Alterations in renin-angiotensin receptors are not responsible for exercise preconditioning of skeletal muscle fibers

Branden L. Nguyen, Toshinori Yoshihara, Rafael Deminice, Jensen Lawrence, Mustafa Ozdemir, Hayden Hyatt, Scott K. Powers

Sports Medicine and Health Science ›› 2021, Vol. 3 ›› Issue (3) : 148-156. DOI: 10.1016/j.smhs.2021.06.003
Original article

Alterations in renin-angiotensin receptors are not responsible for exercise preconditioning of skeletal muscle fibers

Author information +
History +

Abstract

Endurance exercise training promotes a protective phenotype in skeletal muscle known as exercise preconditioning. Exercise preconditioning protects muscle fibers against a variety of threats including inactivity-induced muscle atrophy. The mechanism(s) responsible for exercise preconditioning remain unknown and are explored in these experiments. Specifically, we investigated the impact of endurance exercise training on key components of the renin-angiotensin system (RAS). The RAS was targeted because activation of the classical axis of the RAS pathway via angiotensin II type I receptors (AT1Rs) promotes muscle atrophy whereas activation of the non-classical RAS axis via Mas receptors (MasRs) inhibits the atrophic signaling of the classical RAS pathway. Guided by prior studies, we hypothesized that an exercise-induced decrease in AT1Rs and/or increases in MasRs in skeletal muscle fibers is a potential mechanism responsible for exercise preconditioning. Following endurance exercise training in rats, we examined the abundance of AT1Rs and MasRs in both locomotor and respiratory muscles. Our results indicate that endurance exercise training does not alter the protein abundance of AT1Rs or MasRs in muscle fibers from the diaphragm, plantaris, and soleus muscles compared to sedentary controls (p ​> ​0.05). Furthermore, fluorescent angiotensin II (AngII) binding analyses confirm our results that exercise preconditioning does not alter the protein abundance of AT1Rs in the diaphragm, plantaris, and soleus (p ​> ​0.05). This study confirms that exercise-induced changes in RAS receptors are not a key mechanism that contributes to the beneficial effects of exercise preconditioning in skeletal muscle fibers.

Keywords

Exercise preconditioning / Renin-angiotensin system / Skeletal muscle disuse atrophy / Skeletal muscle

Cite this article

Download citation ▾
Branden L. Nguyen, Toshinori Yoshihara, Rafael Deminice, Jensen Lawrence, Mustafa Ozdemir, Hayden Hyatt, Scott K. Powers. Alterations in renin-angiotensin receptors are not responsible for exercise preconditioning of skeletal muscle fibers. Sports Medicine and Health Science, 2021, 3(3): 148‒156 https://doi.org/10.1016/j.smhs.2021.06.003

