The role of exercise in rehabilitation of discharged COVID-19 patients

Wenyan Bo, Yue Xi, Zhenjun Tian

Sports Medicine and Health Science ›› 2021, Vol. 3 ›› Issue (4) : 194-201. DOI: 10.1016/j.smhs.2021.09.001
Review

The role of exercise in rehabilitation of discharged COVID-19 patients

Author information +
History +

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mainly caused pneumonia and pulmonary fibrosis through upper respiratory tract infection, which resulted in acute respiratory distress syndrome (ARDS) and multiorgan damage of cardiovascular, nervous, digestive, and genitourinary systems. Although the virus test turned negative after the patient recovered, the damage to multiorgan caused by SARS-CoV-2 may irreversible. Therefore, the health status of the recovered patients has gradually become the focus of people's attention. Whether coronavirus disease 2019 (COVID-19) patients can receive exercise rehabilitation training after discharge? and what's the basis? We try to analyze and answer these questions, will provide some ideas about the patients to develop a reasonable and effective exercise rehabilitation program.

Keywords

SARS-CoV-2 / COVID-19 / Exercise rehabilitation / Inflammation cytokine storm / Exercise response factor

Cite this article

Download citation ▾
Wenyan Bo, Yue Xi, Zhenjun Tian. The role of exercise in rehabilitation of discharged COVID-19 patients. Sports Medicine and Health Science, 2021, 3(4): 194‒201 https://doi.org/10.1016/j.smhs.2021.09.001

