, DOI: 10.1097/XCE.0000000000000239
[[83]]
American College of Sports Medicine.ACSM’s Guidelines for Exercise Testing and Prescription. (10th ed.), Lippincott Williams & Wilkins, Philadelphia (PA) ( 2017), pp. 195-202
[[84]]
K.A. McMillan, A.C. Paing, A.F. Kirk, et al.. Measuring group and individual relationship between patterns in sedentary behaviour and glucose in type 2 diabetes adults. Practical Diabetes, 37 (1) ( 2020), pp. 13-18 c, DOI: 10.1002/pdi.2254
[[85]]
C. Pickering, J. Kiely. Do non-responders to exercise exist-and if so, what should we do about them?. Sports Med, 49 ( 2019), pp. 1-7, DOI: 10.1007/s40279-018-01041-1
[[86]]
F.M. Maturana, R.N. Soares, J.M. Murias, et al.. Responders and non-responders to aerobic exercise training: beyond the evaluation of V̇O2max. Physiol Rep, 9 (16) ( 2021), Article e14951, DOI: 10.14814/phy2.14951
[[87]]
T.J. Hrubeniuk, D.R. Bouchard, B.J. Gurd, et al.. Can non-responders be ‘rescued’ by increasing exercise intensity? A quasi-experimental trial of individual responses among humans living with pre-diabetes or type 2 diabetes mellitus in Canada. BMJ Open, 11 (4) ( 2021), Article e044478, DOI: 10.1136/bmjopen-2020-044478

We would like to thank the past and present members of the Human Metabolism Laboratory at the University of South Carolina for their hard work and dedication.

Accesses

Citations

Detail

Sections
Recommended

/