References

[[1]]
J.M. Lawler, D.A. Rodriguez, J.M. Hord. Mitochondria in the middle: exercise preconditioning protection of striated muscle. J Physiol, 594 (18) ( 2016), pp. 5161-5183, DOI: 10.1113/JP270656
[[2]]
S.K. Powers, R. Deminice, M. Ozdemir, T. Yoshihara, M.P. Bomkamp, H. Hyatt. Exercise-induced oxidative stress: friend or foe?. J Sport Health Sci, 9 (5) ( 2020), pp. 415-425, DOI: 10.1016/j.jshs.2020.04.001
[[3]]
A.J. Smuder, A.N. Kavazis, K. Min, S.K. Powers. Exercise protects against doxorubicin-induced markers of autophagy signaling in skeletal muscle. J Appl Physiol ( 1985), 111 (4) ( 2011), pp. 1190-1198, DOI: 10.1152/japplphysiol.00429.2011
[[4]]
A.J. Smuder, K. Min, M.B. Hudson, et al.. Endurance exercise attenuates ventilator-induced diaphragm dysfunction. J Appl Physiol ( 1985), 112 (3) ( 2012), pp. 501-510, DOI: 10.1152/japplphysiol.01086.2011
[[5]]
H. Fujino, A. Ishihara, S. Murakami, et al.. Protective effects of exercise preconditioning on hindlimb unloading-induced atrophy of rat soleus muscle. Acta Physiol (Oxf), 197 (1) ( 2009), pp. 65-74, DOI: 10.1111/j.1748-1716.2009.01984.x
[[6]]
S.K. Powers, J.A. Duarte, B. Le Nguyen, H. Hyatt. Endurance exercise protects skeletal muscle against both doxorubicin-induced and inactivity-induced muscle wasting. Pflugers Arch, 471 (3) ( 2019), pp. 441-453, DOI: 10.1007/s00424-018-2227-8
[[7]]
M.P. Wiggs.Can endurance exercise preconditioning prevention disuse muscle atrophy?. Front Physiol, 6 ( 2015), p. 63, DOI: 10.3389/fphys.2015.00063. Published 2015 Mar 11
[[8]]
A.J. Smuder, A.B. Morton, S.E. Hall, et al.. Effects of exercise preconditioning and HSP 72 on diaphragm muscle function during mechanical ventilation. J Cachexia Sarcopenia Muscle, 10 (4) ( 2019), pp. 767-781, DOI: 10.1002/jcsm.12427
[[9]]
I.L. Gomes-Santos, T. Fernandes, G.K. Couto, et al.. Effects of exercise training on circulating and skeletal muscle renin-angiotensin system in chronic heart failure rats. PloS One, 9 (5) ( 2014), Article e98012, DOI: 10.1371/journal.pone.0098012. Published 2014 May 23
[[10]]
E.D.C. Frantz, E. Prodel, I.D. Braz, et al.. Modulation of the renin-angiotensin system in white adipose tissue and skeletal muscle: focus on exercise training. Clin Sci (Lond), 132 (14) ( 2018), pp. 1487-1507, DOI: 10.1042/CS20180276
[[11]]
S.K. Powers, A.B. Morton, H. Hyatt, M.J. Hinkley. The renin-angiotensin system and skeletal muscle. Exerc Sport Sci Rev, 46 (4) ( 2018), pp. 205-214, DOI: 10.1249/JES.0000000000000158
[[12]]
M. Brink, S.R. Price, J. Chrast, et al.. Angiotensin II induces skeletal muscle wasting through enhanced protein degradation and down-regulates autocrine insulin-like growth factor I. Endocrinology, 142 (4) ( 2001), pp. 1489-1496, DOI: 10.1210/endo.142.4.8082
[[13]]
T. Kadoguchi, S. Takada, T. Yokota, et al.. Deletion of NAD(P)H oxidase 2 prevents angiotensin II-induced skeletal muscle atrophy. BioMed Res Int, 2018 ( 2018), Article 3194917, DOI: 10.1155/2018/3194917
[[14]]
P. Du Bois, C. Pablo Tortola, D. Lodka, et al.. Angiotensin II induces skeletal muscle atrophy by activating TFEB-mediated MuRF1 expression. Circ Res, 117 (5) ( 2015), pp. 424-436, DOI: 10.1161/CIRCRESAHA.114.305393
[[15]]
S. Sukhanov, L. Semprun-Prieto, T. Yoshida, et al.. Angiotensin II, oxidative stress and skeletal muscle wasting. Am J Med Sci, 342 (2) ( 2011), pp. 143-147, DOI: 10.1097/MAJ.0b013e318222e620
[[16]]
B.M. Rezk, T. Yoshida, L. Semprun-Prieto, Y. Higashi, S. Sukhanov, P. Delafontaine. Angiotensin II infusion induces marked diaphragmatic skeletal muscle atrophy. PloS One, 7 (1) ( 2012), Article e30276, DOI: 10.1371/journal.pone.0030276
[[17]]
F. Cisternas, M.G. Morales, C. Meneses, et al.. Angiotensin-(1-7) decreases skeletal muscle atrophy induced by angiotensin II through a Mas receptor-dependent mechanism. Clin Sci (Lond), 128 (5) ( 2015), pp. 307-319, DOI: 10.1042/CS20140215
[[18]]