References

[[1]]
A. Gupta, M.V. Madhavan, K. Sehgal, et al.. Extrapulmonary manifestations of COVID-19. Nat Med, 26 (7) ( 2020), pp. 1017-1032, DOI: 10.1038/s41591-020-0968-3
[[2]]
M. Kamal, M.A. Omirah, A. Hussein, et al.. Assessment and characterization of post-COVID-19 manifestations. Int J Clin Pract, 75 (3) ( 2021), Article e13746, DOI: 10.1111/ijcp.13746
[[3]]
A. Iqbal, K. Iqbal, S.A. Ali, et al.. The COVID-19 sequelae: a cross-sectional evaluation of post-recovery symptoms and the need for rehabilitation of COVID-19 survivors. Cureus, 13 (2) ( 2021), Article e13080, DOI: 10.7759/cureus.13080
[[4]]
Y. Huang, C. Tan, J. Wu, et al.. Impact of coronavirus disease 2019 on pulmonary function in early convalescence phase. Respir Res, 21 (1) ( 2020), p. 163, DOI: 10.1186/s12931-020-01429-6
[[5]]
L. Liang, B. Yang, Na Jiang, et al.. Three-month follow-up study of survivors of coronavirus disease 2019 after discharge. J Kor Med Sci, 35 (47) ( 2020), p. e418, DOI: 10.3346/jkms.2020.35.e418
[[6]]
C. Huang, L. Huang, Y. Wang, et al.. 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. Lancet, 397 (10270) ( 2021), pp. 220-232, DOI: 10.1016/S0140- 6736(20)32656-8
[[7]]
E. Driggin, M.V. Madhavan, B. Bikdeli, et al.. Cardiovascular considerations for patients, health care workers, and health systems during the coronavirus disease 2019 (COVID-19) pandemic. J Am Coll, 75 (18) ( 2020), pp. 2352-2371, DOI: 10.1016/j.jacc.2020.03.031
[[8]]
K.J. Clerkin, J.A. Fried, J. Raikhelkar, et al.. Coronavirus disease 2019 (COVID-19) and cardiovascular disease. Circulation, 141 (20) ( 2020), pp. 1648-1655, DOI: 10.1161/CIR CULATIONAHA.120. 046941
[[9]]
V.O. Puntmann, M.L. Carerj, I. Wieters, et al.. Outcomes of cardiovascular magnetic resonance imaging in patients recently recovered from coronavirus disease 2019 (COVID-19). JAMA Cardiol, 27 ( 2020), Article e203557, DOI: 10.1001/jamacardio.2020.3557
[[10]]
M. Bansal. Cardiovascular disease and COVID-19. Diabetes Metab Syndrome, 14 (3) ( 2020), pp. 247-250, DOI: 10.1016/j.dsx.2020.03.013
[[11]]
D. Batlle, M.J. Soler, M.A. Sparks, et al.. Acute kidney injury in COVID-19: emerging evidence of a distinct pathophysiology. J Am Soc Nephrol JASN, 31 (7) ( 2020), pp. 1380-1383, DOI: 10.1681/asn.2020040419
[[12]]
V.O. Puntmann, M.L. Carerj, I. Wieters, et al.. Outcomes of cardiovascular magnetic resonance imaging in patients recently recovered from coronavirus disease 2019 (COVID-19). JAMA Cardiol, 27 ( 2020), Article e203557, DOI: 10.1001/jamacardio.2020.3557
[[13]]
Fu Wang R.M. Kream G.B. Stefano.Long-Term respiratory and neurological sequelae of COVID-19. Med Sci Monit, 26 ( 2020), Article e928996, DOI: 10.12659/MSM.928996
[[14]]
L. Mao, H. Jin, M. Wang, et al.. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol, 77 (6) ( 2020), pp. 1-9, DOI: 10.1001/jamaneurol.2020.1127
[[15]]
C. Huang, Y. Wang, X. Li, et al.. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 395 (10223) ( 2020), pp. 497-506, DOI: 10.1016/S0140-6736(20)30183-5
[[16]]
D. Wang, B. Hu, C. Hu, et al.. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. J Am Med Assoc, 323 (11) ( 2020), pp. 1061-1069, DOI: 10.1001/jama.2020.1585
[[17]]
J.P. Rogers, E. Chesney, D. Oliver, et al.. Psychiatric and neuropsychiatric presentations associated with severe coronavirus infections: a systematic review and meta-analysis with comparison to the COVID-19 pandemic. Lancet Psychiatr., 7 ( 2020), pp. 611-627, DOI: 10.1016/S2215- 0366(20)30203-0
[[18]]
N. Chen, M. Zhou, X. Dong, et al.. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet, 395 (10223) ( 2020), pp. 507-513, DOI: 10.1016/S0140-6736(20)30211-7
[[19]]
D.G. Moledina, M. Simonov, Y. Yamamoto, et al.. The association of COVID-19 with acute kidney injury independent of severity of illness: a multicenter cohort study. Am J Kidney Dis, 77 (4) ( 2021), pp. 490-499, DOI: 10.1053/j.ajkd.2020.12.007. e1
[[20]]
L. Wang, We He, X. Yu, et al.. Coronavirus disease 2019 in elderly patients: characteristics and prognostic factors based on 4-week follow-up. J Infect, 80 (6) ( 2020), pp. 639-645, DOI: 10.1016/j.jinf.2020.03.019
[[21]]
E.A. Farkash, A.M. Wilson, J.M. Jentzen.Ultrastructural evidence for direct renal infection with SARS-CoV-2. J Am Soc Nephrol JASN, 31 (8) ( 2020), pp. 1683-1687, DOI: 10.1681/asn.2020040432
[[22]]
H. Su, M. Yang, C. Wan, et al.. Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China. Kidney Int, 98 (1) ( 2020), pp. 219-227, DOI: 10.1016/j.kint.2020.04.003
[[23]]
C. Ribic, M. Crowther. Thrombosis and anticoagulation in the setting of renal or liver disease. Hematol Am Soc Hematol Educ Program, 2016 (1) ( 2016), pp. 188-195, DOI: 10.1182/ash education-2016.1.188
[[24]]
Y. Ma, B. Diao, X. Lv, et al.. Novel Coronavirus Disease in Hemodialysis (HD) Patients: Report from One HD Center in Wuhan, China. medRxiv. 2020. ( 2019), DOI: 10.1101/2020.02.24.20027201
[[25]]
The Tabula Muris Consortium. Overall coordination, Logistical coordination, et al.Organ collection and processing, Library preparation and sequencing, Computational data analysis Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature, 562 (7727) ( 2018), pp. 367-372, DOI: 10.1038/s41586-018-0590-4
[[26]]
Q. Xiong, M. Xu, J. Li. Clinical sequelae of COVID-19 survivors in Wuhan, China: a single-centre longitudinal study. Clin Microbiol Infect, 27 (1) ( 2021), pp. 89-95, DOI: 10.1016/j.cmi.2020.09.023
[[27]]
R. Mao, Y. Qiu, J. He, et al.. Manifestations and prognosis of gastrointestinal and liver involvement in patients with COVID-19: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol, 5 (7) ( 2020), pp. 667-678, DOI: 10.1016/S2468-1253(20)30126-6
[[28]]
Z.P. Wang, X. Xu.scRNA-seq Profiling of human testes reveals the presence of the ACE 2 receptor, A target for SARS-CoV-2 infection in spermatogonia, Leydig and Sertoli Cells. Cells, 9 (4) ( 2020), p. 920, DOI: 10.3390/cells9040920
[[29]]
P.M. Marinho, A.A.A. Marcos, A.C. Romano, et al.. Retinal findings in patients with COVID-19. Lancet, 395 (10237) ( 2020), p. 1610, DOI: 10.1016/S0140-6736(20)31014-X
[[30]]
M.F. Neurath. Cytokines in inflammatory bowel disease. Nat Rev Immunol, 14 (5) ( 2014), pp. 329-342, DOI: 10.1038/nri3661
[[31]]
S.L. Jeong, S. Park, H.W. Jeong, et al.. Immunophenotyping of COVID-19 and influenza highlights the role of type I interferons in development of severe COVID-19. Sci. Immunol., 5 (49) ( 2020), p. eabd1554, DOI: 10.1126/sciimmunol.abd1554
[[32]]
G. Schönrich, M.J. Raftery, Y. Samstag.Devilishly radical NETwork in COVID-19: oxidative stress, neutrophil extracellular traps (NETs), and T cell suppression. Adv Biol Regul, 77 ( 2020), p. 100741, DOI: 10.1016/j.jbior.2020.100741
[[33]]
M. Laforge, C. Elbim, C. Frère, et al.. Tissue damage from neutrophil-induced oxidative stress in COVID-19. Nat Rev Immunol, 20 (9) ( 2020), pp. 515-516, DOI: 10.1038/s41577-020-0407-1
[[34]]
M. Ackermann, S.E. Verleden, M. Kuehnel, et al.. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in COVID-19. N Engl J Med, 383 (2) ( 2020), pp. 120-128, DOI: 10.1056/NEJMoa2015432