C Meneses, MG Morales, J Abrigo, F Simon, E Brandan, C Cabello-Verrugio. The angiotensin-(1-7)/mas Axis reduces myonuclear apoptosis during recovery from angiotensin II-induced skeletal muscle atrophy in mice. Pflugers Arch, 467 (9) ( 2015), pp. 1975-1984, DOI: 10.1007/s00424-014-1617-9
[[19]]
V. Zambelli, A. Sigurta, L. Rizzi, et al.. Angiotensin-(1-7) exerts a protective action in a rat model of ventilator-induced diaphragmatic dysfunction. Intensive Care Med Exp, 7 (1) ( 2019), p. 8, DOI: 10.1186/s40635-018-0218-x
[[20]]
O.S. Kwon, A.J. Smuder, M.P. Wiggs, et al.. AT 1 receptor blocker losartan protects against mechanical ventilation-induced diaphragmatic dysfunction. J Appl Physiol ( 1985), 119 (10) ( 2015), pp. 1033-1041, DOI: 10.1152/japplphysiol.00237.2015
[[21]]
J. Surapongchai, Y. Rattanavichit, J. Buniam, V. Saengsirisuwan.Exercise protects against defective insulin signaling and insulin resistance of glucose transport in skeletal muscle of angiotensin II-infused rat. Front Physiol, 9 ( 2018), p. 358, DOI: 10.3389/fphys.2018.00358
[[22]]
Y. Rattanavichit, J. Buniam, J. Surapongchai, V. Saengsirisuwan. Voluntary exercise opposes insulin resistance of skeletal muscle glucose transport during liquid fructose ingestion in rats. J Physiol Biochem, 74 (3) ( 2018), pp. 455-466, DOI: 10.1007/s13105-018-0639-8
[[23]]
E.D.C. Frantz, I.G. Giori, M.V. Machado, et al.. High, but not low, exercise volume shifts the balance of renin-angiotensin system toward ACE2/Mas receptor axis in skeletal muscle in obese rats. Am J Physiol Endocrinol Metab, 313 (4) ( 2017), pp. E473-E482, DOI: 10.1152/ajpendo.00078.2017
[[24]]
J. Benicky, R. Hafko, E. Sanchez-Lemus, G. Aguilera, J.M. Saavedra. Six commercially available angiotensin II AT1 receptor antibodies are non-specific. Cell Mol Neurobiol, 32 (8) ( 2012), pp. 1353-1365, DOI: 10.1007/s10571-012-9862-y
[[25]]
M. Herrera, M.A. Sparks, A.R. Alfonso-Pecchio, L.M. Harrison-Bernard, T.M. Coffman. Lack of specificity of commercial antibodies leads to misidentification of angiotensin type 1 receptor protein. Hypertension, 61 (1) ( 2013), pp. 253-258, DOI: 10.1161/HYPERTENSIONAHA.112.203679
[[26]]
D.J. Harriss, A. MacSween, G. Atkinson. Ethical standards in sport and exercise science research: 2020 update. Int J Sports Med, 40 (13) ( 2019), pp. 813-817, DOI: 10.1055/a-1015-3123
[[27]]
H.J. Green, M.J. Plyley, D.M. Smith, J.G. Kile. Extreme endurance training and fiber type adaptation in rat diaphragm. J Appl Physiol ( 1985), 66 (4) ( 1989), pp. 1914-1920, DOI: 10.1152/jappl.1989.66.4.1914
[[28]]
C. Cabello-Verrugio, G. Cordova, J.D. Salas. Angiotensin II: role in skeletal muscle atrophy. Curr Protein Pept Sci, 13 (6) ( 2012), pp. 560-569, DOI: 10.2174/138920312803582933
[[29]]
M.D. Delp, C. Duan. Composition and size of type I, IIA, IID/X, and IIB fibers and citrate synthase activity of rat muscle. J Appl Physiol, 80 (1) ( 1996), pp. 261-270, DOI: 10.1152/jappl.1996.80.1.261
[[30]]
X. Li, K. Wang. Effects of moderate-intensity endurance exercise on angiotensin II and angiotensin II type I receptors in the rat heart. Mol Med Rep, 16 (3) ( 2017), pp. 2439-2444, DOI: 10.3892/mmr.2017.6864
[[31]]
D. Criswell, S. Powers, S. Dodd, et al.. High intensity training-induced changes in skeletal muscle antioxidant enzyme activity. Med Sci Sports Exerc, 25 (10) ( 1993), pp. 1135-1140
[[32]]
N.T. Theilen, N. Jeremic, G.J. Weber, S.C. Tyagi. Exercise preconditioning diminishes skeletal muscle atrophy after hindlimb suspension in mice. J Appl Physiol ( 1985), 125 (4) ( 2018), pp. 999-1010, DOI: 10.1152/japplphysiol.00137.2018
[[33]]
A.C. Petrini, D.M. Ramos, L. Gomes de Oliveira, C. Alberto da Silva, A. Pertille. Prior swimming exercise favors muscle recovery in adult female rats after joint immobilization. J Phys Ther Sci, 28 (7) ( 2016), pp. 2072-2077, DOI: 10.1589/jpts.28.2072
[[34]]