[[35]]
A. Varga, J.A. Flammer, P. Steiger, et al.. Endothelial cell infection and endothelilitis in COVID-19. Lancet, 395 (10234) ( 2020), pp. 1417-1418, DOI: 10.1016/S0140-6736(20) 30937-5
[[36]]
B. Bikdeli, M.V. Madhavan, A. Gupta, et al.. Pharmacological agents targeting thromboin flammation in COVID-19: review and implications for future research. Thromb Haemostasis, 120 (7) ( 2020), pp. 1004-1024, DOI: 10.1055/s-0040-1713152
[[37]]
P. Chen, L. Mao, G.P. Nassis, et al.. Coronavirus disease (COVID-19): the need to maintain regular physical activity while taking precautions. J Sport Health Sci, 9 (2) ( 2020), pp. 103-104, DOI: 10.1016/j.jshs.2020.02.001
[[38]]
B. Sañudo, A. Seixas, R. Gloeckl, et al.. Potential application of whole-body vibration exercise for improving the clinical conditions of COVID-19 infected individuals: a narrative review from the world association of vibration exercise experts (WAVex) panel. Int J Environ Res Publ Health, 17 (10) ( 2020), p. 3650, DOI: 10.3390/ijerph17103650
[[39]]
Feng Fan S. Tuchman J.W. Denninger, et al.. Qigong for the prevention, treatment, and rehabilitation of COVID-19 Infection in older adults. Am J Geriatr Psychiatr, 28 (8) ( 2020), pp. 812-819, DOI: 10.1016/j.jagp.2020.05.012
[[40]]
J.A. Woods, N.T. Hutchinson, S.K. Power, et al.. The COVID-19 pandemic and physical activity. J Sport Health Sci, 2 (2) ( 2020), pp. 55-64, DOI: 10.1016/j.smhs.2020.05.006.4140
[[41]]
R. Gu, S. Xu, Z. Li, et al.. The safety and effectiveness of rehabilitation exercises on COVID-19 patients: a protocol for systematic review and meta-analysis. Medicine (Baltim), 99 (31) ( 2020), Article e21373, DOI: 10.1097/MD.0000000000021373
[[42]]
T.O. Filgueira, A. Castoldi, L. Santos, et al.. The relevance of a physical active lifestyle and physical fitness on immune defense: mitigating disease burden, with focus on COVID-19 consequences. Front Immunol, 12 ( 2021), p. 587146, DOI: 10.3389/fimmu.2021.5 87146
[[43]]
Y. Tang, J. Jiang, Peng Shen, et al.. Liuzijue is a promising exercise option for rehabilitating discharged COVID-19 patients. Medicine (Baltim), 100 (6) ( 2021), Article e24564, DOI: 10.1097/MD.0000000000024564.4490
[[44]]
L.R. Dopico, Y. Tung-Chen, M.P. Barco, et al.. Monitoring of the rehabilitation therapy of COVID-19 effort dyspnea. Enferm Infecc Microbiol Clin (Engl Ed)., 39 (5) ( 2021), pp. 258-259, DOI: 10.1016/j.eimc.2020.08.006
[[45]]
V.T. Stavrou, K.N. Tourlakopoulos, G.D. Vavougios, et al.. Eight weeks unsupervised pulmonary rehabilitation in previously hospitalized of SARS-CoV-2 infection. J Personalized Med, 11 (8) ( 2021), p. 806, DOI: 10.3390/jpm11080806
[[46]]
I. Martin, F. Braem, L. Baudet, et al.. Follow-up of functional exercise capacity in patients with COVID-19: it is improved by telerehabilitation. Respir Med, 183 ( 2021), p. 106438
[[47]]
N. Ambrosino, A. Simonds. The clinical management in extremely severe COPD. Respir Med, 101 (8) ( 2007), pp. 1613-1624, DOI: 10.1016/j.rmed.2007.02.011
[[48]]
T. Sonnweber, S. Sahanic, A. Pizzini, et al.. Cardiopulmonary recovery after COVID-19: an observational prospective multicentre trial. Eur Respir J, 57 (4) ( 2021), p. 2003481, DOI: 10.1183/13993003.03481-2020
[[49]]
J. Alcazar, J. Losa-Reyna, C. Rodriguez-Lopez, et al.. Effects of concurrent exercise training on muscle dysfunction and systemic oxidative stress in older people with COPD. Scand J Med Sci Sports, 29 ( 2019), pp. 1591-1603, DOI: 10.1111/sms.13494
[[50]]
A. Guadalupe-Grau, S. Aznar-Laín, A. Mañas, et al.. Short- and long-term effects of concurrent strength and HIIT training in octogenarians with COPD. J Aging Phys Activ, 25 ( 2017), pp. 105-115, DOI: 10.1123/japa.2015-0307
[[51]]
T.J. Wang, B. Chau, M. Lui, et al.. Physical medicine and rehabilitation and pulmonary rehabilitation for COVID-19. Am J Phys Med Rehabil, 99 (9) ( 2020), pp. 769-774, DOI: 10.1097/PHM.0000000000001505
[[52]]
M. Merad, J.C. Martin. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nat Rev Immunol, 20 (6) ( 2020), pp. 355-362, DOI: 10.1038/s41577-020-0331-4
[[53]]
Z.F. Hermann, F. Marc, D. Louise, et al.. Does high cardiorespiratory fitness confer some protection against pro-inflammatory responses after infection by SARS-CoV-2?. Obesity (Silver Spring), 23 ( 2020), DOI: 10.1002/oby.22849
[[54]]
C.G.K. Ziegler, S.J. Allon, S.K. Nyquist, et al.. SARS-CoV-2 receptor ACE 2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell, 181 (5) ( 2020), pp. 1016-1035, DOI: 10.1016/j.cell.2020.04.035
[[55]]
L.E. Parker, S.L. McMillin, L.A. Weyrauch, et al.. Regulation of skeletal muscle glucose transport and glucose metabolism by exercise training. Nutrients, 11 (10) ( 2019), p. 2432, DOI: 10.3390/nu11102432
[[56]]
J.P. Campbell, J.E. Turner.Turner Debunking the myth of exercise-induced immune suppression: redefining the impact of exercise on immunological health across the lifespan. Front Immunol, 9 ( 2018), p. 648, DOI: 10.3389/fimmu.2018.00648
[[57]]
M.G. Netea, E.J. Giamarellos-Bourboulis, J. Domínguez-Andrés, et al.. Trained immunity:a tool for reducing susceptibility and severity of SARS-CoV2 infection. Cell, 181 (5) ( 2020), pp. 969-977, DOI: 10.1016/j.cell.2020.04.042
[[58]]
D. Anthony, P. Ana Jéssica, E. James, et al.. Immunological implications of physical inactivity among older adults during the COVID-19 pandemic. Gerontology, 5 ( 2020), pp. 1-8, DOI: 10.1159/000509216
[[59]]
B.W. Timmons, T. Cieslak. Human natural killer cell subsets and acute exercise: a brief review. Exerc Immunol Rev, 14 ( 2008), pp. 8-23
[[60]]
A.B. Bigley, K. Rezvani, C. Chew, et al.. Acute exercise preferentially redeploys NK-cells with a highly differentiated phenotype and augments cytotoxicity against lymphoma and multiple myeloma target cells. Brain Behav Immun, 39 ( 2014), pp. 160-171, DOI: 10.1016/j.bb i.2013.10.030
[[61]]
S.W. Sties, L.V. Andreato, T. de Carvalho, et al.. Influence of exercise on oxidative stress in patients with heart failure. Heart Fail Rev, 23 (2) ( 2018), pp. 225-235, DOI: 10.1007/s10741-018-9686-z
[[62]]
J.M. Peake, G.P. Della, K. Suzuki, et al.. Cytokine expression and secretion by skeletal muscle cells: regulatory mechanisms and exercise effects. Exerc Immunol Rev, 21 ( 2015), pp. 8-25
[[63]]
S.A. Martin, B.D. Pence, J.A. Woods. Exercise and respiratory tract viral infections. Exerc Sport Sci Rev, 37 (4) ( 2009), pp. 157-164, DOI: 10.1097/JES.0b013e3181b7b57b
[[64]]
M. Ost, V. Coleman, J. Kasch, et al.. Regulation of myokine expression: role of exercise and cellular stress. Free Radic Biol Med, 98 ( 2016), pp. 78-89
[[65]]
C. Fiuza-Luces, A. Santos-Lozano, M. Joyner, et al.. Exercise benefits in cardiovascular disease: beyond attenuation of traditional risk factors. Nat Rev Cardiol, 15 (12) ( 2018), pp. 731-743, DOI: 10.1038/s41569-018-0065-1
[[66]]
J.P. Rogers, E. Chesney, D. Oliver, et al.. Psychiatric and neuropsychiatric presentations associated with severe coronavirus infections: a systematic review and meta-analysis with comparison to the COVID-19 pandemic. Lancet Psychiatr., 7 (7) ( 2020), pp. 611-627, DOI: 10.1016/S2215-0366(20)30203-0