R. Deminice, H. Hyatt, T. Yoshihara, et al.. Human and rodent skeletal muscles express angiotensin II type 1 receptors. Cells, 9 (7) ( 2020), p. 1688, DOI: 10.3390/cells9071688
[[35]]
Z.Z. Kirshner, R.B. Gibbs. Use of the REVERT® total protein stain as a loading control demonstrates significant benefits over the use of housekeeping proteins when analyzing brain homogenates by Western blot: An analysis of samples representing different gonadal hormone states. Mol Cell Endocrinol, 473 ( 2018), pp. 156-165, DOI: 10.1016/j.mce.2018.01.015
[[36]]
B.L. Falcon, J.M. Stewart, E. Bourassa, et al.. Angiotensin II type 2 receptor gene transfer elicits cardioprotective effects in an angiotensin II infusion rat model of hypertension. Physiol Genomics, 19 (3) ( 2004), pp. 255-261, DOI: 10.1152/physiolgenomics.00170.2004
[[37]]
M.E. Bragina, N. Stergiopulos, R.A. Fraga-Silva. Fluorescence-based binding assay for screening ligands of angiotensin receptors. Methods Mol Biol, 1614 ( 2017), pp. 165-174, DOI: 10.1007/978-1-4939-7030-8_13
[[38]]
N.M.S. Phansalkar, A. Sabale, A. Joshi.Adaptive local thresholding for detection of nuclei in diversity stained cytology images. Proceedings of the 2011 International Conference on Communications and Signal Processing. 10-12 February 2011 ( 2011), pp. 218-220, DOI: 10.1109/ICCSP.2011.5739305
[[39]]
M. Fischer, A. Baessler, H. Schunkert. Renin angiotensin system and gender differences in the cardiovascular system. Cardiovasc Res, 53 (3) ( 2002), pp. 672-677, DOI: 10.1016/s0008-6363(01)00479-5
[[40]]
K. Sandberg, H. Ji. Sex and the renin angiotensin system: implications for gender differences in the progression of kidney disease. Adv Ren Replace Ther, 10 (1) ( 2003), pp. 15-23, DOI: 10.1053/jarr.2003.50006
[[41]]
F. Farhat, A. Amerand, B. Simon, N. Guegueniat, C. Moisan. Gender-dependent differences of mitochondrial function and oxidative stress in rat skeletal muscle at rest and after exercise training. Redox Rep, 22 (6) ( 2017), pp. 508-514, DOI: 10.1080/13510002.2017.1296637
[[42]]
H.K. Vincent, S.K. Powers, D.J. Stewart, H.A. Demirel, R.A. Shanely, H. Naito. Short-term exercise training improves diaphragm antioxidant capacity and endurance. Eur J Appl Physiol, 81 (1-2) ( 2000), pp. 67-74, DOI: 10.1007/PL00013799
[[43]]
H.K. Vincent, S.K. Powers, H.A. Demirel, J.S. Coombes, H. Naito. Exercise training protects against contraction-induced lipid peroxidation in the diaphragm. Eur J Appl Physiol Occup Physiol, 79 (3) ( 1999), pp. 268-273, DOI: 10.1007/s004210050505
[[44]]
L. Zhang, J. Du, Z. Hu, et al.. IL-6 and serum amyloid A synergy mediates angiotensin II-induced muscle wasting. J Am Soc Nephrol, 20 (3) ( 2009), pp. 604-612, DOI: 10.1681/ASN.2008060628
[[45]]
M.M. Agoudemos, A.S. Greene. Localization of the renin-angiotensin system components to the skeletal muscle microcirculation. Microcirculation, 12 (8) ( 2005), pp. 627-636, DOI: 10.1080/10739680500301664
[[46]]
X. Li, K. Wang. Effects of moderate-intensity endurance exercise on angiotensin II and angiotensin II type I receptors in the rat heart. Mol Med Rep, 16 (3) ( 2017), pp. 2439-2444, DOI: 10.3892/mmr.2017.6864
[[47]]
D.L. Brutsaert. Cardiac endothelial-myocardial signaling: its role in cardiac growth, contractile performance, and rhythmicity. Physiol Rev, 83 (1) ( 2003), pp. 59-115, DOI: 10.1152/physrev.00017.2002
[[48]]
B.A. Tikunov, D. Mancini, S. Levine. Changes in myofibrillar protein composition of human diaphragm elicited by congestive heart failure. J Mol Cell Cardiol, 28 (12) ( 1996), pp. 2537-2541, DOI: 10.1006/jmcc.1996.0245

This study was funded by the National Institute of Health (R21AR063956 to SKP). The authors would like to thank the hard working students, faculty, and staff in the Department of Applied Physiology and Kinesiology at the University of Florida for their continual support of our research.

Accesses

Citations

Detail

Sections
Recommended

/