[[67]]
D. Jiménez-Pavón, A. Carbonell-Baeza, C.J. Lavie. Physical exercise as therapy to fight against the mental and physical consequences of COVID-19 quarantine: special focus in older people. Prog Cardiovasc Dis, 63 (3) ( 2020), pp. 386-388, DOI: 10.1016/j.pcad.2020.03.009
[[68]]
E.M. Paolucci, D. Loukov, D.M.E. Bowdish, et al.. Exercise reduces depression and inflammation but intensity matters. Biol Psychol, 133 ( 2018), pp. 79-84, DOI: 10.1016/j.bi opsycho. 2018.01.015
[[69]]
C.V. Sousa, M.M. Sales, T.S. Rosa, et al.. The antioxidant effect of exercise: a systematic review and meta-analysis. Sports Med, 47 (2) ( 2017), pp. 277-293, DOI: 10.1007/s40279-016-0566-1
[[70]]
M. Wadman, J. Couzin-Frankel, J. Kaiser, et al.. A rampage through the body. Science, 368 (6489) ( 2020), pp. 356-360, DOI: 10.1126/science.368.6489.356
[[71]]
D. Jia, L. Hou, Y. Lv, et al.. Postinfarction exercise training alleviates cardiac dysfunction and adverse Remodeling via Mitochondrial Biogenesis and SIRT1/PGC-1α/PI3K/Akt Signaling. J Cell Physiol, 234 (12) ( 2019), pp. 23705-23718, DOI: 10.1002/jcp.28939
[[72]]
Z. Yan, H.R. Spaulding.Extracellular superoxide dismutase, a molecular transducer of health benefits of exercise. Redox Biol, 32 ( 2020), p. 101508, DOI: 10.1002/jcp.28939
[[73]]
Y. Hitomi, S. Watanabe, T. Kizaki, et al.. Acute exercise increases expression of extracellular superoxide dismutase in skeletal muscle and the aorta. Redox Rep, 13 (5) ( 2008), pp. 213-216, DOI: 10.1179/135100008X308894
[[74]]
A. Wadley, G. Keane, T. Cullen, et al.. Characterization of extracellular redox enzyme concentrations in response to exercise in humans. J Appl Physiol ( 1985), 127 (3) ( 2019), pp. 858-866, DOI: 10.1152/japplphysiol.00340.2019
[[75]]
J. Call, Donet Jean, S. Kyle, et al.. Muscle-derived extracellular superoxide dismutase inhibits endothelial activation and protects against multiple organ dysfunction syndrome in mice. Free Radic Biol Med, 113 ( 2017), pp. 212-223, DOI: 10.1016/j.freeradbiomed.2017.09.029
[[76]]
W.J. Guan, Z.Y. Ni, Y. Hu, et al.. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med, 382 (18) ( 2020), pp. 1708-1720, DOI: 10.1056/NEJMoa2002032
[[77]]
P. Goyal, J. Choi, L. Pinheiro, et al.. Clinical characteristics of covid-19 in New York city. N Engl J Med, 382 (24) ( 2020), pp. 2372-2374, DOI: 10.1056/NEJMc2010419
[[78]]
T. Zuo, F. Zhang, G.C.Y. Lui, et al.. Alterations in gut microbiota of patients with COVID-19 during time of hospitalization. Gastroenterology, 59 (3) ( 2020), pp. 944-955, DOI: 10.1053/j.gastro.2020.05.048
[[79]]
Y. He, J.H. Wang, F. Li, et al.. Main clinical features of COVID-19 and potential prognostic and therapeutic value of the microbiota in SARS-CoV-2 infections. Front Microbiol, 11 ( 2020), p. 1302, DOI: 10.3389/fmicb.2020.01302
[[80]]
L.H. He, L.F. Ren, J.F. Li, et al.. Intestinal flora as a potential strategy to fight SARS-CoV-2 infection. Front Microbiol, 11 ( 2020), p. 1388, DOI: 10.3389/fmicb.2020.01388
[[81]]
V. Monda, I. Villano, A. Messina, et al.. Exercise modifies the gut microbiota with positive health effects. Oxid Med Cell Longev, 2017 ( 2017), p. 3831972, DOI: 10.1155/2017/3831972
[[82]]
S.D. Zeppa, D. Agostini, M. Gervasi, et al.. Mutual interactions among exercise, sport supplements and microbiota. Nutrients, 12 (1) ( 2019), p. 17, DOI: 10.3390/nu12010017
[[83]]
O. Cronin, W. Barton, P. Skuse, et al.. A Prospective metagenomic and metabolomic analysis of the impact of exercise and/or whey protein supplementation on the gut microbiome of sedentary adults. mSystems, 3 (3) ( 2018), Article e00044-18, DOI: 10.1128/mSystems.00044-18
[[84]]
J. Rong, J. Li, F. Jing, et al.. Efficacy of Baduanjin exercise for rehabilitation after COVID-19: a protocol for systematic review and meta-analysis. Medicine (Baltim), 100 (24) ( 2021), Article e26366, DOI: 10.1097/MD.0000000000026366
[[85]]
S.F. Chang, P.C. Lin, R.S. Yang, et al.. The preliminary effect of whole-body vibration intervention on improving the skeletal muscle mass index, physical fitness, and quality of life among older people with sarcopenia. BMC Geriatr, 18 (1) ( 2018), p. 17, DOI: 10.1186/s12877-018-0712-8
[[86]]
T. Furness, C. Joseph, L. Welsh, et al.. Whole-body vibration as a mode of dyspnoea free physical activity: a community-based proof-of-concept trial. BMC Res Notes, 6 ( 2013), p. 452, DOI: 10.1186/1756-0500-6-452
[[87]]
G. Fiorentino, A.M. Esquinas, A. Annunziata. Exercise and chronic obstructive pulmonary disease (COPD). Adv Exp Med Biol, 1228 ( 2020), pp. 355-368, DOI: 10.1007/978-981-15-1792-1_24
[[88]]
P.R. Alvaro, B.G. Jose, H.G. Vicenç, et al.. Effects of whole-body electromyostimulation on physical fitness and health in postmenopausal women: a study protocol for a randomized controlled trial. Front Public Health, 8 ( 2020), p. 313, DOI: 10.3389/fpubh.2020.00313
[[89]]
D.S. Braz Júnior, A. Dornelas de Andrade, A.S. Teixeira, et al.. Whole-body vibration improves functional capacity and quality of life in patients with severe chronic obstructive pulmonary disease (COPD): a pilot study. Int J Chronic Obstr Pulm Dis, 10 ( 2015), pp. 125-132, DOI: 10.2147/COPD.S73751
[[90]]
N. Kensuke, N. Hidehiko, N. Hiromu, et al.. Early rehabilitation with dedicated use of belt-type electrical muscle stimulation for severe COVID-19 patients. Crit Care, 24 (1) ( 2020), p. 342, DOI: 10.1186/s13054-020-03080-5
[[91]]
P. Simone, S. Galeri, R. Porta, et al.. Feasibility and efficacy of the pulmonary rehabilitation program in a rehabilitation center: CASE REPORT OF A YOUNG PATIENT DEVELOPING SEVERE COVID-19 aCUTE respiratory distress syndrome. J Cardiopulm Rehabil Prev, 40 (4) ( 2020), pp. 205-208, DOI: 10.1097/HCR.0000000000000529
[[92]]
J.L. Bernal, N. Andrews, C. Gower, et al.. Effectiveness of COVID-19 vaccines against the B.1.617.2 (Delta) variant. N Engl J Med, 385 (7) ( 2021), pp. 585-594, DOI: 10.1056/NEJMoa2108891
[[93]]
B. Wu, H. Zhang, Y.C. Wang, et al.. Sequencing on an imported case in China of COVID-19 Delta variant emerging from India in a cargo ship in Zhoushan, China. J Med Virol ( 2021), DOI: 10.1002/jmv.27239
[[94]]
S. Alizon, S. Haim-Boukobza, V. Foulongne, et al.. Rapid spread of the SARS-CoV-2 Delta variant in some French regions, June 2021. Euro Surveill, 26 (28) ( 2021), p. 2100573, DOI: 10.2807/1560-7917.ES.2021.26.28.2100573
[[95]]
A. Sheikh, J. McMenamin, B. Taylor, et al.. SARS-CoV-2 Delta VOC in Scotland: demographics, risk of hospital admission, and vaccine effectiveness. Lancet, 397 (10293) ( 2021), pp. 2461-2462, DOI: 10.1016/S0140-6736(21)01358-1
[[96]]
S. Griffin. Covid-19: fully vaccinated people can carry as much delta virus as unvaccinated people, data indicate. BMJ, 374 ( 2021), p. n2074, DOI: 10.1136/bmj.n2074

This study was funded by Fundamental Research Funds for the Central Universities in China grants (GK261002065 to ZT).

Accesses

Citations

Detail

Sections
Recommended

/